Effect of heat processing on bioactive compounds of dehydrated (lyophilized) purple mashua (Tropaeolum tuberosum)

Autores/as

  • Luis Alberto Medina Marroquin Universidad Nacional de San Agustín de Arequipa
  • Harry Ricardo Yucra-Condori Universidad Nacional de San Agustín, Arequipa.
  • José Gárate Universidad Nacional de San Agustín, Arequipa.
  • Cecilia Mendoza Universidad Nacional Jorge Basadre Grohmann, Tacna.
  • Enrique Deflorio Universidad Nacional Jorge Basadre Grohmann.

DOI:

https://doi.org/10.17268/sci.agropecu.2023.028

Palabras clave:

Mashua, glucosinolates, myrosinase, activity, catalytic

Resumen

Mashua (Tropaeolum tuberosum) is an Andean tuber rich in phenolic compounds and glucosinolates, known for its consumption that allows the prevention and/or reduction of getting diseases. The present research evaluated the effect of different types of post-harvest management (sunny, bleached, and freeze-dried) on glucosinolate content and its relationship with myrosinase activity. It is also important to note that when plant cells are damaged and glucosinolates meet the plant's myrosinase, which hydrolyzes them and degrades them to other compounds. In the present research, the types of glucosinolates, the content of glucosinolates and the activity of myrosinase of the purple variety of fresh raw mashua and in mashua treated by several types of processing were evaluated, including the previous treatment (sunny and unscrewed), the boiling treatment and the microwave treatment, with whitening times of 3, 4, 5 and 6 minutes, being the condition of the tuber at the time of bleaching in whole form and by cutting, to then be subsequently subjected to lyophilization treatments. Five glucosinolatos (GSL) were identified: 5-methylsulfinilpentile, 4-hydroxybenzyl, 4-hydroxy-3-indolylmethyl, benzyl and 4-methoxybenzyl, of which 4-methoxybenzyl glucosinolate is the most abundant, symbolizing 98% and 95% of the total GSL in the purple ecotype. According to the total concentration of glucosinolates found in the studied variety (purple), it must be 74.22 and 110.60 micromoles per gram of dry base (μmol/g dry weight), so mashua can be considered, the edible plant with the highest existing GSL content.

Citas

Aguilar-Galvez, A., García-Ríos, D., Lindo, J., Ramírez-Guzmán, D., Chirinos, R., Pedreschi, R., & Campos, D. (2022). Impact of cold storage followed by drying of mashua tuber (Tropaeolum tuberosum) on the glucosinolate content and their transformation products. International Journal of Food Science & Technology, 57(12), 7797–7805. https://doi.org/10.1111/IJFS.16088

Aguilar-Galvez, A., García-Ríos, D., Ramírez-Guzmán, D., Lindo, J., Chirinos, R., Pedreschi, R., & Campos, D. (2023). In vitro and in vivo biotransformation of glucosinolates from mashua (Tropaeolum tuberosum) by lactic acid bacteria. Food Chemistry, 404, 134631. https://doi.org/10.1016/J.FOODCHEM.2022.134631

Aguiló-Aguayo, I., Suarez, M., Plaza, L., Hossain, M. B., Brunton, N., Lyng, J. G., & Rai, D. K. (2014). Optimization of pulsed electric field pre‐treatments to enhance health‐promoting glucosinolates in broccoli flowers and stalk. Journal of the science of food and agriculture, 95(9), 1868–1875. https://doi.org/10.1002/jsfa.6891

Alfageme, A., & Rondán, N. R. R. (2022). Banco Central se Reserva Del Perú Acceso a servicios financieros de los hogares en el Perú. www.treasury.gov/resource-center/financial-education

Alvarez-Jubete, L., Valverde, J., Kehoe, K., et al. (2014). Development of a novel functional soup rich in bioactive sulforaphane using broccoli (Brassica oleracea L. ssp. italica) florets and byproducts. Food and Bioprocess Technology, 7(5), 1310–1321. https://doi.org/10.1007/s11947-013-1113-9

Angelino, D., & Jeffery, E. (2014). Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods, 7(1), 67–76. https://doi.org/10.1016/J.JFF.2013.09.029

AOAC INTERNATIONAL. (2019). Official Methods of Analysis TM. 21st Edition. https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/

Ares, A. M., Bernal, J., Nozal, M. J., Turner, C., & Plaza, M. (2015). Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 76, 498–505. https://doi.org/10.1016/J.FOODRES.2015.06.037

Arora, R., Kumar, R., Mahajan, J., Vig, A. P., Singh, B., Singh, B., & Arora, S. (2016). 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. Journal of Food Science and Technology, 53(9), 3437–3445. https://doi.org/10.1007/S13197-016-2316-7

Avato, P., & Argentieri, M. P. (2015). Brassicaceae: a rich source of health improving phytochemicals. Phytochemistry Reviews, 14(6), 1019–1033. https://doi.org/10.1007/S11101-015-9414-4

Becker, T. M., Juvik, J. A., Jeffery, E. H., Huber, S. C., & Briskin, D. P. (2015). The glucosinolate/myrosinase system: Variation in glucosinolates, hydrolysis products, transcript abundance, and quinone reductase bioactivity in Brassica. University of Illinois at Urbana-Champaign. Graduate Dissertations and Theses at Illinois.

Campos, D., Aguilar-Galvez, A., García-Ríos, D., Chirinos, R., Limaymanta, E., & Pedreschi, R. (2019). Postharvest storage and cooking techniques affect the stability of glucosinolates and myrosinase activity of Andean mashua tubers (Tropaeolum tuberosum). International Journal of Food Science & Technology, 54(7), 2387–2395. https://doi.org/10.1111/IJFS.14150

Chan, J. C. (2015). Eficacia antioxidante de los compuestos fenológicos de la mashua (Tropaeolum tuberosum) en la estabilidad del aceite de linaza (Linum usitatissimum L.). Tesis título de ingeniero en industrias alimentarias. Universidad Nacional Agraria La Molina.

Coronado, M., & Castillo, M. P. (2013). Influencia de blanqueado y secado a dos temperaturas en el contenido de compuestos fenolicos, carotenoides y capacidad antioxidante de los tubérculos de mashua. Tesis Pre-Grado. Facultad de Ingeniería Agroindustrial. Universidad Nacional de San Martin.

Celis, R. (2020). Efecto de temperatura y velocidad de secado en la actividad antioxidante de la mashua (Tropaeolum tuberosum) en el secado en bandejas. Revista Científica UNTRM: Ciencias Naturales e Ingeniería, 3(1), 16-21. https://doi.org/10.25127/ucni.v3i1.587

Clarke, B. (2010). Glucosinolates, structures and analysis in food. (Critical Review). Anal. Methods, 2, 310-325. https://doi.org/10.1039/B9AY00280D

Collett, M. G., Stegelmeier, B. L., & Tapper, B. A. (2014). Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle? Journal of Agricultural and Food Chemistry, 62(30), 7370–7375. https://doi.org/10.1021/JF500526U

Coloma, A., Flores-Mamani, E., Quille-Calizaya, G., Zaira-Churata, A., Apaza-Ticona, J., Calsina-Ponce, W. C., Huata-Panca, P., Inquilla-Mamani, J., & Huanca-Rojas, F. (2022). Characterization of Nutritional and Bioactive Compound in Three Genotypes of Mashua (Tropaeolum tuberosum Ruiz and Pavón) from Different Agroecological Areas in Puno. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7550987

Cristóbal, M. S., Peña, E., Aguareles, B., Córdoba, C., & González, M. (2011). Curso de cromatografía de líquidos de alta resolución (HPLC): Prácticas de laboratorio y cuestiones teórico-prácticas. Parte III. Práctica de laboratorio: optimización. Reduca, 4(3), 48–78.

Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51. https://doi.org/10.1016/S0031-9422(00)00316-2

Ghawi, S., Methven, L., Rastall, R., & Chemistry, K. N.-F. (2011). Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chemistry, 131(4), 1240-1247. https://doi.org/10.1016/j.foodchem.2011.09.111

González-Romero, M. E., Rivera, C., Cancino, K., Geu-Flores, F., Cosio, E. G., Ghislain, M., & Halkier, B. A. (2021). Bioengineering potato plants to produce benzylglucosinolate for improved broad-spectrum pest and disease resistance. Transgenic Research, 30(5), 649–660. https://doi.org/10.1007/S11248-021-00255-W/FIGURES/4

Grosser, K., & van Dam, N. M. (2017). A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments : JoVE (121). https://doi.org/10.3791/55425

Leidi, E. O., Altamirano, A. M., Mercado, G., Rodriguez, J. P., Ramos, A., et al. (2018). Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 51, 86–93. https://doi.org/10.1016/J.JFF.2018.10.007

Malpartida, R. J., Adama Astete, J. M., Cajachagua Uscuchagua, Y. Y., & Rosales Sánchez, M. C. (2022). Características fisicoquímicas, composición nutricional y compuestos bioactivos en tres variedades de Mashua (Tropaeolum tuberosum Ruiz y Pavón): Una revisión. Revista Tecnológica - ESPOL, 34(2), 41–51. https://doi.org/10.37815/rte.v34n2.891

Manrique, I., Arbizu, C., Vivanco, F., Gonzales, R., Ramírez, C., et al. (2014). Tropaeolum tuberosum Ruiz & Pav. Colección de germoplasma de mashua conservada en el Centro Inter-nacional de la Papa (CIP). 122 p. Asociación Gráfica Educativa, Breña, Lima‐Perú. https://doi.org/10.4160/9789290604310

Marín-Tello, C., Villafana-Medina, H., Malpartida-Tello, V., Sánchez-Marín, C., Castañeda-Marín, E., et al. (2021). Effect of Lepidium meyenii (maca) on spatial memory and brain oxidative damage of ovariectomised-rats exposed to mobile phone. Vitae, 28(1), 1–8. https://doi.org/10.17533/UDEA.VITAE.V28N1A342472

Martín, J. C., & Higuera, B. L. (2016). Glucosinolate composition of Colombian accessions of mashua (Tropaeolum tuberosum Ruíz & Pavón), structural elucidation of the predominant glucosinolate and assessment of its antifungal activity. Journal of the Science of Food and Agriculture, 96(14), 4702–4712. https://doi.org/10.1002/JSFA.7689

Mi, Ekus, N., Marszałek, K., Podlacha, M., Iqbal, A., Puchalski, C., Swiergiel, A. H., & Wacław, P. (2020). Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules, 25, 3804. https://doi.org/10.3390/molecules25173804

Ortega, O., Kliebenstein, D., Arbizu, C., Ortega, R., & Quiros, C. F. (2006) Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruíz & Pavón) in the Cuzco Region of Peru. The New York Botanical Garden Press, Bronx, NY.

Paucar-Menacho, L. M., Peñas, E., Hernandez-Ledesma, B., Frias, J., & Martínez-Villaluenga, C. (2020). A comparative study on the phenolic bioaccessibility, antioxidant and inhibitory effects on carbohydrate-digesting enzymes of maca and mashua powders. LWT, 131, 109798. https://doi.org/10.1016/J.LWT.2020.109798

Arias, M. A. (2011). Análisis y comparación de los glucosinolatos presentes en diferentes accesiones de cubio (Tropaeolum tuberosum) para evaluar su uso potencial en el control del patógeno de la papa Spongospora subterránea. Tesis Maestría en Ciencias – Química. Universidad Nacional de Colombia.

Valcárcel-Yamani, B., Rondán-Sanabria, G. G., & Finardi-Filho, F. (2013). The physical, chemical and functional characterization of starches from Andean tubers: oca (Oxalis tuberosa Molina), olluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz & Pavón). Brazilian Journal of Pharmaceutical Sciences, 49(3), 453–464. https://doi.org/10.1590/S1984-82502013000300007

Descargas

Publicado

2023-08-11

Cómo citar

Medina Marroquin, L. A., Yucra-Condori, H. R. ., Gárate, J. ., Mendoza, C. ., & Deflorio, E. . (2023). Effect of heat processing on bioactive compounds of dehydrated (lyophilized) purple mashua (Tropaeolum tuberosum). Scientia Agropecuaria, 14(3), 321-333. https://doi.org/10.17268/sci.agropecu.2023.028

Número

Sección

Artículos originales