Bioprinting as a food production technique: Conceptual and ethical aspects, advantages and disadvantages, and applications

Autores/as

  • G. A. Carbajal-Gamboa Laboratorio de Biotecnológica Animal, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima.
  • A. E. Ostolaza-Saz Laboratorio de Biotecnológica Animal, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima.
  • D. A. Dueñas-Parapar Laboratorio de Biotecnológica Animal, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima.
  • J. L. Casanova Laboratorio de Biotecnológica Animal, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima.
  • H. M. Gonzales-Molfino Instituto de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima.

DOI:

https://doi.org/10.17268/sci.agropecu.2022.021

Palabras clave:

synthetic foods, production, inks for food, extrusion, 3D printing, ethical

Resumen

3D bioprinters present techniques that have various applications in the food industry. For this reason, this work aims to compile and review various research works focused on the utilities and advantages of this type of machinery. Where we first mention the basis of these bioprinting techniques and then proceed to highlight the bioethical issues that surround their application in the food industry, analyze the current advantages and disadvantages, the user that has been given in the production of food for astronauts, and also mention some of the research that has been taking place in Latin America and the world. The greatest advantage of 3D bioprinting of food is the speed of production compared to traditional manufacturing methods, allowing one to obtain food with various geometric shapes; it allows control of the nutritional value, and the texture of the product, reduces environmental pollution and has the advantage of being able to take advantage of the greater performance of the materials required for production. Additionally, this technology is considered an alternative production technique that will be used to solve the problem of feeding in places of scarce resources such as space and areas not suitable for animal husbandry.

Citas

Almeida-Bodero, I., Sotominga-Espinoza, G., & Cisneros-Pérez, N. (2019). Aplicación de la manufactura aditiva en el procesamiento de alimentos. Pole of Knowledge, 6(9), 837-856.

Ates, K., & Zhang, K. (2007). Building VEGGIE: Machine learning for context-sensitive graph grammars. At the 19th IEEE International Conference on Tools with Artificial Intelligence, 2, 456-463.

Axpe, E., Chan, D., Abegaz, M. F., Schreurs, A. S., Alwood, J. S., Globus, R. K., & Appel, E. A. (2020). A Human Mission to Mars: Predicting astronauts' loss of bone mineral density. Plos one, 15(1), e0226434.

Azam, R., Zhang, M., Bhandari, B., & Yang, C. (2018). Effect of Different Gums on Features of 3D Printed Object Based on Vitamin-D Enriched Orange Concentrate. Food Biophysics, 13(3), 250–262.

Ball, P. (2005) Body painting. Nature Mater, 4, 582.

Balasubramanian, B., Liu, W., Pushparaj, K., & Sungkwon, P. (2021). The Epic of In Vitro Meat Production: A Fiction Come True. Food, 10(6), 1395.

Berman, B. (2012). 3D printing: the new industrial revolution. Business Horizons, 55(2), 155-162.

Carvajal-Mena, N., Tabilo-Munizaga, G., Pérez-Won, M., & Lemus-Mondaca, R. (2022). Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT, 155, 112931.

Chimene, D., Kaunas, R., & Gaharwar, A. K. (2019). Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Advanced Materials, 32(1), 1902026.

Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng., 220, 65–75.

Derossi, A., Bhandari, B., Bommel, K., Noort, M., & Severini, C. (2021). Could 3D printing food help improve the resilience of the food supply chain to disruptions such as those caused by pandemic crises? International Journal of Food Science and Technology, 56(9), 4338–4355.

Derossi, A., Paolillo, M., Verboven, P., Nicolai, B., & Severini, C. (2022). Extending 3D food printing application: Apple tissue microstructure as a digital model to create innovative cereal-based snacks. Journal of Food Engineering, 316, 110845.

Elemoso, A., Shalunov G., Balakhovsky, Y., Ostrovskiy, Y., & Khesuani, Y. (2020). 3D Bioprinting: The Roller Coaster Journey to Commercialization. International Journal of Bioprinting, 6(3), 301.

Escalante, A., Trujillo, G., Álvarez, M., & Chuck, C. (2022). Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive reviews in food science and food safety, 20(6), 5722-5741.

Escudero, B. (2018). Feasibility study of the 3D printing of fruit-based foods (Master's thesis, Polytechnic University of Catalonia).

Farms, A. (2021). Meeting for space. https://www.aleph-farms.com/aleph-zero

Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3D printing technologies applied for food design: Status and prospects. J. Food Eng., 179, 44–54.

Handral, H., Hua, S., Wan, W., & Choudhury, D. (2020). 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 62(1), 272-281.

Hsieh, H., Fitch, J., White, D., Torres, F., Roy, J., Matusiak, R., & Elrod, S. (2004). Ultra-high-throughput microarray generation and liquid dispensing using multiple disposable piezoelectric ejectors. Journal of biomolecular screening, 9(2), 85-94.

Jayaprakash, S., Paasi, J., Pennanen, K., Flores Ituarte, I., Lille, M., Partanen, J., & Sozer, N. (2020). Techno-Economic Prospects and Desirability of 3D Food Printing: Perspectives of Industrial Experts, Researchers and Consumers. Foods, 9(12), 1725.

Johnson, M. (2019). Three-dimensional bioprinting in space. https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/it-3d-bioprinting-in-space/

Kai, C. (2020). Publication Trends in 3D Bioprinting and 3D Food Printing. International Journal of Bioprinting, 6(1), 257.

Kamalapuram, S., Handral, H., & Choudhury, D. (2021). Cultured Meat Prospects for a Billion! Foods, 10, 2922.

Kang, D.-H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H., & Matsusaki, M. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 12(1), 5059.

Kim, S. M., Woo, J. H., Kim, H. W., & Park, H. J. (2022). Formulation and evaluation of cold-extruded chocolate ganache for three-dimensional food printing. Journal of Food Engineering, 314, 110785.

Kiyotake, E. A., Douglas, A. W., Thomas, E. E., & Detamore, M. S. (2019). Development and Quantitative Characterization of the Precursor Rheology of Hyaluronic acid Hydrogels for Bioprinting. Acta Biomaterialia, 95, 176–187.

Li, Y., Liu, W., Li, S., Zhang, M., Yang, F., & Wang, S. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. Journal of Future Food, 1(1), 88-97.

Mateus-Malagón, J., & Paredes-Acosta, J. (2020). Análisis de tiempos y costos de la implementación de impresoras 3d para proyectos de construcción desarrollados en Colombia con metodología BIM. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería de Civil. Especialización en Gerencia de Obras. Bogotá, Colombia.

Mantihal, S., Kobún, R., & Lee, B. B. (2020). Food printing of as the new way of preparing food: A review. Int. J. Gastron. Food Sci., 22, 100260.

Ma, Y., & Zhang, L. (2022). Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review. Current Opinion in Food Science, 44, 100803.

Nijdam, J., Agarw, D., & Schon, B. (2022). An experimental assessment of filament-extrusion models used in slicer software for 3D food-printing applications. Journal of Food Engineering, 317, 110711.

Pérez, L., Travi, G., & Valdivia, J. (2020). Biomaterials for 3D bioprinting of the skin. Peruvian Dermatology, 30(2), 120-127.

Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., & Mirade, P.-S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science & Technology, 86, 188–198.

Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415.

Ramadan, Q., & Zourob, M. (2021). 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. Frontiers in Medical Technology, 2, 607648.

Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell sources for cultured meat: applications and considerations throughout the production workflow. International Journal of Molecular Sciences, 22, 7513.

Severini, C., Derossi, A., Ricci, I., Caporizzi, R., & Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng., 220, 89–100.

Stephens, N., Sexton, A. E., & Driessen, C. (2019). Making Sense of Making Meat: Key Moments in the First 20 Years of Tissue Engineering Muscle to Make Food. Frontiers in Sustainable Food Systems, 3(45), 1-16.

Sher, A., & Rigau, J. (2015). Review of 3D Food Printing. Elisava Temes de disseny, 31, 104-117

Stutte, G., Wheeler, R., Morrow, R., & Newsham, G. (2011). Concept for the sustained production of plants in ISS using the VEGGIE hair mat rooting system. At the 41st International Conference on Environmental Systems (p. 5263).

Sun, J., Peng, Z., Yan, L., Hsi, J., & Hong, G. (2015). 3D food printing: an innovative form of mass customization in food manufacturing. International Journal of Bioprinting, 1(1), 27-38.

Tan, C., Yan, W., Wong, G., & Lin, L. (2018). Extrusion-based 3D food printing – Materials and machines. International Journal of Bioprinting, 4(2), 143.

Wilms, P., Daffner, K., Kern, C., Gras, S., Schutyser, M., & Kohlus, R. (2021). Formulation engineering of food systems for 3D-printing applications – A review. Food Research International, 148, 110585.

Teng, X., Zhang, M., & Mujumdar, A. (2021). 4D printing: recent advances and proposals in the food sector. Trends Food Sci Technol, 110, 349-363.

Yang, G., Tao, Y., Wang, P., Xu, X., & Zhu, X. (2021). Optimizing chicken meat 3D printing using response surface methodology and genetic algorithm: feasibility study of a 3D printed chicken product. Food science and technology. 154, 1-11.

Zhang, J., Pandya, J., McClements, D., Lu, J., & Kinchla, A. (2021). Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 62(17), 4752-4768.

Descargas

Publicado

2022-08-08

Cómo citar

Carbajal-Gamboa, G. A. ., Ostolaza-Saz, A. E. ., Dueñas-Parapar, D. A. ., Casanova, J. L. ., & Gonzales-Molfino, H. M. . (2022). Bioprinting as a food production technique: Conceptual and ethical aspects, advantages and disadvantages, and applications. Scientia Agropecuaria, 13(3), 231-238. https://doi.org/10.17268/sci.agropecu.2022.021

Número

Sección

Artículos de Revisión