Biomasa microalgal con alto potencial para la producción de biocombustibles
DOI:
https://doi.org/10.17268/sci.agropecu.2021.030Palabras clave:
microalgas, fotosíntesis, biocombustibles, pretratamiento, hidrólisis, bioetanol, biorrefineríaResumen
El estudio de los biocombustibles sigue en constante desarrollo, desde hace cinco décadas. Este artículo resume el análisis de diversas publicaciones científicas recientes, relacionadas con biocombustibles de tercera generación utilizando microalgas. Se presenta una visión general de biocombustibles y su clasificación, las bases teóricas de microalgas, técnicas para su cultivo, cosecha y pretratamiento de su biomasa. También se describen brevemente tecnologías prometedoras para obtener biocombustibles de gran demanda potencial mundial, considerando las características técnicas del proceso, en función de las especies de microalgas que tienen los más altos rendimientos y productividades para cada tipo de biocombustible: Biodiesel (extracción de lípidos, transesterificación y purificación), etanol (hidrólisis de azúcares, fermentación y purificación) y biogás (digestión anaerobia). La mayoría de los estudios están enfocados en la producción de lípidos, siendo Chlorella vulgaris, Nanochloropsis sp. y Botryococcus braunii (A) las microalgas más utilizadas para obtener biodiesel. Sin embargo, existen pocos estudios centrados en la producción de biomasa microalgal para producir bioetanol, así, las microalgas Porphyridium cruentum y Spirogira sp. podrían utilizarse para producir bioetanol, con la ventaja de no contener lignina. El biogás se produce por biodigestión anaeróbica de los residuos de biomasa microalgal en biorrefinerías, pero su producción comercial está muy limitada por los altos costos productivos y porque existen otras biomasas muy competitivas económicamente. La necesidad de producir biocombustibles utilizando biomasa microalgal, está alcanzando un mayor auge, siendo la propuesta trascendental, poner en marcha una biorrefinería, principalmente enfocada en la producción optima de biomasa microalgal como la clave principal de todo el proceso.
Citas
Abdullah, B., Syed Muhammad, S. A. F., Shokravi, Z., Ismail, S., Kassim, K.A., et al. (2019). Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107, 37–50.
Acién, F. G., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotech., 61, 99–107.
Agustini, N. W., & Febrian N., (2019). Hidrolisis biomassa mikroalga Porphyridium cruentum menggunakan asam (H2SO4 dan HNO3) dalam produksi bioetanol. Jurnal Kimia dan Kemasan, 41(1),1-10. http://dx.doi.org/10.24817/jkk.v41i1.3962
Alam, F., Mobin, S., & Chowdhury, H. (2015). Third Generation Biofuel from Algae. Procedia Engineering, 105: 763-768.
AlgaeBase. (2020). Global algal database of taxonomic, nomenclatural and distributional information. Available online at https://www.algaebase.org/. Accesado 01 abril del 2020.
Aro, E. M. (2016). From first generation biofuels to advanced solar biofuels. Ambio, 45, 24-31.
Bader, A. N., Sanchez-Rizza, L., Consolo, V. F., & Curatti, L. (2020). Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of etanol. Algal Research, 48, 101926.
Baltz, R. H., Davies, J. E., & Demain A. L. (2010). Manual of Industrial Microbiology and Biotechnology. 3th edition; American Society for Microbiology Press.
Barati, B., Fazeli, F., Parveen, Z., Rupani, R., & Wang, S. (2021). Bacterial pretreatment of microalgae and the potential of novel nature hydrolytic sources. Environmental Technology & Innovation, 21, 101362.
Barsanti, L., & Gualtieri, P. (2014). ALGAE: Anatomy, Biochemistry and Biotechnology. 2nd edition; Taylor & Francis Group, CRC Press.
Basile, A., & Dalena, F. (2019). Second and Third Generation of Feedstocks - The Evolution of Biofuels. Elsevier Inc.
Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Jamsazzadeh, K. Z., Vandionant, S., et al. (2018a). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150–161.
Bernaerts, T. M., Kyomugasho, C., van Looveren, N., Gheysen, L., Foubert, I., et al. (2018b). Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydrate Polymers, 195, 542-550.
Bibi, R., Ahmad, Z., Imran, M., Hussain, S., Ditta, A., et al. (2017). Algal bioethanol production technology: A trend towards sustainable development. Renewable and Sustainable Energy Reviews, 7, 976-985.
British Petroleum. (2020). BP Statistical Review of World Energy 2020. Pureprint Group Limited. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
Bux, F., & Chisti, Y. (2016). Algae Biotechnology - Products and Processes. Springer International Publishing.
Carneiro, M., Cicchi, B., Maia, I. B., Pereira, H., Chini Zittelli, G., et al. (2020). Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors. Algal Research, 49, 101923.
Chen, C-Y., Zhao, X-Q., Yen, H-W., Ho, S-H., Cheng, C-L., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering J., 78, 1-10.
Chisti, Y. (2007). Biodiesel from microalgae. Elsevier Inc. Biotechnology Advances, 25, 294-306.
Chowdhury, H., Loganathan, B., Mustary, I., Alam, F., & Mobin, S. (2019). Algae for biofuels: The third generation of feedstock. In Basile A. y Dalena F., (Eds), Second and Third Generation of Feedstocks - The Evolution of Biofuels (Chap 12, pp. 323-344). Elsevier Inc.
Cuellar-Bermúdez, S. P., García-Pérez, J. S., Rittmann, B. E., & Parra-Saldívar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation Biofuels. Journal of Cleaner Production, 98, 53-65.
Cui, N., Feng, Y., Xiao, J., Ding, W., Zhao, Y., et al. (2020). Isolation and identification of a novel strain of Heveochlorella sp. and presentation of its capacity as biodiesel feedstock. Algal Research, 51, 102029.
Dalena, F., Senatore, A., Basile, M., Marino, D., & Basile, A. (2019). From sugar to ethanol-from agricultural wastes to algal sources: An overview. In Basile A. y Dalena F., (Eds), Second and Third Generation of Feedstocks - The Evolution of Biofuels (Chap 1, pp. 3-34). Elsevier Inc.
Das, D., & Varanasi, J. (2019). Fundamentals of Biofuel Production Processes. Taylor & Francis Group, CRC Press
de Farias, C. E., & Bertucco, A. (2019). Bioethanol from Microalgal Biomass: A Promising Approach in Biorefinery. Brazilian Archives of Biology and Technology. 62, e19160816.
Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 69, 114–122.
Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., et al. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable Sustainable Energy Review, 94, 49-68.
Fan, L., Zhang, H., Lia, J., Wang, Y., Leng, L., et al. (2020). Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. Algal Research, 47, 101819.
Fernandes de Souza, M., Almenara-Rodrigues, M.A., Pereira-Freitas, S., & Pinto da Silva, B.E. (2020). Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. Algal Research, 50, 101961.
Gallego, R., Martínez, M., Cifuentes, A., Ibañez, E., & Herrero, M. (2019). Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules, 24 (1564):1-13.
Gojkovic, Z., Lu, Y., Ferro, L., Toffolo, A., & Funk, C. (2020). Modeling biomass production during progressive nitrogen starvation by North Swedish green microalgae Algal Research, 47, 101835.
Goncalves, E. C., Wilkie, A.C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14(8), 1-12.
Gong, Y., & Huang, J. (2020). Characterization of four untapped microalgae for the production of lipids and carotenoids. Algal Research, 49, 101897.
Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725.
Harvey, P. J., & Ben-Amotz, A. (2020). Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Research, 50, 102002.
Hernández, D., Riaño, B., Coca, M., & García-González, M.C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.
Hernández-Pérez, A., & Labbé, J.I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49(2), 157-173.
Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J. A., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Research, 46(1), 260-266.
Hong, S-J., & Lee, C-G. (2015). Microalgal Systems Biology Through Genome-Scale Metabolic Reconstructions for Industrial Applications. In Kim S-K. (Ed), Handbook of Marine Microalgae - Biotechnology Advances (Chap. 23, pp. 353-370). Academic Press.
Jedrzejczyk, M., Soszka, E., Czapnik, M., Ruppert, A. M., & Grams, J. (2019). Physical and chemical pretreatment of lignocellulosic biomass. In Basile A. & Dalena F. (Eds), Second and Third Generation of Feedstocks-The Evolution of Biofuels (Chap. 6, pp. 145-164). Elsevier Inc.
Jeong, G.-T., Kim, S. K., & Oh, B. R. (2020). Production of fermentable sugars from Chlorella sp. by solid-acid catalyst. Algal Research, 51, 102044.
Karpagam, R., Kalimuthu Jawaharraj, K., & Gnanam, R. (2021). Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Science of The Total Environment, 766, 144236.
Kendir Çakmak, E., & Ugurlu, A. (2020). Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment. Algal Research, 50, 101979.
Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1).
Khoo, C. G., Dasan, Y. K., Lam, M. K., & Lee, K. T. (2019). Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource Technology, 292, (121964), 1-13.
Kim, M. H., Oh, H. C., & Bae, H. J. (2017). Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresource Technology, 233, 44-50.
Kim, S-K. (Ed). (2015). Handbook of Marine Microalgae - Biotechnology Advances. Academic Press.
Kuila, A. & Sharma, V. (Eds). (2018). Principles and Applications of Fermentation Technology. Scrivener Publishing.
Lackner, M. (2015). 3rd Generation Biofuels: Bacteria and Algae as Sustainable Producers and Converters. In Lackner, M., Sajjadi, B., & Chen, W.Y. (Eds), Handbook of Climate Change Mitigation and Adaptation (pp. 1-32). Springer.
Li, T., Xu, J., Wu, H., Jiang, P., Chen, Z., & Xiang, W. (2019). Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Marine Drugs, 17(124),1-16.
Luhani, Y., Rai, R., Prabhu, A. A., Maan, P., Hans, M., et al. (2020). Recent advances in bioethanol production from lignocelluloses: a comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Research Journal, 28, 1267-1295.
Lutzu, G. A., Zhang, L., Zhang, Z., & Liu, T. (2017). Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess and Biosystem Engineering, 40, 73-83.
Martins, A. O., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90,316-337.
Mat Aron, N. S., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W., & Nguyen, T. H. P. (2020). Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, IF 3.741.
Mathimani, T., & Mallick, N. (2018). A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions. Renewable and Sustainable Energy Reviews, 91, 1103–1120.
Mathimani, T., Beena, Nair, B., & Rajith Kumar, R. (2015). Evaluation of microalga for biodiesel using lipid and fatty acid as a marker - A central composite design approach. Journal of the Energy Institute, 89, 3, 436-446.
Medina-Cabrera, E. V., Rühmann, B., Schmid, J., & Sieber, V. (2020). Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. Algal Research, 49, 101931.
Mennella, L., Tosco, D., Alberti, F., Cembalo, L., Crescimanno, M., et al. (2020). Perspectives and challenges of small scale plant microalgae cultivation. Evidences from Southern Italy. Algal Research, 45, 101693.
Morales-Sánchez, D., Schulze, P.S.C., Kiron, V., & Wijffels, R.H. (2020). Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Research, 50, 102016.
Moravvej, Z., Makarem, M. A., & Reza Rahimpour, M. (2019). The fourth generation of biofuel. In Basile A., & Dalena F., (Eds), Second and Third Generation of Feedstocks - The Evolution of Biofuels (Chap 20, pp. 553-597). Elsevier Inc.
Mussatto, S.I., Dragone, G., Guimaraes, P.M., Silva, J.P., Carneiro, L.M., et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817-830.
Najjar, Y. S. H., & Abu-Shamleh, A. (2020). Harvesting of microalgae by centrifugation for biodiesel production: A Review. Algal Research, 51, 102046.
Odjadjare, E. C., Mutanda, T., & Olaniran, A. O. (2015). Potential biotechnological application of microalgae: a critical review. Critical Reviews in Biotechnology, 37(1), 37-52.
Patil, S.A., Gildemyn, S., Pant, D., Zengler, K., Logan, B. E., & Rabaey, K. (2015). A logical data representation framework for electricity-driven bioproduction processes. Biotechnology Advances, 33(6), 736-744.
Préat, N., Taelman, S. E., De Meester, S., Allais, F., & Dewulfa, J. (2020). Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets. Algal Research,45, 101737.
Rempel, A., de Souza, S. F., Margarites, A. C., Astolfi, A. L., Radis, S. R., et al. (2019). Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresource Technology, 288, (121588), 1-8.
Sánchez, R. L. (2019). Estudios sobre la utilización de biomasa algal como materia prima alternativa para la producción de bioetanol. Tesis Doctoral, Universidad Nacional Mar del Plata, Argentina.
Sánchez, R. L., Sanz, S. M., Do Nascimento, M., Salerno, G. L., & Curatti, L. (2017). Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research, 22, 140-147.
Sanz-Smachetti, M. E., Coronel, C. D., Salerno, G. L., & Curatti, L. (2020). Sucrose-to-ethanol microalgae-based platform using seawater. Algal Research, 45, 101733.
Shokrkar, H., Ebrahimi, S., & Zamani, M. (2018). Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel, 228, 30-38.
Singh, B., Bauddh, K., & Bux, F., (Eds). (2015). Algae and Environmental Sustainability, (Developments in Applied Phycology 7). Springer India.
Singh, K. J., Singh, Y., Parveen, S., & Singh, D. P. (2017). Microalgal Biofuels Flexible Bioenergies for Sustainable Development. In Singh R.S., Pandey A., & Gnansounou E., (Eds), Biofuels - Production and Future Perspectives (Chap. 14, pp. 332-363). Taylor & Francis Group, CRC Press.
Singh, R. S., Pandey, A., & Gnansounou, E. (2017). Biofuels - Production and Future Perspectives. Taylor & Francis Group, CRC Press.
Tiwari, A., Kiran, T., & Pandey, A. (2019). Algae cultivation for biofuel production. In Basile A. & Dalena F. (Eds), Second and Third Generation of Feedstocks-The Evolution of Biofuels (Chap. 14, pp. 383-403). Elsevier Inc.
Velazquez-Lucio, J., Rodríguez-Jasso, R., Colla, L., Sáenz-Galindo, A., Cervantes-Cisneros, D., et al. (2018). Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, 17, 780-791.
Vieira de Mendonça, H., Assemany, P., Abreu, M., Couto, E., Martins M. A., et al. (2021). Microalgae in a global world: New solutions for old problems? Renewable Energy, 165, Part 1, 842-862.
Vinoth, J. V. A., Bharathirajaa, B., Vijayakumara, B., Arokiyarajc, S., Iyyappana, J., & Praveen Kumar, R. (2019). Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst. Bioresource Technology, 282, 348–352.
Webb, A. (2016.) A brief history of biofuels: From ancient history to today. In BioFuelNet.
Webb, A., & Coates, D. (2012). Biofuels and Biodiversity. Secretariat of the Convention on Biological Diversity. Montreal, CBD Technical Series No. 65, 69 p.
World Bioenergy Association. (2019). WBA Global Bioenergy Statistics 2019. http://www.worldbioenergy.org
Yap, B. H. J., Dumsday, G. J., Scales, P. J., & Martin, G. J. O. (2015). Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresource Technology, 184, 280-285.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Manuel Jimenez Escobedo, Augusto Castillo Calderón
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).