Silver nanoparticles and cellulose microfiber micro-composite from banana (Musa acuminata) waste: green synthesis, antioxidant property and antimicrobial capacity


  • Chanena Alvarado-Aguilar Facultad de Ingeniería Química, Universidad de Guayaquil, Guayaquil, Guayas, Ecuador
  • Roberto Luna Burgos Facultad de Ingeniería Química, Universidad de Guayaquil, Guayaquil, Guayas.
  • Heydi Ganchozo Intriago Facultad de Ingeniería Química, Universidad de Guayaquil, Guayaquil, Guayas.
  • Alfredo Leal-Chantong Facultad de Ingeniería Química, Universidad de Guayaquil, Guayaquil, Guayas.
  • Daniel Leal Alvarado Universidad Técnica de Manabí


Palabras clave:

Silver nanoparticles, micro-composite, cellulose microfibers, green chemistry, banana waste


The green chemistry promotes the synthesis of nanomaterials from plant extracts as a new climate intelligent alternative to the use of conventional protocols based on costly and toxic chemicals. Therefore, this research was undertaken to analyses the efficiency of banana (peels and rachis) waste extracts in the production of a micro-composite composed by silver nanoparticles (AgNPs) and cellulose microfibers (CMF) respectively. Results showed the synthesis of 24 nm diameter spherical particles AgNPs, with a peak of absorbance at 410 nm, in (v/v) water:ethanol extracts of banana peels at a final dilution of 3.10-2. Concomitantly, 50-350 µm in length and 5-10 µm of diameter CMF were obtained via the oxalic acid hydrolysis of the oven-dried banana rachis. The micro-composite (AgNPs-CMF) and AgNPs displayed an active reducing capacity over 60% determined by the DPPH test, and active bacterial activity against E. Coli and S. aureus in Petri dishes. Overall results support the use of banana waste for the synthesis of AgNPs and CMF for industrial purposes.


Aboul-Enein, A. M., Salama, Z. A., Gaafar, A. A., Aly, H. F., Bou-Elella, F. A., & Ahmed, H. A. (2016). Identification of phenolic compounds from banana peel (musa paradaisica l.) As antioxidant and antimicrobial agents. Journal of chemical and pharmaceutical research, 8(4), 46–55.

Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloids and surfaces b: biointerfaces, 28(4), 313-318.

Ait Benhamou, A., Kassab, Z., Nadifiyine, M., Salim, M. H., Sehaqui, H., Moubarik, A., & El Achaby, M. (2021). Extraction, characterization and chemical functionalization of phosphorylated cellulose derivatives from giant reed plant. Cellulose, 28(8), 4625-4642.

Akter, S., & Huq, M. A. (2020). Biologically rapid synthesis of silver nanoparticles by sphingobium sp. Mah-11t and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artificial cells, nanomedicine and biotechnology, 48(1), 672-682.

Amutha, K., & Selvakumari, U. (2016). Wound healing activity of methanolic stem extract of musa paradisiaca linn. (banana) in wistar albino rats. International wound journal, 13(5), 763-767.

AOAC. (2000). Official methods of analysis (k. Helrich, ed.), 15th ed. Aoac lnt., arlington, va. Read, 723(430 mm), 2000-2000.

Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., & Kalilur Rahiman, A. (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of photochemistry and photobiology b: biology, 180, 243-252.

Bahloul, A., Kassab, Z., El Bouchti, M., Hannache, H., Qaiss, A. E. K., Oumam, M., & El Achaby, M. (2021). Micro- and nano-structures of cellulose from eggplant plant (solanum melongena l) agricultural residue. Carbohydrate polymers, 253(october 2020), 117311.

Cecci, R. R. R., Passos, A. A., De Aguiar Neto, T. C., & Silva, L. A. (2020). Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. Sn applied sciences, 2(1).

Coyle, M., Cavalieri, S. J., Rankin, I. D., Harbeck, R. J., & Sautter, R. L. (2016). Manual de pruebas de susceptibilidad antimicrobiana. Https://

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., Faria, M., Thomas, S., & Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075–1090.

Dong, H., Snyder, J. F., Tran, D. T., & Leadore, J. L. (2013). Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydrate polymers, 95(2), 760–767.

El-Naggar, N. E. A., Hussein, M. H., & El-Sawah, A. A. (2017). Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Scientific reports, 7(1), 1–20.

Gómez, H., C., Serpa, A., Velásquez-Cock, J., Gañán, P., Castro, C., Vélez, L., & Zuluaga, R. (2016). Vegetable nanocellulose in food science: a review. Food hydrocolloids, 57, 178–186.

Grishkewich, N., Mohammed, N., Tang, J., & Tam, K. C. (2017). Recent advances in the application of cellulose nanocrystals. Current opinion in colloid and interface science, 29, 32–45.

Harini, K., Ramya, K., & Sukumar, M. (2018). Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydrate polymers, 201, 329–339.

Huq, M. A. (2020). Green synthesis of silver nanoparticles using pseudoduganella eburnea mahuq-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. International journal of molecular sciences, 21(4).

Huq, M. A., & Akter, S. (2021). Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms. Materials, 14(10).

Huq, M. A., Ashrafudoulla, M., Rahman, M. M., Balusamy, S. R., & Akter, S. (2022). Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review. Polymers, 14(4), 1-22.

Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of radiation research and applied sciences, 8(3), 265-275.

Jain, S., & Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific reports, 7(1), 1-13.

Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology, 53(july), 101174.

Jemilugba, O. T., Sakho, E. H. M., Parani, S., Mavumengwana, V., & Oluwafemi, O. S. (2019). Green synthesis of silver nanoparticles using combretum erythrophyllum leaves and its antibacterial activities. Colloids and interface science communications, 31(may), 100191.

Jirón, G. E., Rodríguez Mora, K., & Bernal, C. (2020). Cellulose nanofiber production from banana rachis. Ijesc, 10(2), 24683.

Kassab, Z., Abdellaoui, Y., Salim, M. H., & El Achaby, M. (2020a). Cellulosic materials from pea (pisum sativum) and broad beans (vicia faba) pods agro-industrial residues. Materials letters, 280, 128539.

Kassab, Z., El Achaby, M., Tamraoui, Y., Sehaqui, H., Bouhfid, R., & Qaiss, A. E. K. (2019). Sunflower oil cake-derived cellulose nanocrystals: extraction, physico-chemical characteristics and potential application. International journal of biological macromolecules, 136, 241–252.

Kassab, Z., Kassem, I., Hannache, H., Bouhfid, R., Qaiss, A. E. K., & El Achaby, M. (2020b). Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose, 27(8), 4287-4303.

Kokila, T., Ramesh, P. S., & Geetha, D. (2015). Biosynthesis of silver nanoparticles from cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Applied nanoscience (switzerland), 5(8), 911-920.

Kumar, R., Ghoshal, G., Jain, A. (2017). Rapid green synthesis of silver nanoparticles (agnps) using (prunus persica) plants extract: exploring its antimicrobial and catalytic activities. Journal of nanomedicine & nanotechnology, 08(04).

Kumar, V., Pathak, P., & Bhardwaj, N. K. (2020). Waste paper: an underutilized but promising source for nanocellulose mining. Waste management, 102, 281-303.

Lessa, E. F., Medina, A. L., Ribeiro, A. S., & Fajardo, A. R. (2020). Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. Arabian journal of chemistry, 13(1), 709-720.

Mabry, T. J.; Markham, K. R.; Thomas, M. B. (1970). The systematic identification of flavonoids. Springer-verlag.

Madan, A., Jain, R. K., & Nandane, A. S. (2014). Development of active modified atmosphere lab scale setup to study the effect on shelf-life of banana (var. “robusta”). Research & reviews: journal of food science & technology, 3(1), 1–10.

Moshahary, S., & Mishra, P. (2021). Synthesis of silver nanoparticles (agnps) using culinary banana peel extract for the detection of melamine in milk. Journal of food science and technology, 58(2), 797-804.

Padilla-Camberos, E., Canales-Aguirre, A. A., Barragán-Álvarez, C. P., Gutiérrez-Mercado, Y., Lugo-Cervantes, E., & Flores-Fernández, J. M. (2016). Wound healing and antioxidant capacity of musa paradisiaca linn. Peel extracts. Journal of pharmacy and pharmacognosy research, 4(5), 165-173.

Pawliszak, P., Malina, D., & Sobczak-Kupiec, A. (2019). Rhodiola rosea extract mediated green synthesis of silver nanoparticles supported by nanosilica carrier. Materials chemistry and physics, 234(august 2018), 390-402.

Phan, D. N., Dorjjugder, N., Khan, M. Q., Saito, Y., Taguchi, G., et al. (2019). Synthesis and attachment of silver and copper nanoparticles on cellulose nanofibers and comparative antibacterial study. Cellulose, 26(11), 6629-6640.

Prakash, B., Sumangala, C. H., Melappa, G., & Gavimath, C. (2017). Evaluation of antifungal activity of banana peel against scalp fungi. Materials today: proceedings, 4(11), 11977-11983.

Rajinipriya, M., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. Acs sustainable chemistry and engineering, 6(3), 2807-2828.

Ridout, C. L., Price, K. R., Dupont, M. S., Parker, M. L., & Fenwick, G. R. (1991). Quinoa saponins—analysis and preliminary investigations into the effects of reduction by processing. Journal of the science of food and agriculture, 54(2), 165-176.

Risite, H., Salim, M. H., Oudinot, B. T., Ablouh, E. Houssaine, Joyeux, H. T., et al. (2022). Artemisia annua stems a new sustainable source for cellulosic materials: production and characterization of cellulose microfibers and nanocrystals. Waste and biomass valorization, 13(4), 2411-2423.

Salama, A. (2017). Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite material. Environmental nanotechnology, monitoring and management, 8(july), 228-232.

Sankhla, S., Sardar, H. H., & Neogi, S. (2021). Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate polymers, 251(august 2020), 117030.

Sengupta, A., & Sarkar, A. (2022). Synthesis and characterization of nanoparticles from neem leaves and banana peels: a green prospect for dye degradation in wastewater. Ecotoxicology, 31(4), 537-548.

Sharma, K., Guleria, S., & Razdan, V. K. (2020). Green synthesis of silver nanoparticles using ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. Journal of plant biochemistry and biotechnology, 29(2), 213-224.

Thomas, B., Raj, M. C., Athira, B. K., Rubiyah, H. M., Joy, J., Moores, A., Drisko, G. L., & Sanchez, C. (2018). Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical reviews, 118(24), 11575-11625.

Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food hydrocolloids, 75, 192–201.

Trache, D. (2018). Nanocellulose as a promising sustainable material for biomedical applications. Aims materials science, 5(2), 201-205.

Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763-1786.

Varadavenkatesan, T., Selvaraj, R., & Vinayagam, R. (2019). Dye degradation and antibacterial activity of green synthesized silver nanoparticles using ipomoea digitata linn. Flower extract. International journal of environmental science and technology, 16(5), 2395-2404.

Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: a review. Journal of functional foods, 40(november 2017), 238-248.




Cómo citar

Alvarado-Aguilar, C., Luna Burgos, R., Ganchozo Intriago, H., Leal-Chantong, A., & Leal Alvarado, D. (2023). Silver nanoparticles and cellulose microfiber micro-composite from banana (Musa acuminata) waste: green synthesis, antioxidant property and antimicrobial capacity. Scientia Agropecuaria, 14(1), 31-38.



Artículos originales