Bacterias promotoras del crecimiento en plantas con potencial agente biocontrolador a Fusarium oxysporum f. sp. Lycopersici, y Moniliophthora roreri
DOI:
https://doi.org/10.17268/sci.agropecu.2019.03.10Palabras clave:
F. oxysporum, M. roreri, micelio, conidios, esporas, antagónico.Resumen
El objetivo se enfocó en caracterizar el potencial antagonista de PGPR en inhibición al desarrollo micelial, conidios en F. oxysporum y esporas en M. roreri. La técnica de PCR se empleó para la identificación de F. oxysporum y M. roreri. Seleccionando las bacterias: Acinetobacter calcoaceticus BMR2-12, Klebsiella variicola BO3-4, Enterobacter asburiae BA4-19, Enterobacter asburiae PM3-14, Pseudomonas protegens CHA0, Pseudomonas veronii R4 y Bacillus subtilis. Se evaluaron actividades antagónicas: a) Inhibición micelial en F. oxysporum y M. roreri; b) Reducción en producción de conidios y esporas por 12 y 15 días post-incubación. La PCR confirmó la amplificación de 670 pb para F. oxysporum. La secuenciación de 750 pb definió un grado de similitud del 99% a M. roreri, al compararse con el GenBank de NCBI. La aplicación de B. subtilis es de mayor actividad antagónica a inhibición (micelial y conidios) con (95 y 90%) a F. oxyporum. La actividad de BO3-4 en M. roreri inhibe totalmente el desarrollo micelial y la producción de esporas 12 y 15 días post-incubación respectivamente. La selección de estos bio-controladores y su aplicación como consorcio ofrecerá una alternativa para beneficiar en la reducción de agroquímicos al cultivo de tomate y cacao.
Citas
Afsharmanesh, H.; Ahmadzadeh, M.; Javan, M.; Behboudi, K. 2010. Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. Journal of Plant Pathology 92: 187–194.
Anderson, A.; Kim, Y. 2018. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection 105: 62–69.
Anjaiah, V.; Koedam, N.; Nowak. B.; Loper, J; Höfte, M.; Tambong, J.; Cornelis, P. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp. Molecular Plant-Pathology 11: 847–854.
Bailey, B.; Bae, H.; Strem, M.; Crozier, J., Thomas, S.; Samuels, G.; Holmes, K. 2008. Antibiosis mycoparasitism and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control 46: 24–35.
Bateman, R.; Hidalgo, E.; García, J.; Arroyo, C.; Ten Hoopen, G.; Adonijah, V.; Krauss, U. 2005. Application of chemical and biological agents for the management of frosty pod rot (Moniliophthora roreri) in Costa Rican cocoa (Theobroma cacao). Annals of Applied Biology 147:129–138.
Bowers, J.; Bailey, B.; Hebbar, P.; Sanogo, S.; Lumsden, R. 2001. The impact of plant diseases on world chocolate production. Plant Health Progress. Disponible en: http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=111&photo=87.
Cazorla, F.; Romero, D.; Pérez, A.; Lugtenberg, B.; Vicente, A.; Bloemberg, G. 2007. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology 103: 1950–1959.
Chávez, K.; Guato, J.; Peñafiel, M.; Mestanza, C.; Canchignia, H. 2018. Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Agricultural Sciences 11: 17–29.
Chitarra, G.; Breeuwer, P.; Nout, M.; Van Aelst, A.; Rombouts, F.; Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology 94: 159–166.
De Laurentis, W.; Khim, L.; Anderson, J.; Adam, A.; Phillips, R.; Chapman, S.; Naismith, J. 2007. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily. Biochemetry 46: 12393–12404.
Evans, H. 2007. Cacao diseases-The trilogy revisited. Phytopathology 97: 1634–1639.
Evans, H.; Bezerra, J.; Barreto, R. 2013. Of mushrooms and chocolate trees : aetiology and phylogeny of witches broom and frosty pod diseases of cacao. Plant Pathology 7: 728–740.
Fernández, R.; Suárez, C. 2009. Antagonismo in vitro de Trichoderma harzianum rifai sobre Fusarium oxysporum Schlecht f. sp passiflorae en maracuyá (Passiflora edulis Sims var. Flavicarpa). Revista Facultad Nacional de Agronomía Medellín 62: 4743–4748.
Figueroa, M.; Rodríguez, R.; Zulema, B.; González, M.; Pons, J. 2010. Caracterización de especies de Fusarium asociadas a la pudrición de raíz de maíz. Revista Mexicana de Fitopatología. 28: 124–134.
Fischer, S.; Jofré, E.; Cordero, P.; Gutiérrez, F.; Mori, G. 2010. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. International Journal of General and Molecular Microbiology. 97: 241–251.
Griffith, G.; Nicholson, J. 2002. Genetic diversity in the Crinipellis perniciosa (Stahel) Sing. species complex. Institute of Biological Sciences 40: 1953–1959.
Gu, Q.; Yang, Y.; Yuan, Q.; Shi, G.; Wu, L.; Lou, Z. 2017. Bacillomycin D produced by Bacillus amylolique-faciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum Qin. Applied and Environmental Microbiology 83: 1–17.
Guédez, C.; Cañizalez, L.; Castillo, C.; Olivar, R. 2012. Evaluación in vitro de aislamientos de Trichoderma harzianum para el control de Rhizoctonia solani, Sclerotium rolfsii y Fusarium oxysporum en plantas de tomate Clemencia. Revista de La Sociedad Venezolana de Microbiología 32: 44–49.
Hill, D.; Stein, J.; Torkewitz, N.; Morse, A.; Howell, C.; Pachlatko, J.; Ligon, J. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Enviromental Microbiology. 60: 78–85.
Hirano, Y.; Arie, T. 2006. PCR-based differentiation of Fusarium oxysporum ff. sp. lycopersici and radicislycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology 72: 273–283.
Infante, D.; Martínez, B.; González, N.; Reyes, Y. 2009. Mecanismo de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal 24: 14–21.
Jones, J.; Jones, P.; Stall, R.; Zitter, T. 1991. Compendium of tomato Diseases. The American Phytopathogical Society Press. Minnesota: APS Press. Pp 73.
Kah, M.; Brown, C. 2006. Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology 188: 149–217.
King, E.; Ward, M.; Raney, D. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine 44: 301–307.
Lievens, B.; Claes, L.; Vakalounakis, D.; Vanachter, A.; Thomma, B. 2007. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environmental Microbiology 9: 2145–2161.
Lin, L.; Wei, C.; Chen, M.; Wang, H.; Li, Y.; Li, Y.; Yang, L. 2015. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Standards in Genomic Sciences 10: 1–7.
Mcloughlin, T.; Quinn, J.; Bettermann, A.; Booklandt, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Applied ana Environmental Microbiology 12: 1760–1763.
Montiel, L.; González, F.; Sánchez, B.; Guzmán, S.; Gámez, F.; Acosta, J.; Rodríguez, R. 2005. Especies de Fusarium presentes en raíces de frijol (Phaseolus vulgaris L.) con daños de pudrición, en cinco Estados del Centro de México. Revista Mexicana de Fitopatologia 23: 1–7.
Moussa, T.; Almaghrabi, O.; Moneim, A. 2013. Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Annals of Applied Biology, 163: 72–81.
Neupane, S.; Finlay, R.; Alström, S.; Elfstrand, M.; Högberg, N. 2015. Transcriptional responses of the bacterial antagonist Serratia plymuthica to the fungal phytopathogen Rhizoctonia solani. Environmental Microbiology Reports: 7: 123–127.
Nutaratat, P.; Monprasit, A.; Srisuk, N. 2017. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 7: 1–15.
Okada, A.; Banno, S.; Ichiishi, A.; Kimura, M.; Yamaguchi, I.; Fujimura, M. 2005. Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. Pesticide Science Society of Japan 30: 378–383.
Paramanandham, P.; Rajkumari, J.; Pattnaik, S.; Busi, S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and Tomato plant growth due to plant growth–promoting rhizobacteria. International Journal of Vegetable Science 23: 294–303.
Peña, H.; Reyes, I. 2007. Aislamiento y evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia 32: 560–565.
Peñafiel, M.; Torres, E.; Barrera, A.; Prieto, H.; Carriel, J.; Canchignia, H. 2016. Producción de ácido indol-3-acético por Pseudomonas veronii R4 y formación de raíces en hojas de vid “Thompson seedless” in vitro. Ciencia y Tecnología 9: 31–36.
Phillips, W. 2003. Origin, biogeography, genetic diversity and taxonomic affinities of the cacao (Theobroma cacao L.) fungus Moniliophthora roreri ( Cif .) Evans et al. as determined using molecular, phytopathological and morphophysiological evidence. Tesis doctorado, The University of Reading. USA. 373 pp.
Phillips, W. 2006. La moniliasis del cacao: un enemigo que podemos y debemos vencer. Taller regional andino de aplicación tecnológica en el cultivo de cacao. Documento desarrollado en cumplimiento del Convenio de Cooperación suscrito entre la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID) y el Instituto Interamericano de Cooperación para la Agricultura (IICA) Disponible en: http://www.iica.int.
Rijavec, T.; Lapanje, A. 2016. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers Microbiology 7: 1–14.
Sandhya, V.; Shrivastava, M.; Ali, S.; Shiva, V. 2017. Endophytes from Maize with plant growth promotion and biocontrol activity under drought stress 1. Russian Agricultual Sciences, 43: 22–34.
Someya, N.; Tsuchiya, K.; Yoshida, T.; Sawada, H. 2007. Combined application of Pseudomonas fluorescens strain LRB3W1 with a low dosage of benomyl for control of cabbage yellows caused by Fusarium oxysporum f. sp. conglutinans. Biocontrol Science and Technology. 17: 20–31.
Srivastava, R.; Khalid, A.; Singh, U.; Sharma, A. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31.
Suárez, L. 2016. Molecular identification of Moniliophthora roreri isolates from cocoa orchards in Norte de Santander. Genomics, Molecular Genetics and Biotechnology, 65: 51–57.
Suárez, L.; Rangel, A. 2013. Aislamiento de microorganismos para control biológico de Moniliophthora roreri. Acta Agronomica 62: 370–378.
Viana, F.; Freire, F.; Cardoso, J.; Vidal, J. 2003. Principais doenças do maracujazeiro na região nordeste e seu controle. Comunicado Técnico 86: 1–11.
White, T.; Bruns, T.; Lee, S.; Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Academic Press 2: 315–322.
Yang, J.; Liang, L.; Li, J.; Zhang, K. 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology 97: 7081–7095.
Zdor, R. 2014. Bacterial cyanogenesis: impact on biotic interactions. Journal of Applied Microbiology 5: 267–274.
Received June 12, 2019.
Accepted August 27, 2019.
Corresponding author: hcanchignia@uteq.edu.ec (H. Canchignia-Martínez).
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).