Potencial bioquímico de metano de pollinaza adicionada con propionato en condiciones mesofílicas

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2019.02.17

Palabras clave:

biogás, digestión anaeróbica, Potencial Bioquímico de Metano, modelo de Gompertz. Abstract

Resumen

El objetivo del trabajo fue determinar el potencial bioquímico de metano de pollinaza en combinación con una alta concentración de propionato, empleando un consorcio microbiano previamente adaptado a elevadas cantidades de este metabolito. La pollinaza al 3 % de sólidos totales (ST) con 4895 ppm de propionato fue degradada en condiciones mesofílicas empleando microcosmos con un volumen de trabajo de 250 mL. Los resultados del rendimiento de metano acumulado indicaron un comportamiento triple sigmoidal; lo cual podría atribuirse a la diferencia en las velocidades de degradación de los componentes, tales como macromoléculas y ácidos grasos volátiles. El potencial bioquímico de metano fue de 364,52 mL CH4 gSValimentados-1.

 

Citas

Acharya, S.M.; Kundu, K.; Sreekrishnan, T.R. 2015. Improved stability of anaerobic digestion through the use of selective acidogenic culture. Journal of Environmental Engineering 141: 04015001.

Ahlert, S.; Zimmermann, R.; Ebling, J.; König, H. 2016. Analysis of propionate‐degrading con-sortia from agricultural biogas plants. MicrobiologyOpen 5: 1027-1037.

Alvarado, A.; Montañez-Hernández, L.E.; Palacio-Molina, S.L.; Oropeza-Navarro, R.; Luévanos-Escareño, M.P.; Balagurusamy, N. 2014. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Frontiers in Microbiology 5: 597.

APHA. 2005. Standard methods for the exami-nation of water and wastewater. American Public Health Association (APHA): Washing-ton, DC, USA.

Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. 2014. Toxicants inhibiting anaerobic digestion: a review. Biotechnol. Adv. 32 (8): 1523–1534.

HACH. 2014. Hach Water Analysis Handbook. Method 10031. Colorado, USA.

Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. 2017. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water research 108: 212-221.

Li, P.; Li, W.; Sun, M.; Xu, X.; Zhang, B.; Sun, Y. 2018. Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues. Energies 12(1): 26.

Meneses-Reyes, J.C.; Hernández-Eugenio, G.; Huber, D.H.; Balagurusamy, N.; Espinosa-Solares, T. 2017. Biochemical methane potential of oil-extracted microalgae and glycerol in co-digestion with chicken litter. Bioresource Technology 224: 373-379.

Moreno-Andrade, I.; Buitrón, G. 2004. Influence of the origin of the inoculum on the anaerobic biodegradability test. Water Science and technology 49: 53-59.

Raposo, F.; De la Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. 2012. Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews 16: 861-877.

Rétfalvi, T.; Tukacs-Hájos, A.; Albert, L.; Marosvölgyi, B. 2011. Laboratory scale exa-mination of the effects of overloading on the anaerobic digestion by glycerol. Bioresource Technology 102(8): 5270-5275.

Rodrigues, R.P.; Rodrigues, D.P.; Klepacz-Smolka, A.; Martins, R.C.; Quina, M.J. 2019. Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of The Total Environment 649: 1599-1608.

Tale, V.P.; Maki, J.S.; Zitomer, D.H. 2015. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Research 70: 138-147.

Tian, Z.; Zhang, Y.; Li, Y.; Chi, Y.; Yang, M. 2015. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Research 69: 9-19.

Yang, G.; Zhang, P.; Zhang, G.; Wang, Y.; Yang, A. 2015. Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresource technology 192: 126-130.

Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. 1990. Modeling of the bacterial growth curve. Applied Environ-mental Microbiology 56: 1875–1881.

Received February 27, 2019.

Accepted May 26, 2019.

Corresponding author: ghernandeze@taurus.chapingo.mx (G. Hernández-Eugenio).

Descargas

Publicado

2019-07-09

Cómo citar

Guerrero-Toledo, F., Espinosa-Solares, T., Balagurusamy, N., Guerra-Ramírez, D., Huber, D. H., & Hernández-Eugenio, G. (2019). Potencial bioquímico de metano de pollinaza adicionada con propionato en condiciones mesofílicas. Scientia Agropecuaria, 10(2), 307-311. https://doi.org/10.17268/sci.agropecu.2019.02.17

Número

Sección

Comunicación Corta

Artículos más leídos del mismo autor/a