Biopolímeros producidos por Azotobacter: síntesis y producción, propiedades físico-mecánicas, y potenciales aplicaciones industriales

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2021.040

Palabras clave:

Azotobacter, polihidroxialcanoatos, polihidroxibutirato (PHB), polihidroxivalerato (PHV), alginato (AG), polímeros

Resumen

Azotobacter es un tipo de bacteria no patógena, Gram negativa con capacidad para sintetizar simultáneamente en condiciones aerobias dos polímeros biodegradables extra e intracelulares tales como alginatos y polihidroxialcanoatos respectivamente, cuyas propiedades físicas, mecánicas y biodegradables han despertado el interés en la industria. Por ello, esta revisión compila información sobre la síntesis química de estos polímeros y la modificación genética de esta bacteria con la finalidad de producir un polímero particular y mejorar sus rendimientos. Adicionalmente, mostramos que los alginatos obtenidos presentan un mayor peso molecular, grado de acetilación y relación M/G comparado con otras fuentes orgánicas como las algas marinas; mientras los polímeros de polihidroxialcanoatos presentan mejores características físicas y mecánicas (temperatura de fusión, módulo de Young, elongación y temperatura de transición vítrea) comparado con otros polímeros sintéticos. Estas características presentes en ambos polímeros han permitido el desarrollo de diversas aplicaciones en la industria alimentaria, farmacéutica, médica y agronómica. Finalmente, es necesario estudiar nuevas estrategias para controlar la variabilidad del grado de acetilación y peso molecular para los polímeros de alginato y mejorar la producción de polihidroxialcanoatos con la finalidad de promover nuevas futuras aplicaciones en la industria.

Citas

Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology, 12, 1-19.

Aderibigbe, B. A., & Buyana, B. (2018). Alginate in wound dressings. Pharmaceutics, 10(2), 1-19.

Ahmadi, M., Madrakian, T., & Ghavami, S. (2020). Preparation and Characterization of Simvastatin Nanocapsules: Encapsulation of Hydrophobic Drugs in Calcium Alginate. Methods in Molecular Biology, 2125, 47-56.

Al Rohily, K., El-Hamshary, H., Ghoneim, A., & Modaihsh, A. (2021). Controlled release of phosphorus from superabsorbent phosphate-bound alginate-graft-polyacrylamide: Resistance to soil cations and release mechanism. ACS Omega, 5(51), 32919-32929.

Ali, I., & Jamil, N. (2016). Polyhydroxyalkanoates: Current applications in the medical field. Frontiers in Biology, 11(1), 19-27.

Alshehrei, F. (2017). Biodegradation of Synthetic and Natural Plastic by Microorganisms. Journal of Applied & Environmental Microbiology, 5(1), 8-19.

Altaee, N., El-Hiti, G. A., Fahdil, A., Sudesh, K., & Yousif, E. (2016). Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus, 5(1), 2-12.

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.

Gregory, S. K. (2012). Hydrogels and Their Mechanical Properties. In: Engineering Biomaterials for Regenerative Medicine: Novel Technologies for Clinical Applications. (S. K. Bhatia (ed.); 1a ed.). Springer. New York. Pp. 127-140.

Blunt, W., Sparling, R., Gapes, D. J., Levin, D. B., & Cicek, N. (2018). The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis. World Journal of Microbiology and Biotechnology, 34(8), 1-12.

Brandelero, R. P. H., Brandelero, E. M., & Almeida, F. M. de. (2016). Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.). Ciência e Agrotecnologia, 40(5), 510-521.

Campos, A., & Marti, J. M. (1996). Characterization of the gene coding for GDP-mannose dehydrogenase ( algD ) from Azotobacter vinelandii. J Bacteriol, 178(7), 1793-1799.

Castillo, T., Heinzle, E., Peifer, S., Schneider, K., & Peña M, C. F. (2013). Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii. Process Biochemistry, 48(7), 995-1003.

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., et al. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494-3511.

Chen, G. Q., Wu, Q., Jung, Y. K., & Lee, S. Y. (2011). PHA/PHB. In: Comprehensive Biotechnology (M. Moo-Young (ed.) 2a ed.). Elsevier B.V. Massachusetts. Pp. 217-227.

Chennappa, G., Udaykumar, N., Vidya, M., Nagaraja, H., Amaresh, Y. S., & Sreenivasa, M. Y. (2019). Azotobacter-a natural resource for bioremediation of toxic pesticides in soil ecosystems. In: New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biotechnology in Agro-environmental Sustainability (J. S. Singh and D.P. Singh (eds.) 1a ed.). Elsevier B.V. Pp. 267-279.

Choi, J., & Lee, S. Y. (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Applied Microbiology and Biotechnology, 51(1), 13-21.

Clementi, F., Fantozzi, P., Mancini, F., & Moresi, M. (1995). Optimal conditions for alginate production by Azotobacter vinelandii. Enzyme and Microbial Technology, 17(11), 983-988.

de Farias, Y. B., Coutinho, A. K., Assis, R. Q., & Rios, A. de O. (2020). Biodegradable sodium alginate films incorporated with norbixin salts. Journal of Food Process Engineering, 43(2), 1-11.

Domínguez-Díaz, M., Meneses-Acosta, A., Romo-Uribe, A., Peña, C., Segura, D., & Espin, G. (2015). Thermo-mechanical properties, microstructure and biocompatibility in poly-β-hydroxybutyrates (PHB) produced by OP and OPN strains of Azotobacter vinelandii. European Polymer Journal, 63, 101-112.

El-Nahrawy, S., Abd El-Kodoos, R. Y., Belal, E.-S. B., & El-Shouny, W. (2018). Production of poly-β-hydroxybutyrate (PHB) by Azospirillum and Rhizobium sp. Environment, Biodiversity and Soil Security, 2(2018), 1-25.

Fa, S., Silberschmidt, D., Rehm, B., Pettinari, M. J., Va, G. J., Me, B. S., Quı, D. De, & Mu, D.-. (2001). Poly ( 3-Hydroxybutyrate ) Synthesis Genes in Azotobacter sp . Appl Environ Microbiol, 67(11), 5331-5334.

Fertah, M., Belfkira, A., Dahmane, E. montassir, Taourirte, M., & Brouillette, F. (2017). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arabian Journal of Chemistry, 10, S3707-S3714.

Flores-Céspedes, F., Villafranca-Sánchez, M., & Fernández-Pérez, M. (2020). Alginate-based hydrogels modified with olive pomace and lignin to removal organic pollutants from aqueous solutions. International Journal of Biological Macromolecules, 153, 883-891.

Flores, C., Moreno, S., Espín, G., Peña, C., & Galindo, E. (2013). Expression of alginases and alginate polymerase genes in response to oxygen, and their relationship with the alginate molecular weight in Azotobacter vinelandii. Enzyme and Microbial Technology, 53(2), 85-91.

Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability (Switzerland), 12(15), 1-37.

Francesca, C. (1997). Alginate Production by Azotobacter vinelandii. Critical Reviews in Biotechnology, 17(4), 327-361.

Furth, M. E., Atala, A., & Van Dyke, M. E. (2007). Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 28(34), 5068-5073.

Galindo, E., Peña, C., Núñez, C., Segura, D., & Espín, G. (2007). Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microbial Cell Factories, 6, 1-16.

García, A., Segura, D., Espín, G., Galindo, E., Castillo, T., & Peña, C. (2014a). High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochemical Engineering Journal, 82, 117-123.

García, A., Castillo, T., Ramos, D., Ahumada-Manuel, C. L., Núñez, C., Galindo, E., Büchs, J., & Peña, C. (2020). Molecular weight and viscosifying power of alginates produced by mutant strains of Azotobacter vinelandii under microaerophilic conditions. Biotechnology Reports, 26, 1-12.

Gauri, S. S., Mandal, S. M., & Pati, B. R. (2012). Impact of Azotobacter exopolysaccharides on sustainable agriculture. Applied Microbiology and Biotechnology, 95(2), 331-338.

Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). A Review of Biodegradation of Synthetic Plastic and Foams. Applied Biochemistry and Biotechnology, 141(109), 315-323.

Gawin, A., Tietze, L., Aarstad, O. A., Aachmann, F. L., Brautaset, T., & Ertesvåg, H. (2020). Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family. Scientific Reports, 10(1), 1-14.

Getachew, A., & Woldesenbet, F. (2016). Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Research Notes, 9(1), 1-9.

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25-29.

Hassett, D. J., & Hassett, D. J. (1996). Anaerobic Production of Alginate by Pesudomonas aeruginosa. Microbiology, 178(24), 7322-7325.

Hay, I. D., Wang, Y., Moradali, M. F., Rehman, Z. U., & Rehm, B. H. A. (2014). Genetics and regulation of bacterial alginate production. Environmental Microbiology, 16(10), 2997-3011.

He, W., & Benson, R. (2016). Polymeric Biomaterials. In: Applied Plastics Engineering Handbook Processing, Materials, and Applications (M. Kutz (ed.) 2a ed.). Elsevier B.V. Massachusetts. Pp. 145-164.

Hernandez-Patlan, D., Solis-Cruz, B., Cano-Vega, M. A., Beyssac, E., Garrait, G., Hernandez-Velasco, X., Lopez-Arellano, R., Tellez, G., & Rivera-Rodriguez, G. R. (2019). Development of Chitosan and Alginate Nanocapsules to Increase the Solubility, Permeability and Stability of Curcumin. Journal of Pharmaceutical Innovation, 14(2), 132-140.

Hindersah, R., Kamaluddin, N. N., Samanta, S., Banerjee, S., & Sarkar, S. (2021). Role and perspective of Azotobacter in crops production. Sains Tanah, 17(2), 170-179.

Hu, Y., Ma, S., Yang, Z., Zhou, W., Du, Z., Huang, J., Yi, H., & Wang, C. (2016). Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids and Surfaces B: Biointerfaces, 140, 382-291.

Jiménez, D. J., Montaña, J. S., & Martínez, M. (2011). Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown colombian soils. Brazilian Journal of Microbiology, 42, 846-858.

Khosravi-Darani, K., & Bucci, D. Z. (2015). Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285.

Kim, H., Park, H., Lee, J. W., & Lee, K. Y. (2016). Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels. Carbohydrate Polymers, 151, 467-473.

Kong, H. (2000). Isolation and characterization of alginate from hong kong brown seaweed. an evaluation of the potential use of the extracted alginate as food ingredient. University of Hong Kong. China.

Larsen, B. E., Bjørnstad, J., Pettersen, E. O., Tønnesen, H. H., & Melvik, J. E. (2015). Rheological characterization of an injectable alginate gel system. BMC Biotechnology, 15(1), 1-12.

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford), 37(1), 106-126.

Lee, S., Kim, Y.-C., & Park, J.-H. (2016). Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins. International Journal of Pharmaceutics, 515(1-2), 300-306.

Lenart, A. (2012). Occurrence, characteristics, and genetic diversity of Azotobacter chroococcum in various soils of Southern Poland. Polish Journal of Environmental Studies, 21(2), 415-424.

Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8(4), 1-20.

Lorbeer, A. J., Charoensiddhi, S., Lahnstein, J., Lars, C., Franco, C. M. M., Bulone, V., & Zhang, W. (2017). Sequential extraction and characterization of fucoidans and alginates from Ecklonia radiata, Macrocystis pyrifera, Durvillaea potatorum, and Seirococcus axillaris. Journal of Applied Phycology, 29(3), 1515-1526.

Martyniuk, S., & Martyniuk, M. (2003). Occurrence of Azotobacter spp. in some Polish soils. Polish Journal of Environmental Studies, 12(3), 371-374.

Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519-5558.

Mejía, M. Á., Segura, D., Espín, G., Galindo, E., & Peña, C. (2010). Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-β-hydroxybutyrate (PHB) synthesis. Journal of Applied Microbiology, 108(1), 55-61.

Mohapatra, S., Maity, S., Dash, H. R., Das, S., Pattnaik, S., Rath, C. C., & Samantaray, D. (2017). Bacillus and biopolymer: Prospects and challenges. Biochemistry and Biophysics Reports, 12, 206-213.

Mok, P. S., Sudesh, K., Liew, P. W. Y., Jong, B. C., & Najimudin, N. (2017). Characterisation of polyhydroxyalkanoate production by mutant Azotobacter vinelandii. Malaysian Applied Biology, 46(1), 93-100.

Nagarajan, A., & Zackaria, A. (2016). Mini review on Alginate: Scope and Future perspectives. Journal of Algal Biomass Utilization, 7(1), 45-55.

Nair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2016). Biodegradation of Biopolymers. In: Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (A. Pandey, S. Negi, C. R. Soccol (eds); 1a ed.). Elsevier B.V. Massachusetts. Pp. 739-755.

Narendran, R., Maleeka Begum, S. F., & Ayyppadasan, G. (2018). Production and optimization of polyhydroxy butyrate (phb) from azotobacter chroococcum (a3) strain for scale up using central composite design. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 20(4), 1294-1305.

Núñez, C., Peña, C., Kloeckner, W., Hernández-Eligio, A., Bogachev, A. V., Moreno, S., ... & Espín, G. (2013). Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Applied microbiology and biotechnology, 97(6), 2503-2512.

Owlia, P., Nosrati, R., Saderi, H., Olamaee, M., Rasooli, I., & Akhavian Tehrani, A. (2012). Correlation between nitrogen fixation rate and alginate productivity of an indigenous Azotobacter vinelandii from Iran. Iranian Journal of Microbiology, 4(3), 153-159.

Pacheco-Leyva, I., Guevara Pezoa, F., & Díaz-Barrera, A. (2016). Alginate biosynthesis in azotobacter vinelandii: Overview of molecular mechanisms in connection with the oxygen availability. International Journal of Polymer Science, 2016, 11-13.

Parreidt, T. S., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 1-38.

Patil, S. V., Mohite, B. V., Patil, C. D., Koli, S. H., Borase, H. P., & Patil, V. S. (2020). Azotobacter. In: Beneficial Microbes in Agro-Ecology (N. Amaresan, M. S. Kumar, K. Annapurna, K. Kumar, A. Sankaranarayanan (eds); 1a ed.). Elsevier B.V. Massachusetts. Pp. 397-426.

Peña, C., Campos, N., & Galindo, E. (1997). Changes in alginate molecwlar mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Applied Microbiology and Biotechnology, 48(4), 510-515.

Peña, C., Miranda, L., Segura, D., Nunez, C., Espin, G., & Galindo, E. (2002). Alginate production by Azotobacter vinelandii mutants altered in poly-beta-hydroxybutyrate and alginate biosynthesis. Microbial Biotechnology, 29(2), 209-213.

Plackett, D., & Siró, I. (2011). Polyhydroxyalkanoates (PHAs) for food packaging. In: Multifunctional and Nanoreinforced Polymers for Food Packaging (J. M. Lagarón (ed.); 1a ed.). Elsevier B.V. Massachusetts. Pp. 498-526.

Plavec, R., Hlaváčiková, S., Omaníková, L., Feranc, J., Vanovčanová, Z., Tomanová, K., Bočkaj, J., Kruželák, J., Medlenová, E., Gálisová, I., Danišová, L., Přikryl, R., Figalla, S., Melčová, V., & Alexy, P. (2020). Recycling possibilities of bioplastics based on PLA/PHB blends. Polymer Testing, 92, 106880.

Pozo, C., Martínez-Toledo, M. V., Rodelas, B., & González-López, J. (2002). Effects of culture conditions on the production of polyhydroxy-alkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechín (wastewater from olive oil mills) as primary carbon source. Journal of Biotechnology, 97(2), 125-131.

Puscaselu, R. G., Lobiuc, A., Dimian, M., & Covasa, M. (2020). Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers, 12(10), 1-30.

Qin, Y., Zhang, G., & Chen, H. (2020). The applications of alginate in functional food products. Journal of Nutrition & Food Sciences, 3(1), 1-9.

Qu, B., & Luo, Y. (2020). Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors - A review. International Journal of Biological Macromolecules, 152, 437-448.

Ray, S., & Kalia, V. C. (2017). Biomedical Applications of Polyhydroxyalka-noates. Indian Journal of Microbiology, 57(3), 261-269.

Rehm, B. H. A. (2010). Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews. Microbiology, 8(8), 578-592.

Remminghorst, U., & Rehm, B. H. A. (2006). Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Letters, 580(16), 3883-3888.

Rosato, D. V., Di Mattia, D. P., Rosato, D. V., Rosato, D. V., Di Mattia, D. P., & Rosato, D. V. (1991). The Structure and Basic Properties of Plastics. In: Designing with Plastics and Composites: A Handbook (D. Rosato (ed.); 1a ed.). Springer. Netherlands. Pp. 61-123.

Saranraj, P., & Sivasakthivelan, P. (2017). Biological nitrogen fixation by azotobacter sp. - a review. Asian Journal of Multidisciplinary Research, 3(5), 1274-1284.

Savenkova, L., Gercberga, Z., Nikolaeva, V., Dzene, A., Bibers, I., & Kalnin, M. (2000). Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry, 35(6), 573-579.

Scott, G. (2015). Polymers in Modern life. In: Polymers and the Environment (G. Scott (ed.); 1a ed.). RCA Publishing. Londres. Pp. 1-18.

Segura, D., Cruz, T., & Espín, G. (2003). Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis. Archives of Microbiology, 179(6), 437-443.

Smith, J, & Hong-Shum, L. (2011). Food Additives Data Book. Willey-Blackwell Science Ltd.

Soleymani Eil Bakhtiari, S., Karbasi, S., & Toloue, E. B. (2021). Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. International Journal of Biological Macromolecules, 166, 986-998.

Song, B., Liang, H., Sun, R., Peng, P., Jiang, Y., & She, D. (2020). Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. International Journal of Biological Macromolecules, 144, 219-230.

Sumbul, A., Ansari, R. A., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27(12), 3634-3640. 4

Tebaldi, M. L., Maia, A. L. C., Poletto, F., de Andrade, F. V., & Soares, D. C. F. (2019). Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. Journal of Drug Delivery Science and Technology, 51, 115-126.

Trujillo-Roldán, M., Moreno, S., Segura, D., Galindo, E., & Espín, G. (2003). Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Applied Microbiology and Biotechnology, 60(6), 733-737.

Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669-7678.

Urtuvia, V., Maturana, N., Acevedo, F., Peña, C., & Díaz-Barrera, A. (2017). Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World Journal of Microbiology and Biotechnology, 33(11).

Van De Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of several properties and consequences on their applications. Polymer Testing, 21(4), 433-442.

Varghese, S. A., Pulikkalparambil, H., Rangappa, S. M., Siengchin, S., & Parameswaranpillai, J. (2020). Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life, 25, 100538.

Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H., & Kim, S. K. (2015). Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules, 72, 269-281.

Ventorino, V., Nicolaus, B., Di Donato, P., Pagliano, G., Poli, A., Robertiello, A., Iavarone, V., & Pepe, O. (2019). Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse. Chemical and Biological Technologies in Agriculture, 6(1), 1-9.

Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263.

Volova, T. G. (2015). Biodegradation of Polyhydroxyalkanoates in Natural Soils. Journal of Siberian Federal University. Biology, 8(2), 152-167.

Volova, T. G., Gladyshev, M. I., Trusova, M. Y., & Zhila, N. O. (2010). Degradation of polyhydroxyalkanoates in eutrophic reservoir. Polymer Degradation and Stability, 64(July), 1294-1301.

Yoneyama, F., Yamamoto, M., Hashimoto, W., & Murata, K. (2015). Production of polyhydroxybutyrate and alginate from glycerol by azotobacter vinelandii under nitrogen-free conditions. Bioengineered, 6(4), 209-217.

Descargas

Publicado

2021-07-20

Cómo citar

Huamán-Castilla, N. L. ., Allcca-Alca, E. E. ., Allcca-Alca, G. J. ., & Quispe-Pérez, M. L. . (2021). Biopolímeros producidos por Azotobacter: síntesis y producción, propiedades físico-mecánicas, y potenciales aplicaciones industriales. Scientia Agropecuaria, 12(3), 369-377. https://doi.org/10.17268/sci.agropecu.2021.040

Número

Sección

Artículos de Revisión