Speed shear rate impact on the properties of OSA-modified potato starch

Autores/as

  • Lizbeth Hidalgo-Tufiño Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima.
  • Anais Adauto Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima.
  • Carmen Velezmoro Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima.

DOI:

https://doi.org/10.17268/sci.agropecu.2023.011

Palabras clave:

Potato starches, shearing, modified starch, starch properties

Resumen

The reaction between starch granules and octenyl succinic anhydride (OSA) is regularly retarded due to the low breakthrough of large oily OSA droplets into starch granules in an aqueous reaction system. Furthermore, high-speed shearing is widely used in the food industry, demanding high shear, cavitation, and collision force. In this sense, high-speed shearing could reduce the size of OSA droplets and promote a more homogeneous distribution of groups in the starch granule.  The aim of this study was to evaluate the impact of OSA potato starch synthesis assisted by high-speed shear on structure (SEM and FTIR), gelatinization, rheology, and emulsifying activity (ES and AS) was investigated. The results showed a gradual increase in DS proportional to the applied speed. Likewise, the OSA starches showed a slight alteration in the shape of the granules (SEM), and FT-IR spectroscopy showed a characteristic absorption of the ester carbonyl groups in the OSA starch at 1724 cm-1. The high-speed shear-treated starches exhibited a significant change in the reduction of the initial gelatinization temperature, although not in the enthalpy. All the gels presented rheology adjusted to the Herschel-Bulkley model with variations in the initial shear stress. Changes in the viscoelastic behavior are proportional to the shear rate detected. High-speed shear treatment did not show a significant effect on emulsion stability (ES) and emulsion activity (EA). Consequently, applying high shear rates allows having OSA starches with different uses.

Citas

Agama-Acevedo, E., & Bello-Perez, L. A. (2017). Starch as an emulsions stability: the case of octenyl succinic anhydride (OSA) starch. Current Opinion in Food Science, 13, 78-83.

Altuna, L., Herrera, M. L., & Foresti, M. L. (2018). Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocolloids, 80, 97-110.

Augusto, P. E. D., Cristianini, M., & Ibarz, A. (2012). Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. Journal of Food Engineering, 108(2), 283-289.

Bist, Y., Kumar, Y., & Saxena, D. C. (2023). Studies on rheological behavior of native and octenyl succinic anhydride modified buckwheat (Fagopyrum esculentum) starch gel and improved flow properties thereof. Journal of Food Process Engineering, 46(1), e14193.

Dapčević-Hadnađev, T., Hadnađev, M., Dokić, L., & Krstonošić, V. (2021). Small deformation rheological behaviour of wheat gluten - octenyl succinyl modified corn starches mixtures. Journal of Cereal Science, 97, 103150.

Fang, J. M., Fowler, P. A., Sayers, C., & Williams, P. A. (2004). The chemical modification of a range of starches under aqueous reaction conditions. Carbohydrate Polymers, 55(3), 283-289.

Han, X.-Z., Campanella, O. H., Mix, N. C., & Hamaker, B. R. (2002). Consequence of Starch Damage on Rheological Properties of Maize Starch Pastes. Cereal Chemistry, 79(6), 897-901.

Hui, R., Qi-he, C., Ming-liang, F., Qiong, X., & Guo-qing, H. (2009). Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry, 114(1), 81-86.

Kaur, S., Kaur, A., Singh, N., & Sodhi, N. S. (2013). Effect of shearing on functional properties of starches isolated from Indian kidney beans. Starch - Stärke, 65(9-10), 808-813.

Li, N., Niu, M., Zhang, B., Zhao, S., Xiong, S., & Xie, F. (2017). Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch. Carbohydrate Polymers, 155, 109-116.

Li, S., Li, C., Yang, Y., He, X., Zhang, B., et al. (2019). Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chemistry, 283, 437-444.

Lin, J. H., Kao, W. T., Tsai, Y. C., & Chang, Y. H. (2013). Effect of granular characteristics on pasting properties of starch blends. Carbohydrate Polymers, 98(2), 1553-1560.

Lopez-Silva, M., Bello-Perez, L. A., Agama-Acevedo, E., & Alvarez-Ramirez, J. (2019). Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, 97, 105212.

López, O. V., Zaritzky, N. E., & García, M. A. (2010). Physicochemi­cal characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering, 100(1), 160-168.

Mahmood, K., Kamilah, H., Shang, P. L., Sulaiman, S., Ariffin, F., & Alias, A. K. (2017). A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Bioscience, 19, 110-120.

Martínez, P., Betalleluz-Pallardel, I., Cuba, A., Peña, F., Cervantes-Uc, J. M., Uribe-Calderón, J. A., & Velezmoro, C. (2022). Effects of natural freeze-thaw treatment on structural, functional, and rheological characteristics of starches isolated from three bitter potato cultivars from the Andean region. Food Hydrocolloids, 132, 107860.

Martínez, P., Peña, F., Bello-Pérez, L. A., Núñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, 2, 100030.

Martínez, P., Vilcarromero, D., Pozo, D., Peña, F., Cervantes-Uc, J., Uribe-Calderon, J., & Velezmoro, C. (2021). Characterization of starches obtained from several native potato varieties grown in Cusco (Peru). Journal of Food Science, 86(3), 907-914.

Miao, M., Li, R., Jiang, B., Cui, S. W., Zhang, T., & Jin, Z. (2014). Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 151, 154-160.

Nagaoka, S., Tobata, H., Takiguchi, Y., Satoh, T., Sakurai, T., Takafuji, M., & Ihara, H. (2005). Characterization of cellulose microbeads prepared by a viscose-phase-separation method and their chemical modification with acid anhydride. Journal of Applied Polymer Science, 97(1), 149-157.

Park, S., Chung, M.-G., & Yoo, B. (2004). Effect of Octenylsuccinylation on Rheological Properties of Corn Starch Pastes. Starch - Stärke, 56(9), 399-406.

Punia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 144, 578-585.

Ramírez-Hernández, A., Aguilar-Flores, C., & Aparicio-Saguilán, A. (2019). Fingerprint analysis of FTIR spectra of polymers containing vinyl acetate . DYNA, 86(209), 198-205.

Schoch, T. J., & Maywald, E. C. (1956). Microscopic Examination of Modified Starches. Analytical Chemistry, 28(3), 382-387.

Shahbazi, M., Majzoobi, M., & Farahnaky, A. (2018). Impact of shear force on functional properties of native starch and resulting gel and film. Journal of Food Engineering, 223, 10-21.

Sharma, M., Singh, A. K., Yadav, D. N., Arora, S., & Vishwakarma, R. K. (2016). Impact of octenyl succinylation on rheological, pasting, thermal and physicochemical properties of pearl millet (Pennisetum typhoides) starch. LWT, 73, 52-59.

Song, X., He, G., Ruan, H., & Chen, Q. (2006). Preparation and Properties of Octenyl Succinic Anhydride Modified Early Indica Rice Starch. Starch - Stärke, 58(2), 109-117.

Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905-920.

Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489-498.

Thygesen, L. G., Løkke, M. M., Micklander, E., & Engelsen, S. B. (2003). Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science & Technology, 14(1-2), 50-57.

Timgren, A., Rayner, M., Dejmek, P., Marku, D., & Sjöö, M. (2013). Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science & Nutrition, 1(2), 157.

Velásquez-Barreto, F. F., Bello-Pérez, L. A., Yee-Madeira, H., Alvarez-Ramirez, J., & Velezmoro-Sánchez, C. E. (2020). Effect of the OSA Esterification of Oxalis tuberosa Starch on the Physicochemical, Molecular, and Emulsification Properties. Starch - Stärke, 72(5-6), 1900305.

Velásquez-Barreto, F., & Velezmoro, C. (2018). Rheological and viscoelastic properties of Andean tubers starches. Scientia Agropecuaria, 9(2), 189-197.

Wang, C., He, X., Fu, X., Huang, Q., & Zhang, B. (2016). Substituent distribution changes the pasting and emulsion properties of octenylsuccinate starch. Carbohydrate Polymers, 135, 64-71.

Wang, C., He, X., Fu, X., Luo, F., & Huang, Q. (2015). High-speed shear effect on properties and octenylsuccinic anhydride modification of corn starch. Food Hydrocolloids, 44, 32-39.

Wang, C., He, X., Huang, Q., Fu, X., Luo, F., & Li, L. (2013). Distribution of octenylsuccinic substituents in modified A and B polymorph starch granules. Journal of Agricultural and Food Chemistry, 61(51), 12492-12498.

Wang, J., Su, L., & Wang, S. (2010). Physicochemical properties of octenyl succinic anhydride-modified potato starch with different degrees of substitution. Journal of the Science of Food and Agriculture, 90(3), 424-429.

Wang, L., Li, X., Gao, F., Liu, S., Wu, Y., Liu, Y., & Zhang, D. (2022). Effects of Jet Milling Pretreatment and Esterification with Octenyl Succinic Anhydride on Physicochemical Properties of Corn Starch. Foods, 11(18), 2893.

Wang, Y., Liu, W., Chen, X. D., & Selomulya, C. (2016). Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 175, 74-84.

Wen, Y., Yao, T., Xu, Y., Corke, H., & Sui, Z. (2020). Pasting, thermal and rheological properties of octenylsuccinylate modified starches from diverse small granule starches differing in amylose content. Journal of Cereal Science, 95, 103030.

Zhang, B., Huang, Q., Luo, F. X., Fu, X., Jiang, H., & Jane, J. L. (2011). Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydrate Polymers, 84(4), 1276-1281.

Zhao, L., Tong, Q., Geng, Z., Liu, Y., Yin, L., Xu, W., & Rehman, A. (2022). Recent advances of octenyl succinic anhydride modified polysaccharides as wall materials for nano-encapsulation of hydrophobic bioactive compounds. Journal of the Science of Food and Agriculture, 102(14), 6183-6192.

Descargas

Publicado

2023-03-17

Cómo citar

Hidalgo-Tufiño, L. ., Adauto, A. ., & Velezmoro, C. . (2023). Speed shear rate impact on the properties of OSA-modified potato starch. Scientia Agropecuaria, 14(1), 117-125. https://doi.org/10.17268/sci.agropecu.2023.011

Número

Sección

Artículos originales