Extracción y microencapsulación de compuestos antioxidantes de la semilla de Oenocarpus bataua Mart

Autores/as

  • Katherine Navarro-Valdez Escuela Profesional de Ingeniería Agroindustrial, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N, Lima. http://orcid.org/0000-0002-6659-9103
  • Nahum Capillo-Herrera Escuela Profesional de Ingeniería Agroindustrial, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N, Lima. http://orcid.org/0000-0003-2123-4773
  • María Rosario Calixto-Cotos Escuela Profesional de Ingeniería Agroindustrial, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N, Lima. http://orcid.org/0000-0002-7735-278X
  • Oscar Pedro Santisteban-Rojas Escuela Profesional de Ingeniería Agroindustrial, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N, Lima. http://orcid.org/0000-0002-0126-4142

DOI:

https://doi.org/10.17268/sci.agropecu.2020.04.10

Palabras clave:

ungurahui, patawa, antioxidante, optimización, microencapsulación, compuestos bioactivos.

Resumen

El objetivo del presente estudio fue evaluar la extracción y microencapsulación de compuestos antioxidantes de la semilla de Oenocarpus bataua Mart, conocido comúnmente como “ungurahui” o “patawa”. El proceso de extracción se realizó en un baño ultrasónico y se utilizó el diseño central compuesto ortogonal de la metodología de superficie de respuesta (MSR) para determinar las condiciones óptimas de extracción, usando dos factores: concentración de etanol (48,44 a 91,56%) y tiempo de extracción (13,83 a 46,17 min). Las condiciones óptimas de extracción (48,44% etanol y 13,83 min) permitieron obtener el extracto (EUL) con la mayor cantidad de antioxidantes (rendimiento (RE): 24,64%, contenido fenólico total (CFT): 452,76 mg EAG/g EUL y DPPH: 74,26%). La microencapsulación del EUL con maltodextrina mediante secado por aspersión originó microcápsulas (EUM) de tamaño homogéneo (5 µm), ausencia de grietas y fisuras, y preservaron su capacidad antioxidante (CFT: 110,08 mg EAG/g EUM, DPPH: 74,59%) debido a que el encapsulante evitó que sean afectadas por la temperatura de secado. Las microcápsulas tampoco presentaron una degradación significativa durante el almacenamiento. En general, este estudio ofrece un proceso adecuado para la incorporación de compuestos antioxidantes de la semilla del Oenocarpus bataua en la industria alimentaria.

Citas

Aizpurua-Olaizola, O.; Navarro, P.; Vallejo, A.; et al. 2016. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chemistry 190: 614-621.

Annegowda, H.V.; Bhat, R.; Min-Tze, L.; et al. 2011. Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology 49(4): 510-514.

Azarpazhooh, E.; Sharayei, P., Zomorodi, S.; et al. 2019. Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity. Food Bioprocess Technol 12: 199-210.

Braga, G.C.; Melo, P.S.; Bergamaschi, K.B.; et al. 2016. Extraction yield, antioxidant activity and phenolics from grape, mango and peanut agro-industrial by-products. Ciência Rural 46(8): 1498-1504.

Cai, Y.; Corke, H. 2000. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science 65(6): 1248-1252.

Chew, K.K.; Khoo, M.Z.; Ng, S.Y.; et al. 2011. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. International Food Research Journal 18(4): 1427-1435.

Dai, J.; Mumper, R.J. 2010. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 15(10): 7313-7352.

Darnet S.H.; Silva L.H.; Rodrigues, A.M.; Lins R. T. 2011. Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the amazon region. Food Science and Technology 31(2): 488-491.

Díaz, F.; Santos, E.; Filardo, S.; et al. 2006. Colorant extraction from red prickly pear (Opuntia lasiacantha) for food application. Electronic Journal of Environmental, Agricultural and Food Chemistry 5 (2): 1330-1337.

Diaz, Y.L.; Torres, L.S.; Serna, J.A.; et al. 2017. Efecto de la Encapsulación en Secado por Atomización de Biocomponentes de Pitahaya Amarilla con Interés Funcional. Información tecnológica 28(6): 23-34.

Elkhamlichi, A.; El Hajaji, H.; Faraj, H.; et al. 2017. Phytochemical screening and evaluation of antioxidant and antibacterial activities of seeds and pods extracts of Calycotome villosa subsp. Intermedia. Journal of Applied Pharmaceutical Science 7(4): 192-198.

Haslina, H.; Eva, M. 2017. Extract Corn Silk with Variation of Solvents on Yield, Total Phenolics, Total Flavonoids and Antioxidant Activity. Indonesian Food and Nutrition Progress 14(1): 21.

Hidalgo, P.S.P.; Nunomura, R.C.S.; Nunomura, S.M. 2016. Amazon Oilseeds: Chemistry and Antioxidant Activity of Patawa (Oenocarpus bataua Mart.). Revista Virtual de Química 8(1): 130-140.

Karadag, A.; Ozcelik, B.; Saner, S. 2009. Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods 2(1): 41-60.

Kebede, M.; Admassu, S. 2019. Application of antioxidants in food processing industry: Options to improve the extraction yields and market value of natural products. Adv Food Technol Nutr Sci Open J. 5(2): 38-49.

Khalifa, I.; Barakat, H.; El-Mansy, H.A.; et al. 2016. Optimizing Bioactive Substances Extraction Procedures from Guava, Olive and Potato Processing Wastes and Evaluating their Antioxidant Capacity. Journal of Food Chemistry and Nanotechnology 2 (4): 170-177.

Kuck, L.S.; Noreña, C.P.Z. 2016. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry 194: 569-576.

Kuck, L.S.; Noreña, C.P.Z. 2019. Application of gum Arabic, β-cyclodextrin, and hydroxypropyl-β-cyclodextrin to microencapsulation by molecular inclusion of grape skin extract (Vitis labrusca var. Isabel). Journal of Food Processing and Preservation 43(2): e13874.

Kumar, V.; Sharma, H.K. 2016. Process optimization for extraction of bioactive compounds from taro (Colocasia esculenta), using RSM and ANFIS modeling. Journal of Food Measurement and Characterization 11(2): 704-718.

Kusmayadi, A.; Adriani, L.; Abun, A.; et al. 2019. The microencapsulation of mangosteen peel extract with maltodextrin from arenga starch: formulation and characterization. Journal of Applied Pharmaceutical Science 9(3): 33-40.

Laine, P.; Kylli, P.; Heinonen, M.; et al. 2008. Storage Stability of Microencapsulated Cloudberry (Rubus chamaemorus) Phenolics. Journal of Agricultural and Food Chemistry 56(23): 11251-11261.

Lan, S.; Lin, J.; Zheng, N. 2014. Evaluation of the Antioxidant Activity of Coreopsis tinctoria Nuff. and Optimisation of Isolation by Response Surface Methodology. Acta Pharmaceutica 64(3): 369-378.

Mohammed, N.K.; Tan, C.P.; Manap, Y.A.; et al. 2020. Spray Drying for the Encapsulation of Oils - A Review. Molecules 25(17): 3873.

Morales, J.A.; Figueroa, O.A.; Zapata, J.E. 2017. Optimización de Hidrólisis Enzimática de la Fracción Globular de Sangre Bovina por Metodología de Superficie Respuesta y Evaluación de sus Propiedades Antioxidantes. Información tecnológica 28(2): 75-86.

Mujica-Álvarez, J.; Gil-Castell, O.; Barra, P.A.; et al. 2020. Encapsulation of Vitamins A and E as Spray-Dried Additives for the Feed Industry. Molecules 25(6): 1357.

Nurhadi, B.; Suriati; Tensiska; et al. 2020. The role of encapsulant materials on the stability of bioactive compounds of red ginger (Zingiber officinale Roscoe. var. Rubrum) extract powder during storage. Food Chemistry 333: 127490.

Nutrizio, M.; Pataro, G.; Carullo, D.; et al. 2020. High Voltage Electrical Discharges as an Alternative Extraction Process of Phenolic and Volatile Compounds from Wild Thyme (Thymus serpyllum L.): In Silico and Experimental Approaches for Solubility Assessment. Molecules 25(18): 4131.

Orak, H.H.; Bahrisefit, I.S.; Sabudak, T. 2019. Antioxidant Activity of Extracts of Soursop (Annona muricata L.) Leaves, Fruit Pulps, Peels, and Seeds. Polish Journal of Food and Nutrition Sciences 69(4): 359-366.

Ordoñez-Gómez, E.S.; Reátegui-Díaz, D.; Villanueva-Tiburcio, J.E. 2018. Polifenoles totales y capacidad antioxidante en cáscara y hojas de doce cítricos. Scientia Agropecuaria 9(1): 113-121.

Peanparkdee, M.; Iwamoto, S.; Yamauchi, R. 2016. Microencapsulation: a review of applications in the food and pharmaceutical industries. Reviews in Agricultural Science 4: 56-65.

Pérez-Serradilla, J.; Luque de Castro, M. 2011. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chemistry 124(4): 1652-1659.

Rajapaksha, D.S.W.; Shimizu, N. 2020. Valorization of spent black tea by recovery of antioxidant polyphenolic compounds: Subcritical solvent extraction and microencapsulation. Food Science & Nutrition 8(8): 4297-4307

Rezaire, A.; Robinson, J.; Bereau, D.; et al. 2014. Amazonian palm Oenocarpus bataua (“patawa”): Chemical and biological antioxidant activity – Phytochemical composition. Food Chemistry 149: 62-70.

Rivas, B.N.; Leal, I.A.; Loaiza, L.F.; et al. 2017. Compuestos fenólicos y actividad antioxidante en extractos de cuatro especies de orégano. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 40(3): 134-142.

Robert, P.; Gorena, T.; Romero, N.; et al. 2010. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science y Technology 45(7): 1386-1394.

Saikia, S.; Mahnot, N.K.; Mahanta, C.L. 2015. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry 171: 144-152.

Sánchez-Molina, D.; Vargas-Porras, M.; Ortega-Toro, R.; et al. 2018. Extracción y encapsulación de compuestos fenólicos provenientes de cascarilla de arroz. Revista Colombiana de Ciencias Químico-Farmacéuticas 47(3): 410-423.

Santos, D.; Maurício, A.C.; Sencadas, V.; et al. 2018. Spray Drying: An Overview. En: Pignatello, R. (Comp.). Biomaterials - Physics and Chemistry - New Edition. InTech. UK. Pp. 9-35.

Saleem, I.; Petkar, K.; Somavarapu, S. 2017. Rationale for Pulmonary Vaccine Delivery: Formulation and Device Considerations. En: Skwarczynski, M. (Comp.). Micro and Nanotechnology in Vaccine Development. UK. Pp. 357-371.

Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; et al. 2019. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT - Food Science and Technology 101: 342-350.

Singh, B.; Hathan, B.S. 2017. Process optimization of spray drying of beetroot Juice. Journal of Food Science and Technology 54(8): 2241-2250.

Soong, Y.; Barlow, P.J. 2004. Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry 88(3): 411-417.

Spigno, G.; Tramelli, L.; De Faveri, D.M. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81(1): 200-208.

Szymanska, R.; Pospíšil, P.; Kruk, J. 2018. Plant-Derived Antioxidants in Disease Prevention 2018. Oxidative Medicine and Cellular Longevity 2018: 1-2.

Tao, Y.; Wu, D.; Zhang, Q.; et al. 2014. Ultrasoundassisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochemistry 21(2): 706-715.

Teixeira, M.I.; Andrade, L.R.; Farina, M.; et al. 2004. Characterization of short chain fatty acid microcapsules produced by spray drying. Materials Science and Engineering C24(5): 653-658.

Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; et al. 2018. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 5(3): 93.

Descargas

Publicado

2020-11-29

Cómo citar

Navarro-Valdez, K., Capillo-Herrera, N., Calixto-Cotos, M. R., & Santisteban-Rojas, O. P. (2020). Extracción y microencapsulación de compuestos antioxidantes de la semilla de Oenocarpus bataua Mart. Scientia Agropecuaria, 11(4), 547-554. https://doi.org/10.17268/sci.agropecu.2020.04.10

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a