Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder

Autores/as

  • Raudel Pérez del Rio Interdisciplinary Research Center for Integrated Regional Development
  • Martín Hidalgo Reyes Chapingo Autonomous University
  • Magdaleno Caballero Caballero Interdisciplinary Research Center for Integrated Regional Development
  • Luís Héctor Hernández Gómez

DOI:

https://doi.org/10.17268/sci.agropecu.2022.026

Palabras clave:

Agave defibration, Factors optimization, Genetic algorithms, Neural networks, Mathematical modeling, Agricultural machinery

Resumen

A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.

Citas

Annisa, J., Darus, I. Z. M., Tokhi, M. O., & Mohamaddan, S. (2018). Implementation of PID Based Controller Tuned by Evolutionary Algorithm for Double Link Flexible Robotic Manipulator. 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), 1–5.

Aydin, L., Artem, H. S., & Oterkus, S. (2020). Designing Engineering Structures using Stochastic Optimization Methods. CRC Press.

Boutemedjet, A., Samardžić, M., Rebhi, L., Rajić, Z., & Mouada, T. (2019). UAV aerodynamic design involving genetic algorithm and artificial neural network for wing preliminary computation. Aerospace Science and Technology, 84, 464–483.

Campaña, K. O., Remache, A. P., & Re, M. A. (2020). Caracterización mecánica de fibras nuevas y centenarias de agave americana l. Revista ESPACIOS, 41, 382–389.

Ccosi, P. V., & Juárez, J. M. (2019). Diseño y desarrollo de cuero vegetal a base de los residuos de las fibras de hoja de piña (Ananas comosus) golden del VRAEM. Investigación, 27(1), 131-137.

Dadrasi, A., Albooyeh, A. R., Fooladpanjeh, S., Shad, M. D., & Beynaghi, M. (2020). RSM and ANN modeling of the energy absorption behavior of steel thin-walled columns: A multi-objective optimization using the genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 563.

Economía, S. de. (2005). NORMA Oficial Mexicana NOM-168-SCFI-2004, Bebidas alcohólicas-Bacanora-Especificaciones de elaboración, envasado y etiquetado. 1–13.

Ehsani, A., & Dalir, H. (2019). Multi-objective optimization of composite angle grid plates for maximum buckling load and minimum weight using genetic algorithms and neural networks. Composite Structures, 229, 111450.

Feng, G. L., & Li, L. (2013). Application of Genetic Algorithm and Neural Network in Construction Cost Estimate. Advanced Materials Research, 756–759, 3194–3198.

García, M., R. F., Cortés-Martínez, C. I., & Almendárez-Camarillo, A. (2020). Thermochemical and Tensile Mechanical Properties of Fibers Mechanically Extracted from Leaves of Agave angustifolia Haw. Journal of Natural Fibers, 00(00), 1-15.

Han, J.-X., Ma, M.-Y., & Wang, K. (2021). Product modeling design based on genetic algorithm and BP neural network. Neural Computing and Applications, 33, 4111–4117.

Hidalgo-Reyes, M., Caballero-Caballero, M., Hernández-Gómez, L. H., & Urriolagoitia-Calderón, G. (2015). Chemical and morphological characterization of Agave angustifolia bagasse fibers. Botanical Sciences, 93, 807–817.

Kaveh, M., & Chayjan, R. A. (2014). Prediction of some physical and drying properties of terebinth fruit (Pistacia Atlantica L.) Using artificial neural networks. Acta Scientiarum Polonorum, Technologia Alimentaria.

Khezri, V., Yasari, E., Panahi, M., & Khosravi, A. (2020). Hybrid Artificial Neural Network–Genetic Algorithm-Based Technique to Optimize a Steady-State Gas-to-Liquids Plant. Industrial & Engineering Chemistry Research, 59, 8674–8687.

Kumar, N. T., Shrivastava, P., Jagadale, M., Shambhu, V. B., & Nayak, L. K. (2022). Fea technique for design and simulation of sisal decorticator raspador. Journal of Krishi Vigyan, 10(2), 173-178.

Leal-Iga, C., Marín-González, N. A., González, O. A. G.-, Jiménez-Domínguez, D. A., & Ledezma-Elizondo, M. T. (2021). Análisis del diseño, ruido y vibración de maquinaria desfibradora de Ixtle de Lechuguilla. e-CUCBA, 9, 52–61.

Li, Y., Lee, T. H., Banu, M., & Hu, S. J. (2020). An integrated process-performance model of ultrasonic composite welding based on finite element and artificial neural network. Journal of Manufacturing Processes, 56, 1374–1380.

Liu, J., Li, W., Liu, M., He, K., Wang, Y., & Fang, P. (2021). Multi-Objective Aerodynamic Design Optimisation Method of Fuel Cell Centrifugal Impeller Using Modified NSGA-II Algorithm. Applied Sciences, 11, 7659.

López, H. I. (2008). Pruebas de resistencia a la tensión en fibras de las hojas del Agave angustifolia Haw para determinar su comportamiento mecánico. 171.

Mayorga, H. E. (2004). Evaluación funcional y modificaciones a una máquina desfibradora de lechuguilla (Agave Torr.). En Colegio de Posgraduados.

Mendoza, V. M., & Mendoza, V. M. (2017). En constante movimiento. Dos episodios sobre la circulación de saberes tecnológicos a través de la invención de las máquinas desfibradoras de henequén, siglo XIX. Tzintzun. Revista de estudios históricos, 67–105.

Mirjalili, S. (2019). Genetic Algorithm. In S. Mirjalili (Ed.), Evolutionary Algorithms and Neural Networks: Theory and Applications (pp. 43–55). Cham: Springer International Publishing.

Murali, S., & Morchhale, R. K. (2014). Sisal (Agave sisalana) Fibre Extraction for Sustainable Employment Generation in India. Technologies for Sustainable Rural Development: Having Potential of Socio-Economic Upliftment (TSRD–2014), 1, 184.

Na, W., Shidong, Z., & Lanju, K. (2013). LLCG: A High Performance Implement for Multi-tenant Data Placement. 2013 10th Web Information System and Application Conference, 7–10.

Pérez del Río, R., Caballero, M. C., Gómez, L. H. H., & Montes, J. L. B. (2013). Diseño y construcción de una desfibradora de hojas de Agave angustifolia Haw Design and construction of a leaf shredder angustifolia Haw agave. Revista Ciencias Técnica Agropecuarias, 22, 5–14.

Pirmohammad, S., & Esmaeili Marzdashti, S. (2018). Crashworthiness optimization of combined straight-tapered tubes using genetic algorithm and neural networks. Thin-Walled Structures, 127, 318–332.

Quaglio, M., Roberts, L., Bin Jaapar, M. S., Fraga, E. S., Dua, V., & Galvanin, F. (2020). An artificial neural network approach to recognise kinetic models from experimental data. Computers & Chemical Engineering, 135, 106759.

Sebaaly, H., Varma, S., & Maina, J. W. (2018). Optimizing asphalt mix design process using artificial neural network and genetic algorithm. Construction and Building Materials, 168, 660–670.

Silva, S., L., Hernández-Gómez, L. H., Caballero-Caballero, M., & López-Hernández, I. (2009). Tensile strength of fibers extracted from the leaves of the angustifolia Haw agave in function of their length. Applied Mechanics and Materials, 15, 103-108.

Suksonghong, K., Boonlong, K., & Goh, K.-L. (2014). Multi-objective genetic algorithms for solving portfolio optimization problems in the electricity market. International Journal of Electrical Power & Energy Systems, 58, 150–159.

Vajdian, M., Zahrai, S. M., Mirhosseini, S. M., & Zeighami, E. (2020). Predicting Shear Capacity of Panel Zone Using Neural Network and Genetic Algorithm. International Journal of Engineering, 33, 1512–1521.

Vishwanathan, A. (2019). Twin Shaft-Geared Crankweb Crankshaft System with Optimization of Crankshaft Dimensions Using Integrated Artificial Neural Network-Multi Objective Genetic Algorithm. Periodica Polytechnica Transportation Engineering, 47, 68–81.

Wang, H., Zhang, Z., & Liu, L. (2021). Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network. Journal of Manufacturing Processes, 63, 109–120.

Zarein, M., & Jaliliantabar, F. (2014). ANN Modeling of White Mulberry Drying by Microwave Oven. Advances in Environmental Biology, 8, 172–178.

Descargas

Publicado

2022-10-10

Cómo citar

Pérez del Rio, R. ., Hidalgo Reyes, M., Caballero Caballero, M. ., & Hernández Gómez, L. H. (2022). Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder. Scientia Agropecuaria, 13(3), 291-299. https://doi.org/10.17268/sci.agropecu.2022.026

Número

Sección

Artículos originales