Estimation of arsenic contents in rice purchased on Peruvian markets and estimation of dietary intake by Peruvians through rice consumption

Autores/as

  • Sonia Tatiana Zhunaula Guaman Universidad Peruana Unión, Escuela de Ingeniería Ambiental, Km 19 Carretera Central, Ñaña, Lurigancho, Lima
  • Washington Coaquira Ccahua Universidad Peruana Unión, Escuela de Ingeniería Ambiental, Km 19 Carretera Central, Ñaña, Lurigancho, Lima
  • Nancy Curasi Rafael Universidad Peruana Unión, Escuela de Ingeniería Ambiental, Km 19 Carretera Central, Ñaña, Lurigancho, Lima
  • Ide Unchupaico Payano Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa, Vicerrectorado de Investigación, Jr. Los Cedros 341, La Merced
  • Julio Miguel Angeles Suazo Universidad Tecnológica del Perú, Facultad de Ingeniería Industrial, Av. Arequipa 265, Lima
  • Adriana Gioda Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro
  • Alex Rubén Huamán De La Cruz Universidad Peruana Unión, Escuela de Ingeniería Ambiental, Km 19 Carretera Central, Ñaña, Lurigancho, Lima

DOI:

https://doi.org/10.17268/sci.agropecu.2021.021

Palabras clave:

Arsenic, Rice-, ICP-MS, Dietary intake, Risk assessment, South America

Resumen

Rice (Oryza sativa L) is an important source of essential elements but also can contain high As concentrations, which may be consumed and causes health effects. This work aimed to contribute to the lack of information quantifying the total arsenic (tAs) in 31 domestic rice (white rice, n=19; brown rice, n=7; parboiled rice, n=5) of different brands purchased in Peruvian markets. The tAs content was conducted by ICP-MS. The tAs concentration was compared to the maximum limits prescribed by regulatory agencies. Dietary intake (DI), dietary exposure (DE), and margin of exposure (MOE) were estimated. tAs concentration in white, brown and parboiled rice were 0.292 ± 0.106 mg/kg, 0.401 ± 0.081 mg/kg, 0.229 ± 0.03 mg/kg, respectively. Arsenic concentration in white rice exceeded limits recommended by FAO/WHO (0.20 mg kg-1), and European legislation (0.25 mg kg-1), but no Mercosul limits (0.3 mg kg-1). The DE showed that, on average, Peruvians consume 5.60 μg As kg-1 BW weekly. The MOE value was higher than 1 at the mean dietary exposure level. Our findings suggest that the health risk from dietary arsenic exposure is low for the Peruvian population. However, more studies are needed to reduce dietary arsenic exposure in Peru

Citas

Arao, T., Makino, T., Kawasaki, A., Akahane, I., & Kiho, N. (2018). Effect of air temperature after heading of rice on the arsenic concentration of grain. Soil Science and Plant Nutrition, 64(3), 433–437.

Arif, N., Sharma, N. C., Yadav, V., Ramawat, N., Dubey, N. K., Tripathi, D. K., Chauhan, D. K., & Sahi, S. (2019). Understanding Heavy Metal Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies. Journal of Plant Biology, 62(4), 239–253.

Atiaga-Franco, O. L., Otero, X. L., Gallego-Picó, A., Escobar-Castañeda, L. A., Bravo-Yagüe, J. C., & Carrera-Villacrés, D. (2019). Analysis of total arsenic content in purchased rice from Ecuador. Czech Journal of Food Sciences, 37(6), 425–431.

Batista, B. L., Souza, J. M. O., Souza, S. S. De, & Jr, F. B. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials, 191(1–3), 342–348.

Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F. J., Barranzuela, J. L., & Vásquez, E. R. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83–91.

De La Cruz, A. R. H., De La Cruz, J. K. H., Tolentino, D. A., & Gioda, A. (2018). Trace element biomonitoring in the Peruvian andes metropolitan region using Flavoparmelia caperata lichen. Chemosphere, 210.

EFSA. (2005). Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic (Request No EFSA-Q-2004-020 ). The EFSA Journal, 282(1), 1–31.

European Commission. (2015). Commission Regulation (EU) 2015/1006. Official Journal of the European Union, L 161/14(June), 14–16.

FAO/WHO. (2005). Dietary Exposure Assessment of Chemicals in Food: Report of a Joint FAO/ WHO Consultation (WHO Library (ed.); 1st ed.). https://www.who.int/foodsafety/chem/dietary_exposure.pdf

Fão, N., Nascimento, S., de La Cruz, A. H., Calderon, D., Rocha, R., Saint’Pierre, T., Gioda, A., Thiesen, F. V., Brucker, N., Emanuelli, T., & Garcia, S. C. (2019). Estimation of total arsenic contamination and exposure in Brazilian rice and infant cereals. Drug and Chemical Toxicology.

Fão, N., Nascimento, S., de La Cruz, A. H., Calderon, D., Rocha, R., Saint’Pierre, T., Gioda, A., Thiesen, F. V., Brucker, N., Emanuelli, T., & Garcia, S. C. (2019). Estimation of total arsenic contamination and exposure in Brazilian rice and infant cereals. Drug and Chemical Toxicology, 0(0), 1–9.

George, C. M., Sima, L., Arias, M. H. J., Mihalic, J., Cabrera, L. Z., Danz, D., Checkley, W., & Gilman, R. H. (2014). Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bulletin of the World Health Organization, 92(8), 565–572.

Gi, S., Hyun, D., Seok, Y., Cho, S., Chung, M., Cho, M., Kang, Y., Kim, H., Kim, D., & Lee, K. (2018). Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea. Journal of Food Composition and Analysis, 69(February), 25–32.

González, N., Calderón, J., Rúbies, A., Bosch, J., Timoner, I., Castell, V., Marquès, M., Nadal, M., & Domingo, J. L. (2020). Dietary exposure to total and inorganic arsenic via rice and rice-based products consumption. Food and Chemical Toxicology, 141(May), 111420.

Guillod-Magnin, R., Brüschweiler, B. J., Aubert, R., & Haldimann, M. (2018). Arsenic species in rice and rice-based products consumed by toddlers in Switzerland. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 35(6), 1164–1178.

Gundert, U., Georg, R., Heidi, D., Alexius, F., Gebel, T., Golka, K., Röhl, C., Schupp, T., Michael, K., Jan, W., & Hengstler, G. (2015). High exposure to inorganic arsenic by food : the need for risk reduction. Archives of Toxicology, 89(12), 2219–2227.

Hassan, F. I., Niaz, K., Khan, F., Maqbool, F., & Abdollahi, M. (2017). The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI Journal, 16(1), 1132–1143.

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., & Scheibe, S. (2020). Simultaneous Interference in General Parametric Models (1.4-13; pp. 1–36). https://cran.r-project.org/web/packages/multcomp/multcomp.pdf

Jallad, K. N. (2019). The Hazards of a Ubiquitary Metalloid, Arsenic, Hiding in Infant Diets: Detection, Speciation, Exposure, and Risk Assessment. Biological Trace Element Research, 190(2), 11–23.

Lange, C. N., Monteiro, L. R., Freire, B. M., Fernandez, D., Oliveira, R., Souza, D., Sacramento, C., José, J., & Lemos, B. (2019). Mineral profile exploratory analysis for rice grains traceability. Food Chemistry, 300(July), 125145.

Lee, S. G., Kim, J., Park, H., Holzapfel, W., & Lee, K. W. (2018). Assessment of the effect of cooking on speciation and bioaccessibility/cellular uptake of arsenic in rice, using in vitro digestion and Caco-2 and PSI cells as model. Food and Chemical Toxicology, 111(November 2017), 597–604.

Luxbacher, K., & Nolte, G. E. (2018). Peru Grain and Feed Annual Annual - 2018. USDA Foreign Agricultural Service. 10 p.

Mandal, B. K., & Susuki, K. T. (2002). Arsenic round the world: a review. Advances in Agronomy, 58(1), 201–235.

Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., Yang, Z., Ayoko, G. A., Frost, R. L., & Theiss, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, 175(December 2018), 339–348.

Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., Cambell, R. C. J., Sun, G., Zhu, Y. G., Feldmann, J., Raab, A., Zhao, F. J., Islam, R., Hossain, S., & Yanai, J. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43(5), 1612–1617.

MINSA. (2011). Estado Nutricional en el Perú. http://bvs.minsa.gob.pe/local/MiNSA/1843.pdf

Mitra, A., Chatterjee, S., Moogouei, R., & Gupta, D. K. (2017). Arsenic accumulation in rice and probable mitigation approaches: A review. Agronomy, 7(4), 1–22.

Mondal, D., Periche, R., Tineo, B., Bermejo, L. A., Rahman, M. M., Siddique, A. B., Rahman, M. A., Solis, J. L., & Cruz, G. J. F. (2020). Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. Chemosphere, 241.

Mullins, R. H. (1965). Principal manufacturing industries in Perú (v2 ed.). Latin American Collection. U. S. Government Printing Office, Washintong D.C. 43 p.

Naito, S., Matsumoto, E., Shindoh, K., & Nishimura, T. (2015). Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chemistry, 168(1), 294–301.

Oteiza, J. M., Barril, P. A., Quintero, C. E., Savio, M., Befani, R., Fernandez, A., Echegaray, N. S., Murad, C., Buedo, A., Alimentos, L. D. M. D. L., & Investigación, C. De. (2020). Arsenic in Argentinean polished rice : Situation overview and regulatory framework. Food Control, 109(July 2019), 106909.

Otero, X. L., Tierra, W., Atiaga, O., Guanoluisa, D., Nunes, L. M., Ferreira, T. O., & Ruales, J. (2016). Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Science of the Total Environment, The, 573(1), 778–787.

Quinteros, E., Ribó, A., Mejía, R., López, A., Belteton, W., Comandari, A., Orantes, C. M., Pleites, E. B., Hernández, C. E., & López, D. L. (2017). Heavy metals and pesticide exposure from agricultural activities and former agrochemical factory in a Salvadoran rural community. Environmental Science and Pollution Research, 24(2), 1662–1676.

R Team Core. (2019). A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria (3.2.6). R Foundation for Statistical Computing. https://www.r-project.org/

Rahman, M. A., Rahman, M. M., Reichman, S. M., Lim, R. P., & Naidu, R. (2014). Arsenic speciation in australian-grown and imported rice on sale in Australia: Implications for human health risk. Journal of Agricultural and Food Chemistry, 62(25), 6016–6024.

Shraim, A. M. (2017). Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry, 10, S3434–S3443.

Sumczynski, D., Koubová, E., Lenka, Š., & Orsavová, J. (2018). Rice flakes produced from commercial wild rice: Chemical compositions, vitamin B compounds, mineral and trace element contents and their dietary intake evaluation. 264(February), 386–392.

USDA. (2019). Peru Grain and Feed Annual Annual (Issue February 2019). USDA Foreign Agricultural Service. 9 p.

Wickham, H., & Chang, W. (2016). Create Elegant Data Visualization Using the Grammar of Graphics. R package v. 2.2.1.

Zhao, F. J., & Wang, P. (2020). Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446(1–2), 1–21.

Descargas

Publicado

2021-04-28

Cómo citar

Zhunaula Guaman, S. T. ., Coaquira Ccahua, W. ., Curasi Rafael, N. ., Unchupaico Payano, I. ., Angeles Suazo, J. M. ., Gioda, A. ., & Huamán De La Cruz, A. R. . (2021). Estimation of arsenic contents in rice purchased on Peruvian markets and estimation of dietary intake by Peruvians through rice consumption. Scientia Agropecuaria, 12(2), 185-191. https://doi.org/10.17268/sci.agropecu.2021.021

Número

Sección

Artículos originales