An insight into the pasting properties and gel strength of starches from different sources: effect of starch concentration


  • Nanci Castanha Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP
  • Meliza Lindsay Rojas Dirección de Investigación y Desarrollo, Universidad Privada del Norte (UPN), Trujillo
  • Pedro Esteves Duarte Augusto Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, SP


Palabras clave:

properties, gelatinization, texture, application, evaluation conditions


This work aims to evaluate the starch/water concentrations (3.6%, 7.1%, 10.7% and 14.3%) effect of different commercial starch sources (namely cassava, maize, high-amylose maize, waxy maize and potato) regarding their pasting properties by using a Rapid Visco Analyser (RVA), gel strength, and intrinsic characteristics (such as morphology, granules size and distribution). The results showed that the 10.7% concentration (standard concentration usually used for evaluating starch properties) is not always predictive for the starches rheological behaviour. Meanwhile, the characteristics of the formed gels were not only related to RVA properties. For instance, decisions based on the results using the concentration of 10.7% can be far different from those used in industrial applications. The data reported can be useful to demonstrate how conditions, properties and starches characteristics are correlated, also to facilitate the selection of the best conditions that are closer to the desired application.


AACC. (1999). AACC International Method 76-21.01: General pasting method for wheat or rye flour or starch using the Rapid Visco Analyser (pp. 1-4): AACC International Approved Methods of Analysis.

Ai, Y., & Jane, J.-l. (2015). Gelatinization and rheological properties of starch. Starch - Stärke, 67(3-4), 213-224.

Anuntagool, J., Alvarez, G., & Flick, D. (2017). Predictive model for viscosity development of modified rice starch suspension under unsteady temperature change. Journal of Food Engineering, 209, 45-51.

Aoyagi, T., Oshima, T., & Imaizumi, T. (2021). Quantitative characterization of individual starch grain morphology using a particle flow analyzer. LWT, 139, 110589.

Avérous, L., & Halley, P. J. (2014). Starch Polymers: From the Field to Industrial Products. In P. J. Halley & L. Avérous (Eds.), Starch Polymers (pp. 3-10). Amsterdam: Elsevier.

Balet, S., Guelpa, A., Fox, G., & Manley, M. (2019). Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. Food Analytical Methods, 12(10), 2344-2360.

Bengtsson, H., & Tornberg, E. (2011). Physicochemical characterization of fruit and vegetable fiber suspensions. I: Effect of homogenization. Journal of Texture studies, 42(4), 268-280.

Biliaderis, C. G. (2009). Structural Transitions and Related Physical Properties of Starch. In J. BeMiller & R. Whistler (Eds.), Starch Chemistry and Technology (Third Edition ed., pp. 293-372). San Diego: Academic Press.

Booth, R., & Bason, M. (2007). Principles of operation and experimental techniques. In G. B. Crosbie & A. S. Ross (Eds.), The RVA Handbook (pp. 152). South Perth: AACC International.

Bortnowska, G., Balejko, J., Schube, V., Tokarczyk, G., Krzemińska, N., & Mojka, K. (2014). Stability and physicochemical properties of model salad dressings prepared with pregelatinized potato starch. Carbohydrate Polymers, 111, 624-632.

Carlstedt, J., Wojtasz, J., Fyhr, P., & Kocherbitov, V. (2015). Understanding starch gelatinization: The phase diagram approach. Carbohydrate Polymers, 129, 62-69.

Case, S. E., Capitani, T., Whaley, J. K., Shi, Y. C., Trzasko, P., Jeffcoat, R., & Goldfarb, H. B. (1998). Physical Properties and Gelation Behavior of a Low-Amylopectin Maize Starch and Other High-Amylose Maize Starches. Journal of Cereal Science, 27(3), 301-314.

Castanha, N., Matta Junior, M. D. d., & Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343-356.

Castanha, N., Villar, J., Matta Junior, M. D. d., Anjos, C. B. P. d., & Augusto, P. E. D. (2018). Structure and properties of starches from Arracacha (Arracacia xanthorrhiza) roots. International Journal of Biological Macromolecules, 117, 1029-1038.

Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103-112.

Chen, P., Yu, L., Chen, L., & Li, X. (2006). Morphology and Microstructure of Maize Starches with Different Amylose/Amylopectin Content. Starch - Stärke, 58(12), 611-615.

Desam, G. P., Li, J., Chen, G., Campanella, O., & Narsimhan, G. (2020). Swelling kinetics of rice and potato starch suspensions. Journal of Food Process Engineering, 43(4), e13353.

Eliasson, A. C., & Gudmundsson, M. (2006). Starch: Physicochemical and functional aspects. In A. C. Eliasson (Ed.), Carbohydrates Food (2nd ed ed., pp. 391–469). Boca Raton: CRS Press.

Franco, J. M., Berjano, M., & Gallegos, C. (1997). Linear Viscoelasticity of Salad Dressing Emulsions. Journal of Agricultural and Food Chemistry, 45(3), 713-719.

Fredriksson, H., Silverio, J., Andersson, R., Eliasson, A. C., & Åman, P. (1998). The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers, 35(3), 119-134.

French, D. (1984). Organization of Starch Granules. In R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and Technology (Second Edition ed., pp. 183-247). San Diego: Academic Press.

Hari, P. K., Garg, S., & Garg, S. K. (1989). Gelatinization of Starch and Modified Starch. Starch - Stärke, 41(3), 88-91.

Hizukuri, S., Abe, J.-i., & Hanashiro, I. (2006). Starch: analytical aspects. In A. C. Eliasson (Ed.), Carbohydrates Food (2nd ed ed., Vol. 159, pp. 305-390). Boca Raton: CRC Press.

Huang, J., Wei, M., Ren, R., Li, H., Liu, S., & Yang, D. (2017). Morphological changes of blocklets during the gelatinization process of tapioca starch. Carbohydrate Polymers, 163, 324-329.

Jane, J.-L., & Chen, J.-F. (1992). Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chemistry, 69(1), 60-65.

Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and Pasting Properties of Starch. Cereal Chemistry, 76(5), 629-637.

Jobling, S. (2004). Improving starch for food and industrial applications. Current Opinion in Plant Biology, 7(2), 210-218.

Karakelle, B., Kian-Pour, N., Toker, O. S., & Palabiyik, I. (2020). Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: A modeling approach. Journal of Cereal Science, 94, 102998.

Leloup, V. M., Colonna, P., & Buleon, A. (1991). Influence of amylose-amylopectin ratio on gel properties. Journal of Cereal Science, 13(1), 1-13.

Li, Q., Liu, S., Obadi, M., Jiang, Y., Zhao, F., Jiang, S., & Xu, B. (2020). The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chemistry, 302, 125267.

Liu, Q. (2005). Understanding starches and their role in foods. In S. W. Cui (Ed.), Food carbohydrates: Chemistry, physical properties and applications (1st ed ed., Vol. 340, pp. 309–355). Boca Raton: CRC Press.

Lopez-Sanchez, P., Nijsse, J., Blonk, H. C. G., Bialek, L., Schumm, S., & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91(2), 207-217.

Lu, Z.-H., Donner, E., Yada, R. Y., & Liu, Q. (2012). The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel. Food Chemistry, 133(4), 1214-1221.

Lund, D., & Lorenz, K. J. (1984). Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. C R C Critical Reviews in Food Science and Nutrition, 20(4), 249-273.

Martins, A. B., Silveira, A. M., Morisso, F. D. P., & Santana, R. M. C. (2021). Gelatinized and nongelatinized starch/pp blends: effect of starch source and carboxylic and incorporation. Journal of Polymer Research, 28(1), 9.

Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135(2), 271-281.

Mishra, S., & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids, 20(5), 557-566.

Mun, S., Kim, Y.-L., Kang, C.-G., Park, K.-H., Shim, J.-Y., & Kim, Y.-R. (2009). Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum. International Journal of Biological Macromolecules, 44(5), 400-407.

Palabiyik, İ., Toker, O. S., Karaman, S., & Yildiz, Ö. (2017). A modeling approach in the interpretation of starch pasting properties. Journal of Cereal Science, 74, 272-278.

Pérez, S., Baldwin, P. M., & Gallant, D. J. (2009). Structural Features of Starch Granules I. In J. BeMiller & R. Whistler (Eds.), Starch Chemical Technology (3rd ed ed., pp. 149-192). Amsterdam: Academic Press.

Pietrasik, Z., & Soladoye, O. P. (2021). Use of native pea starches as an alternative to modified corn starch in low-fat bologna. Meat Science, 171, 108283.

Rincón-Londoño, N., Millan-Malo, B., & Rodríguez-García, M. E. (2016). Analysis of thermal pasting profile in corn starch rich in amylose and amylopectin: Physicochemical transformations, part II. International Journal of Biological Macromolecules, 89, 43-53.

Tao, J., Huang, J., Yu, L., Li, Z., Liu, H., Yuan, B., & Zeng, D. (2018). A new methodology combining microscopy observation with Artificial Neural Networks for the study of starch gelatinization. Food Hydrocolloids, 74, 151-158.

Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal chem, 67(6), 551-557.

Wong, S.-S., Wicklund, R., Bridges, J., Whaley, J., & Koh, Y. B. (2020). Starch swelling behavior and texture development in stirred yogurt. Food Hydrocolloids, 98, 105274.

Xie, F., Liu, H., Chen, P., Xue, T., Chen, L., Yu, L., & Corrigan, P. (2006). Starch gelatinization under shearless and shear conditions. International Journal of Food Engineering, 2(5), 6-1-6-31.

Xu, J., Blennow, A., Li, X., Chen, L., & Liu, X. (2020). Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. Carbohydrate Polymers, 229, 115481.




Cómo citar

Castanha, N. ., Lindsay Rojas, M. ., & Duarte Augusto, P. E. . (2021). An insight into the pasting properties and gel strength of starches from different sources: effect of starch concentration. Scientia Agropecuaria, 12(2), 203-212.



Artículos originales