The roasting process and place of cultivation influence the volatile fingerprint of Criollo cocoa from Amazonas, Peru
DOI:
https://doi.org/10.17268/sci.agropecu.2020.04.16Palabras clave:
Criollo cocoa, roasting, volatile fingerprint, aromatic markers, principal component analysis.Resumen
The Criollo cocoa bean is classified as “fine” or flavor cocoas, being perceived as aromatic or smooth with fruity, raisin, floral, spicy, nutty, molasses, and caramel notes. In the present work, gas chromatography coupled to mass spectrometry was used to study the volatile fingerprint of roasted and unroasted Criollo cocoa from four Amazon districts: Nieva, Cajaruro, Copallín and La Peca located in the Amazon Region of Peru. The results showed that the main sensory perception of cocoa is fruit, and this decreases as the roasting intensity increases. A total of 96 volatile compounds were found, of which the esters had a greater presence in the volatile fingerprint of Criollo cocoa. Propyl acetate (3.5%), acetoin acetate (1.3%) and diethyl succinate (0.8%) were found as the characteristic compounds of Criollo cocoa analyzed, which give it its fruit perception. The linalool/benzaldehyde ratio was between 0.56 and 0.89 for La Peca and Cajaruro cocoa. Principal component analysis revealed that the Criollo cocoa in each district has a different volatile fingerprint, whether it is roasted or unroasted beans. The roasting process generates a greater differentiation of the volatile fingerprint of Criollo cocoa.
Citas
Aculey, P.C.; Snitkjaer, P.; Owusu, M.; et al. 2010. Ghanaian Cocoa Bean Fermentation Characterized by Spectroscopic and Chromatographic Methods and Chemometrics. J. Food Sci. 75: S300-S307.
Afoakwa, E.O., 2010. Chocolate science and technology, First edition. ed. Wiley-Blackwell. Chichester, U.K., Chichester, U.K.
Afoakwa, E.O.; Paterson, A.; Fowler, M.; et al. 2008. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 48: 840-857.
Ahmed, S.; Rattanpal, H.S.; Gul, K.; et al. 2019. Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. J. Integr. Agric. 18: 1634-1642.
Álvarez, C.; Pérez, E.; Lares, M.D.C.; et al. 2016. Identification of the volatile compounds in the roasting Venezuela criollo cocoa beans by gas chromatography- spectrometry mass. J Nutr Health Food Eng. 5(4): 659-666.
Aprotosoaie, A.C.; Luca, S.V.; Miron, A. 2016. Flavor Chemistry of Cocoa and Cocoa Products - An Overview. Compr. Rev. Food Sci. Food Saf. 15: 73-91.
Ascrizzi, R.; Flamini, G.; Tessieri, C.; et al. 2017. From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchem. J. 133: 474-479.
Braga, S.C.G.N.; Oliveira, L.F.; Hashimoto, J.C.; et al. 2018. Study of volatile profile in cocoa nibs, cocoa liquor and chocolate on production process using GC × GC-QMS. Microchem. J. 141: 353-361.
Caligiani, A.; Palla, L.; Acquotti, D.; et al. 2014. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels. Food Chem. 157: 94-99.
Castro-Alayo, E.M.; Idrogo-Vásquez, G.; Siche, R.; et al. 2019. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 5: e01157.
Cordero, C.; Guglielmetti, A.; Sgorbini, B.; et al. 2019. Odorants quantitation in high-quality cocoa by multiple headspace solid phase micro-extraction: Adoption of FID-predicted response factors to extend method capabilities and information potential. Anal. Chim. Acta 1052: 190-201.
Counet, C.; Callemien, D.; Ouwerx, C.; et al. 2002. Use of Gas Chromatography−Olfactometry To Identify Key Odorant Compounds in Dark Chocolate. Comparison of Samples before and after Conching. J. Agric. Food Chem. 50: 2385-2391.
De Brito, E.S.; Garcia, P.; Cortelazzo, M.G.A.L. 2000. Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation. J. Sci. Food Agric. 88: 281-288.
Di Carro, M.; Ardini, F.; Magi, E. 2015. Multivariate optimization of headspace solid-phase micro-extraction followed by gas chromatography–mass spectrometry for the determination of methyl-pyrazines in cocoa liquors. Microchem. J. 121: 172-177.
Djikeng, F.T.; Teyomnou, W.T.; Tenyang, N.; et al. 2018. Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 4: e00533.
El Atki, Y.; Aouam, I.; El Kamari, F.; et al. 2020. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab. J. Chem. 13: 3866-3874.
FEMA. 2018. Flavor Ingredient Library. Available in: https://www.femaflavor.org/about
Fernández-Romero, E.; Chavez-Quintana, S.G.; Siche, R.; et al. 2020. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa. Antioxidants 9: 146.
Frauendorfer, F.; Schieberle, P. 2008. Changes in Key Aroma Compounds of Criollo Cocoa Beans During Roasting. J. Agric. Food Chem. 56: 10244-10251.
Frauendorfer, F.; Schieberle, P. 2006. Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations. J. Agric. Food Chem. 54: 5521-5529.
García-Alamilla, P.; Lagunes-Gálvez, L.M.; Barajas-Fernández, J.; et al. 2017. Physicochemical Changes of Cocoa Beans during Roasting Process. J. Food Qual. 2017: 2969324.
Hinneh, M.; Van de Walle, D.; Tzompa-Sosa, D.A.; et al. 2019. Tuning the aroma profiles of Forastero cocoa liquors by varying pod storage and bean roasting temperature. Food Res. Int. 125: 108550.
ICCO. 2017. Fine or Flavour Cocoa. Available in: https://www.icco.org/about-cocoa/fine-or-flavour-cocoa.html
Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; et al. 2015. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 174: 256-262.
Jinap, S.; Rosli, W.; Russly, A.R.; et al. 1998. Effect of Roasting Time and Temperature on Volatile Component Profiles during Nib Roasting of Cocoa Beans (Theobroma cacao). J. Sci. Food Agric. 77: 441-448.
Koné, M.K.; Guéhi, S.T.; Durand, N.; et al. 2016. Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res. Int. 89: 910-917.
Kongor, J.E.; Hinneh, M.; de Walle, D.V.; et al. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile-A review. Food Res. Int. 82: 44-52.
Marseglia, A.; Musci, M.; Rinaldi, M.; et al. 2020. Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins. Food Res. Int. 132: 109101.
Qin, X.-W.; Lai, J.-X.; Tan, L.-H.; et al. 2016. Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. Int. J. Food Prop. 20: 2261-2275.
Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; et al. 2012. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 132: 277-288.
Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; et al. 2011. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 44: 250-258.
Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; et al. 2019a. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 245: 1917-1937.
Rottiers, H.; Tzompa Sosa, D.A.; Van de Vyver, L.; et al. 2019b. Discrimination of Cocoa Liquors Based on Their Odor Fingerprint: a Fast GC Electronic Nose Suitability Study. Food Anal. Methods 12: 475-488.
Schwan, R.F.; Wheals, A.E. 2004. The Microbiology of Cocoa Fermentation and its Role in Chocolate Quality. Crit. Rev. Food Sci. Nutr. 44: 205-221.
Sukha, D.A.; Umaharan, P.; Butler, D.R. 2017. Evidence for applying the concept of “Terroir” in cocoa (Theobroma cacao L.) flavour and quality attributes. Presented at the International Symposium on Cocoa Research (ISCR), International Cocoa Organization, Lima, Peru.
Taş, N.G.; Gökmen, V. 2016. Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Res. Int. 89: 930-936.
Tran, P.D.; Van de Walle, D.; De Clercq, N.; et al. 2015. Assessing cocoa aroma quality by multiple analytical approaches. Food Res. Int. 77: 657-669.
Tuenter, E.; Delbaere, C.; De Winne, A.; et al. 2020. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res. Int. 130: 108943.
Utrilla-Vázquez, M.; Rodríguez-Campos, J.; Avendaño-Arazate, C.H.; et al. 2020. Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res. Int. 129: 108834.
Van Durme, J.; Ingels, I.; De Winne, A. 2016. Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chem. 205: 66-72.
Ziegleder, G. 2009. Flavour Development in Cocoa and Chocolate, in: Industrial Chocolate. Manufacture and Use. Blackwell Publishing. York, UK, pp. 169-191.
Ziegleder, G. 1990. Linalool contents as characteristic of some flavor grade cocoas. Z. Für Leb. -Forsch. A 191: 306-309.
Zzaman, W.; Bhat, R.; Yang, T.A. 2014. Application of Response Surface Methodology to Optimize Roasting Conditions in Cocoa Beans Subjected to Superheated Steam Treatments in Relevance to Antioxidant Compounds and Activities. Dry. Technol. 32: 1104-1111.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).