Desempeño del Phaseolus vulgaris bajo riego parcial cultivado en un sistema de respuesta hidrogravitrópica

Autores/as

  • Emil Cristhian Vega Ponce Facultad de Ingeniería Agrícola, Universidad Técnica De Manabí, Campus Lodana, Santa Ana, Manabí
  • Jesús Abel Mejía Marcacuzco Departamento de Recursos Hídricos, Facultad de Ingeniería Agrícola, Universidad Nacional Agraria La Molina (UNALM), Lima

DOI:

https://doi.org/10.17268/sci.agropecu.2017.02.06

Palabras clave:

Conductancia estomática, Phaseolus vulgaris L., potencial xilemático, potencial matricial del suelo

Resumen

En el área experimental de la UNALM (Lima-Perú) se evaluó sobre tratamientos de riego parcial (RPR300 y RPR500, ml) y riego completo (RC300 y RC500, ml control), el impacto del potencial xilemático (Yx) y la conductancia estomática (gs) en plantas de frijol común (Phaseolus vulgaris L.) cultivadas en sistemas (maceteros) de respuesta hidrogravitrópica. Se utilizó un diseño de bloques completos al azar con 12 plantas/maceteros por tratamiento en tres repeticiones. Para controlar la aplicación del riego y mantener el Yx en condiciones no letales (<-15 bar), se generó una curva de retención agua-suelo. Los valores de gs antes del riego (entre 217,18 y 268,67 mmol m-2 s-1) mostraron que únicamente en RPR500 las plantas se mantenían en óptimas condiciones hídricas, a pesar de los bajos valores de Yx (entre -9,92 y -7,33 bar); situación que pudo atribuirse a la capacidad de las raíces de sopesar los momentos en que la mitad de estas estructuras se encontraban en la sección del macetero donde la humedad del suelo estaba en un nivel bajo, mientras que la otra mitad se encontraba en la sección del macetero con un adecuado nivel hídrico del suelo.

Citas

Abrisqueta, I.; Conejero, W.; Valdés-Vela, M.; Vera, J.; Ortuño, M.; Ruiz-Sánchez, M. 2015. Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Computers and Electronics in Agriculture 114: 7-13.

Aguirre, C. 2008. Relación planta-agua en paltos (Persea American Mill) cv. Hass. Memoria de título de ingeniero civil agrícola, Universidad de Concepción, Chillán-Chile, 95 p.

Álvarez, S.; Navarro, A.; Bañón, S.; Sánchez-Blanco, M. 2009. Regulated deficit irrigation in potted dianthus plants: effects of severe and moderate water stress on growth and physiological responses. Scientia Horticulturae 122: 579-585.

Baratto, C.; Faglia, G.; Pardo, M.; Vezzoli, M.; Boarino, L.; Maffei, M.; Bossi, S.; Sberveglieri, G. 2005. Monitoring plants health in greenhouse for space missions. Sensors and Actuators 108: 278-284.

Behboudian, M.; Singh, Z. 2001. Water relations and scheduling in grapevine. Horticultural Reviews 27: 189-225.

Bittelli, M.; Flury, M. 2009. Errors in water retention curves determined with pressure plates. Soil Science Society of America Journal 73(5): 1453-1460.

Bradford, K.; Hsiao, T. 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology 70(5): 1508-1513.

Brinckmann, E. 2005. ESA hardware for plant research on the International Space Station. Advances in Space Research 36: 1162-1166.

Camarena, F.; Huaringa, A.; Mostacero, E. 2009. Tecnología para el incremento de la producción de frijol común (Phaseolus vulgaris L.). Primera edición. Universidad Nacional Agraria La Molina – Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica. 232 p.

Chamú, J.; López, A.; Ramírez, C.; Trejo, C.; Martínez, E. 2011. Respuesta del pimiento morrón al secado parcial de la raíz en hidroponía e invernadero. Revista Mexicana de Ciencias Agrícolas 2: 97–110.

Comstock, J. 2002. Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. Journal of Experimental Botany 53: 195-200.

Cuéllar, S.; Covarrubias, A. 2005. Alternativas para enfrentar la sequía en el cultivo de frijol (Phaseolus vulgaris L.). Revista Claridades Agropecuarias 142: 32-41.

De Pascale, S.; Costa, L.; Vallone, S.; Barbieri, G.; Maggio, A. 2011. Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology 21(3): 301-308.

Dauzart, A.; Vandenbrink, J.; Kiss, J. 2016. The effects of clinorotation on the host plant, Medicago truncatula, and its microbial symbionts. Frontiers in Astronomy and Space Sciences 3(1): 1-10.

Davies, J.; Bacon, A.; Thompson, S.; Sobeih, W.; Rodríguez, G. 2000. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’ chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. Journal of Experimental Botany 51: 1617-1626.

Dener, E.; Kacelnick, A.; Shemesh, H. 2016. Pea plants show risk sensitivity. Current Biology 26(13): 1763-1767.

FAO (Food and agriculture organization of the United Nations). 2015. 2050: la escasez de agua en varias zonas del mundo amenaza la seguridad alimentaria y los medios de subsistencia. Disponible en: http://www.fao.org/news/story/es/item/283264/icode/

Ferl, R.; Wheeler, R.; Levine, H.; Paul, A. 2002. Plants in space. Current Opinion in Plant Biology 5: 258-263.

Fernández, G.; Melgarejo, L.; Rodríguez, N. 2014. Algunos aspectos de la fotosíntesis y potenciales hídricos de la granadilla (Passiflora ligularis Juss.) en estado reproductivo en el Huila, Colombia. Revista Colombiana de Ciencias Hortícolas 8(2): 206-216.

Fernández, J.; Díaz-Espejo, A.; Infante, J.; Durán, P.; Palomo, J.; Chamorro, V.; Girón, I.; Villagarcía, L. 2006. Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying. Plant and Soil 284: 273-291.

García, A.; Cun, R.; Montero, L. 2010. Efecto de la hora del día en el potencial hídrico foliar del sorgo y su relación con la humedad en el suelo. Revista Ciencias Técnicas Agropecuarias 19(3): 7-11.

Gomes, G.; Moritz, A.; Freiria, G.; Furlan, F.; Assari, L. 2016. Desempenho produtivo de genótipos de feijão-vagem arbustivo em dois ambientes. Scientia Agropecuaria 7(2): 85-92.

Greenspan, M. 2000. Using the leaf porometer in grapes. Advanced Viticulture. Disponible en: http://www.advancedvit.com/Using_the_leaf_porometer_in_grapes.pdf

Guo, X.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y. 2008. Development of an improved ground-based prototype of space plant-growing facility. Advances in Space Research 41: 736-741.

Holbrook, N.; Shashidar, R.; James, A.; Munns, R. 2002. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany 53: 1503-1514.

Hublitz, I.; Henninger, D.; Drake, B.; Eckart, P. 2004. Engineering concepts for inflatable Mars surface greenhouses. Advances in Space Research 34: 1546-1551.

Jiménez, J.; Acosta, J. 2013. Rendimiento de frijol común (Phaseolus vulgaris L.) y Tépari (Phaseolus acutifolius A. Gray) bajo el método riego-sequía en Chihuahua. Revista Mexicana de Ciencias Agrícolas 4(4): 557-567.

Kamaljit, S. 2014. Modern agricultural practices and analysis of socio-economic and ecological impacts of development in agriculture sector, Punjab, India - A review. Indian J. Agric. Res. 48(5): 331-341.

Khlosi, M.; Cornelis, W.; Douaik, A.; Martinus, Th.; Gabriels, D. 2008. Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone Journal 7:86-97.

Kiss, J.; Kumar, P.; Millar, K.; Edelmann, R.; Correll, M. 2009. Operations of a spaceflight experiment to investigate plant tropisms. Advances in Space Research 44: 879-886.

Lago, I. 2011. Transpiração e crescimento foliar de clones de batata e de mandioca em resposta à fração de água transpirável no solo. Tesis doctoral en ingeniería agrícola. Universidad Federal de Santa María, Santa María, RS-Brasil. 92 p.

López-Ordaz, A.; Trejo-López, C.; Peña-Valdivia, C.; Ramírez-Ayala, C.; Tijerina-Chávez, L.; Carrillo-Salazar, J. 2008. Secado parcial de la raíz de jitomate: efectos en la fisiología de la planta y calidad de fruto. Agricultura Técnica en México 34(3): 297-302.

Millar, A. 1993. Manejo de agua y producción agrícola. Instituto Interamericano de Cooperación para la Agricultura, oficina en Chile. 556 pp.

Monje, O.; Stutte, G.; Goins, G.; Porterfield, D.; Bingham, G. 2003. Farming in space: environmental and biophysical concerns. Advances in Space Research 31(1): 151-167.

Moriwaki, T.; Miyazawa, Y.; Kobayashi, A.; Takahashi, H. 2013. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). American Journal of Botany 100(1): 25-34.

Morrow, R.; Bula, R.; Tibbitts, T.; Dinauer, W. 1994. The ASTROCULTURETM flight experiment series, validating technologies for growing plants in space. Advances in Space Research 14(11): 29-37.

Nunes, R.; Mazzei, F.; Oliveira, A.; Corrêa da Silva, B.; Massi, T.; de Menezes, M.; Fernandes, E.; Michael, D.; Campostrini, E. 2015. Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Scientia Horticulturae 183: 13-22.

Pardossi, A.; Incrocci, L.; Incrocci, G.; Malorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J. 2009. Root zone sensors for irrigation management in intensive agriculture. Sensors 9: 2809-2835.

Pimentel, C. 2004. A relação da planta com a água. EDUR -Editora Universidade Federal Rural do Rio de Janeiro-, Soropédica-RJ. 191 pp.

Prado, K.; Maurel, C. 2013. Regulation of leaf hydraulics: from molecular to whole plant levels. Frontiers in Plant Science 4(255): 1-14.

Puértolas, J.; Conesa, M.; Ballester, C.; Dodd, I. 2015. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. Journal of Experimental Botany 6(8): 2325-2334.

Robbins, N.; Dinneny, J. 2015. The divining root: moisture-driven responses of roots at the micro- and macro-scale. Journal of Experimental Botany 66(8): 2145–2154.

Romero, P.; Pérez-Pérez, J.; del Amor, F.; Martínez-Cutillas, A.; Dodd, I.; Botía, P. 2014. Partial root zone drying exerts different physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation. Functional Plant Biology 41(11): 1087-1106.

Romero, P.; Martinez-Cutillas, A. 2012. The effects of partial root-zone irrigation and regulated deficit irri-gation on the vegetative and reproductive development of field-grown Monastrell grapevines. Irrigation Science 30(5): 377–396.

SAS Institute Inc. 2004. SAS/STAT® v9.1. User´s Guide. Cary, NC.

Sepaskhah, A.; Ahmadi, S. 2010. A review on partial root-zone drying irrigation. International Journal of Plant Production, 4(4): 241-258.

Stoll, M.; Loveys, R.; Dry, R. 2000. Hormonal changes induced by partial rootzone drying of irrigated grapevine. Journal of Experimental Botany 51: 1627-1634.

Tan, C.; Wang, H.; Zhang, Y.; Qi, B.; Xu, G.; Zheng, H. 2011. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sciences 9(72): 1-16.

Thomas, G. 2014. Why crop yields in developing countries have not kept pace with advances in agronomy. Global Food Security 3: 49-58.

Trincado, J. 2005. Relaciones agua-planta en paltos (Persea American Mill) cv. Hass, sector Peumo, provincia Cachapoal, VI región. Memoria de título de ingeniero civil agrícola. Universidad de Concepción, Chillán-Chile, 80 p.

Vega, E. 2017. Desempeño del frijol común bajo riego parcial de raíces en un sistema de respuesta hidrogravitrópica selectiva. Tesis doctoral en recursos hídricos. Universidad Nacional Agraria La Molina, Lima-Perú, 122 pp.

Wakrim, R.; Wahbi, S.; Tahi, H.; Aganchich, B.; Serraj, R. 2005. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.). Agriculture, Ecosystems & Environment 106: 275-287.

Yan, F.; Yanq, S.; Song, F.; Liu, F. 2012. Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates. Scientia Horticulturae 145: 76–83.

York, L.; Nord, E.; Lynch, J. 2013. Integration of root phenes for soil resource acquisition. Frontiers in Plant Science 4: 1-15.

Zegbe, J.; Behboudian, M.; Lang, A.; Clothier, B. 2006. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrigation Science 24: 203-210.

Received December 12, 2016.

Accepted May 8, 2017.

Corresponding author: cristhianvegpo@gmail.com (E. Vega).

Descargas

Publicado

2017-07-05

Cómo citar

Vega Ponce, E. C., & Mejía Marcacuzco, J. A. (2017). Desempeño del Phaseolus vulgaris bajo riego parcial cultivado en un sistema de respuesta hidrogravitrópica. Scientia Agropecuaria, 8(2), 137-147. https://doi.org/10.17268/sci.agropecu.2017.02.06

Número

Sección

Artículos originales

Artículos similares

También puede {advancedSearchLink} para este artículo.