Soil health and dragon fruit cultivation: Assessing the impact on soil organic carbon

Autores/as

  • Saskia Guillen Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí́ Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0000-0002-1725-8548
  • Geoconda López Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí́ Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0000-0003-4755-2032
  • Paola Ormaza Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí́ Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador.
  • Freddy Mesias Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí́ Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0000-0002-6784-5951
  • Ewa Błońska Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland. https://orcid.org/0000-0001-7731-1673
  • Lizardo Reyna-Bowen Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabí́ Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0000-0003-0352-4005

DOI:

https://doi.org/10.17268/sci.agropecu.2023.043

Palabras clave:

Pitahaya, Selenicereus megalanthus, Hylocereus Undatus, soil organic carbon sequestration, soil-management

Resumen

Soil organic carbon (SOC) plays a crucial role in soil quality and nutrient availability. Agricultural practices, such as tillage and crop rotations, can affect SOC levels. Pitahaya cultivation, a growing crop in dry tropical environments regions may affect soil quality due to weed management. This study aims to assess the relationship between alternative crop management and pitahaya species on SOC sequestration. Two plots, each for yellow (Selenicereus megalanthus) and red (Hylocereus Undatus) pitahaya, were established. Rice husks were used as a natural mulch to prevent weed growth as a new control alternative. Soil sampling was conducted at different depths (0-5, 5-10, 10-20, and 20-30 cm) and locations (below plant vs row) within the pitahaya plots. The study found at the 0-5 cm section presents the highest concentration of organic carbon at 2.01%, 1.77%, and 1.97% below plant in red, yellow, and row in yellow plantation respectively. In comparison with 1.26% in row red plantation, they are significant differences. The analysis of carbon accumulation showed variability in each of the locations from 0-30 cm. Without significant differences with 50.34, 49.40, and 47.95 (t ha-1) below the yellow plant, row, and below red plant respectively. In the whole soil profile with 38,10 t ha-1 the row of the red plant is significantly different. Likewise, the age of the plantation or crop plays another important role in soil organic carbon sequestration. Despite having the same management, soil type, climate, and irrigation, the significant effect in this study shows that the different age of the plantations (2 years) marks a significant difference between the two plantations. The roots of the older plantation extend their roots more horizontally and achieve more organic carbon sequestration in the rows compared to the younger plantation.

Citas

Abbas, F., Mohkum, H., Ishaq, W., Ahsan, A., Faiq, H., et al. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. doi: 10.1016/j.jenvman.2020.110319

Abigail, M. E. A., Samuel, S. M., & Chidambaram, R. (2016). Application of rice husk nanosorbents containing 2,4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. Journal of the Taiwan Institute of Chemical Engineers, 63, 318–326. doi: 10.1016/j.jtice.2016.03.024.

Arrouays, D., & Pelissier, P. (1994). Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Science, 157(3), 185-192.

Barrangou, R., et al. (2015). Microorganismos asociados a la pudrición blanda del tallo y manchado del fruto en el cultivo de pitahaya amarilla en ecuador. Cell. Quito: UCE., pp. 1–46.

Barrezueta, S., Paz González, A., & Chabla Carrillo, J. (2017). Determinación de indicadores para calidad de suelos cultivados con cacao en provincia de El Oro-Ecuador. Revista CUMBRES, 3(1), 17–24.

Błońska, E., & Lasota, J. (2017). Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests, 8(11), 448. doi: 10.3390/f8110448

Błońska, E., Lasota, J., & Zwydak, M. (2017). The relationship between soil properties, enzyme activity and land use. Forest Research Papers, 78(1), 39–44. doi: 10.1515/frp-2017-0004

Boddey, R. M. et al. (2010). Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Global Change Biology, 16(2), 784–795. doi: 10.1111/j.1365-2486.2009.02020.x

Bordoh, P. K. et al. (2020).A review on the management of postharvest anthracnose in dragon fruits caused by Colletotrichum spp. Crop Protection, 105067. doi: 10.1016/j.cropro.2019.105067

Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3-22. doi: 10.1016/j.geoderma.2004.03.005.

Castro, A. C., Esguerra, E. B., & Franco, R. K. G. (2020). Modified Atmosphere Packaging and Low Temperature Storage of Red-Fleshed Dragon Fruit (Hylocereus Polyrhizus (Weber) Britton & Rose). Philippine Journal of Crop Science, 45(1), 1–12.

Cornejo, C., & Wilkie, A. C. (2010). Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy for Sustainable Development, 14(4), 256–266. doi: 10.1016/j.esd.2010.09.008

Csilla, H., Cristinel, P., Wilfred, O., & Sarah, D. B. (2021). Hudek - Functional root trait‐based classification of cover crops to improve soil physical. European Journal of Soil Biology, 1(73). doi: DOI: 10.1111/ejss.13147

Deng, L., Zhu, G.-Y., Tang, Z.-S., & Shangguan, Z.-P. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127-138. doi: 10.1016/j.gecco.2015.12.004

Diéguez-Santana, K., Sarduy-Pereira, L.B., Sablón-Cossío, N., Bautista-Santos, H., Sánchez-Galván, F., & Ruíz, S. (2022). Evaluation of the Circular Economy in a Pitahaya Agri-Food Chain. Sustainability, 14(5), 1–17. doi: 10.3390/su14052950

Gómez, J. A., Reyna-Bowen, L., Rebollo, P. F., & Soriano, M.-A. (2022). Comparison of Soil Organic Carbon Stocks Evolution in Two Olive Orchards with Different Planting Systems in Spain. Agriculture, 12(3), 1–15. doi: https://doi.org/10.3390/agriculture12030432

Gu, X. B., Li, Y. N., & Du, Y. D. (2017). Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil and Tillage Research, 171(23), 42–50. doi: 10.1016/j.still.2017.04.008

Hao, J., Smith, K. A., & Li, S. K. (2008). Chemical method to enhance transungual transport and iontophoresis efficiency. International Journal of Pharmaceutics, 357(1–2), 61–69. doi: 10.1016/j.ijpharm.2008.01.027

Hernández, A., Vera, L., Naveda, C., Véliz, F., Guzmán, A., et al. (2013). Impactos Del Cambio De Uso De La Tierra En La Microcuenca Membrillo, Manabí, Ecuador. Espamciencia, 4(2), pp. 59–66.

Hernández, A., Vera, L., Naveda, C., Veliz, F., Guzmán, Á., et al. (2015). Tipos De Suelos Y Sus Características De Las Partes Medias Y Bajas De La Microcuenca Membrillo, Manabí, Ecuador. Espamciencia, 3, 87–97. doi: 10.1017/CBO9781107415324.004

Ilampooranan, I., Van Meter, K. J., & Basu, N. B. (2022). Intensive agriculture, nitrogen legacies, and water quality: Intersections and implications. Environmental Research Letters, 17(3). doi: 10.1088/1748-9326/ac55b5

Jackson, R. B., Schenk, H. J., Jobbágy, E. G., Canadell, J., Colello, G. D. R., et al. (2000). Belowground Consequences of Vegetation Change and their treatment in models. Ecological Applications, 10(2), 470–483.

Kumar, R., Pandey, S., & Pandey, A. (2006). Plant roots and carbon sequestration. Current Science, 91(7), 885–890.

Laborde, D. et al. (2021). Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), 1–9. doi: 10.1038/s41467-021-22703-1

Milleret, R., Le Bayon, R. C., & Gobat, J. M. (2009). Root, mycorrhiza and earthworm interactions: Their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant and Soil, 316(1–2), 1–12. doi: 10.1007/s11104-008-9753-7

Mrówczyńska-Kamińska, A., Bajan, B., Pawłowski, K. P., Genstwa, N., & Zmyślona, J. (2021). Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE, 16, 1–20. doi: 10.1371/journal.pone.0250995

Nunes, M. R., van Es, H. M., Veum, K. S., Amsili, J. P. & Karlen, D. L. (2020). Anthropogenic and inherent effects on soil organic carbon across the U.S. Sustainability, 12(14), 1-19. doi: 10.3390/su12145695

Peltzer, D. A., Allen, R. B., Lovett, G. M., Whitehead, D., & Wardle, D. A. (2010). Effects of biological invasions on forest carbon sequestration. Global Change Biology, 16(2), 732–746. doi: 10.1111/j.1365-2486.2009.02038.x

Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485. doi: 10.1016/j.rser.2015.09.051

Punitha, A. (2022). Dragon Fruit: A Crop for Diversification. AGROBIOS, 3(10), 76.

Ramakrishna, A., Minh Tam, H., Wani, S., & Dinh Long, T. (2006). Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 95(2–3), 115–125. doi: 10.1016/j.fcr.2005.01.030

Rehman, A., Ma, H., Irfan, M., & Ahmad, M. (2020). Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 27(23), 28768–28779. doi: 10.1007/s11356-020-08912-z

Reyna-Bowen, L., Lasota, J., Vera-Montenegro, L., Vera-Montenegro, B., & Błońska, E. (2019). Distribution and Factors Influencing Organic Carbon Stock in Mountain Soils in Babia Góra National Park, Poland. Applied Sciences, 9(15), 3070. doi: 10.3390/app9153070

Reyna-Bowen, L., Fernandez-Rebollo, P., Fernández-Habas, J., Gómez, A., et al. (2020). The influence of tree and soil management on soil organic carbon stock and pools in dehesa systems. Catena, 190, 104511. doi: 10.1016/j.catena.2020.104511

Reyna-Bowen, L., Vera-Montenegro, L., & Reyna, L. (2018). Soil-Organic-Carbon Concentration and Storage under Different Land Uses in the Carrizal-Chone Valley in Ecuador. Applied Sciences, 9(1), 45. doi: 10.3390/app9010045.

Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., et al. (2021). Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production, 124019. doi: 10.1016/j.jclepro.2020.124019.

Soil Survey Staff (2012). Field book for describing and sampling soils - version 3.0, National soil survey handbook (NSSH). National Soil Survey Center, Lincoln, NE. Available at: http://soils.usda.gov/technical/handbook/.

Teame, G., Tsegay, A., & Abrha, B. (2017). Effect of Organic Mulching on Soil Moisture, Yield, and Yield Contributing Components of Sesame (Sesamum indicum L.). International Journal of Agronomy, 2017. doi: 10.1155/2017/4767509.

Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1). doi: 10.1088/1748-9326/8/1/015009.

Tubiello, F. N., Salvatore, R. D., Cóndor Golec, A., Ferrara, S., Rossi, R., et al. (2014). Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. ESS Working Paper, 2(2), 4–89. Available at: http://www.fao.org/docrep/019/i3671e/i3671e.pdf.

Vera-Macías, L. R., Hernández-Jiménez, A., Mesías-Gallo, F. W., Cedeño-Sacón, Á. F., Guzmán-Cedeño, Á. M., Ormaza-Cedeño, K. P., & López-Alava, G. A. (2019). Principales suelos y particularidades de su formación del sistema Carrizal-Chone, Manabí, Ecuador. Cultivos Tropicales, 40(2), e06.

Wakchaure, G. C., Minhas, P. S., Kumar, S., Mane, P., Suresh Kumar, P., Rane, J., & Pathak, H. (2023). Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem. Saudi Journal of Biological Sciences, 30(1), 103497. doi: 10.1016/j.sjbs.2022.103497.

Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–264. doi: 10.1097/00010694-194704000-00001.

Xu, Y., Duan, X., Wu, Y., Fu, T., Hou, W., Xue, S., & Yi, Z. (2024). The efficiency and stability of soil organic carbon sequestration by perennial energy crops cultivation on marginal land depended on root traits. Soil and Tillage Research, 235, 1–7. doi: 10.1016/j.still.2023.105909.

Descargas

Publicado

2023-12-17

Cómo citar

Guillen, S., López, G., Ormaza, P., Mesias, F., Błońska , E., & Reyna-Bowen, L. (2023). Soil health and dragon fruit cultivation: Assessing the impact on soil organic carbon. Scientia Agropecuaria, 14(4), 519-528. https://doi.org/10.17268/sci.agropecu.2023.043

Número

Sección

Artículos originales