Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa


  • Augusto Pumacahua-Ramos Universidad Peruana Unión
  • José Antonio Gomez Vieira Universidade Estadual Paulista
  • Javier Telis- Romero Universidade Estadual Paulista
  • Harvey Alexander Villa-Vélez Universidade Federal do Maranhão
  • Jose Francisco Lopes Filho Universidade Estadual Paulista


Palabras clave:

Quinoa grains, moisture security, sorption isotherms, isosteric heat of sorption, mathematical models


The isosteric heats of sorption of two varieties of quinoa (Chenopodium quinoa Willd.) grain were determined by the static gravimetric method at four temperatures (40, 50, 60 and 70 °C) and in relative humidity environments provided by six saturated salt solutions. Six mathematical equations were used to model the experimental data:  GAB, Oswin, Henderson, Peleg, Smith and Halsey. The isosteric heat of sorption was determined using the parameters of the GAB model. All the equations were shown to be appropriate by the coefficients of determination (R2) and the mean absolute error (MA%E). The influence of temperature was observed because the adsorption of water by the grains was lower at higher temperatures. The equilibrium moisture contents for security of storage, for long periods of time at water activity lower than 0.65, were 12 - 13%. The effect of temperature on the parameters of the GAB model was analysed using the exponential Arrhenius equation. The isosteric heats of sorption were determined by applying the Clausius-Clapeyron equation as a function of humidity. The isosteric heat at 5% moisture for grains of the Blanca de Juli variety was 3663 kJ/kg and for the Pasankalla variety it was 3393 kJ/kg. The experimental data for isosteric heat as a function of humidity were satisfactorily modelled using three mathematical equations.


AGRODATA. 2016. Exportaciones de quinua peruana. Available in:

Aguerre, R.J.; Viollaz, P.E. 1989. Swelling and Pore Structure in Starchy Materials. Journal of Food Engineering 9: 71–80.

Alvarado, J. de D. 2012. Propiedades termodinámicas relacionadas con el agua constitutiva de alimentos. (Grafitext, Ed.) (1st ed.). Ambato, Ecuador. Retrieved from

Aviara, N.A.; Ajibola, O.O.; Oni, S.A. 2004. Sorption Equilibrium and Thermodynamic Characteristics of Soya Bean. Biosystems Engineering 87: 179–190.

Blahovec, J. 2004. Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering 65(4): 489–495.

Bojanic, A. 2011. La quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial. Available in:

Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. 1940. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society 62: 1723–1732.

Chen, C. 2006. Obtaining the isosteric sorption heat directly by sorption isotherm equations. Journal of Food Engineering 74(2): 178–185.

de Oliveira, D.E.C; Resende, O.; Campos, R.C.; Donadon, J. R. 2014. Obtenção e modelagem das isotermas de dessorção e do calor isostérico para sementes de arroz em casca. Científica 42(3): 203–210.

Halsey, G. 1948. Physical adsorptionon non-uniformsurfaces. Jornal Chemical Physical 16: 931–937.

Henderson, S. M. 1952. A basic concept of equilibrium moisture. Agricultural Engineering 33: 29–32.

Martín-Santos, J.; Vioque, M.; Gómez, R. 2012. Thermodynamic properties of moisture adsorption of whole wheat flour. Calculation of net isosteric heat. International Journal of Food Science & Technology 47(7): 1487–1495.

Miranda, M.; Vega-Gálvez, A.; Sanders, M.; López, J.; Lemus-Mondaca, R.; Martínez, E.; Scala, K. 2011. Modelling the Water Sorption Isotherms of Quinoa Seeds (Chenopodium quinoa Willd.) and Determination of Sorption Heats. Food and Bioprocess Technology 5(5): 1686–1693.

Moreira, R.; Chenlo, F.; Torres, M.D.; Vallejo, N. 2008. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering 88(4): 514–521.

Mulet, A.; Sanjuán, R.; Bon, J. 1999. Sorption Isosteric Heat Determination by Thermal Analysis and Sorption Isotherms. Journal of Food Science 64(1): 64–68.

Oswin, C.R. 1946. The kinetics of package life III. The isotherm. Journal of Chemical Industry 65: 419–421.

Peleg, M. 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering 16: 21–37.

Polachini, T.C.; Betiol, L.F.L.; Lopes-Filho, J.F.; Telis-Romero, J. 2016. Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta 632: 79–85.

Resende, O.; Corrêa, P. C.; Goneli, L.A.D.; Ribeiro, D.M. 2006. Isotermas e Calor Isostérico de Sorção do Feijão. Ciência Tecnologia Alimentaria 26(3): 626–631.

Rosa, D.P.; Luna-solano, G.; Polachini, T.C.; Telis-Romero, J. 2015. Modelagem matemática da cinética de secagem de semente de laranja. Ciência Agrotecnologia Lavras 39(3): 291–300.

Rosa, D.P.; Villa-vélez, H.A.; Telis-Romero, J. 2013. Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv. Brazilian) for the use of agro-industrial residues as a possible source of vegetable oil production. Ciência E Tecnologia de Alimentos 33: 95–101.

Samapundo, S.; Devlieghere, F.; Meulenaer, B. De; Atukwase, A.; Lamboni, Y.; Debevere, J. M. 2007. Sorption isotherms and isosteric heats of sorption of whole yellow dent corn. Journal of Food Engineering 79: 168–175.

Silva, S.A.; de Almeida, C.F.; Alves, N.M.C.; Melo, D.S.C.; Gomes, J.P. 2010. Hygroscopic and thermos-dynamic features of dehydrated coriander. Ciência Agronômica 41(2): 237–244.

Smith, S.E. 1947. The sorption of water vapour by high polymers. Journal of the American Chemical Society 69: 646.

Sukhorukov, A.P.; Zhang, M. 2013. Fruit and seed anatomy of Chenopodium and related genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for evolution and taxonomy. Plos One 8(4): 1–18.

Thys, R.C.S.; Noreña, C.P.Z.; Marczak, L.D.F.; Aires, A.G.; Cladera-Olivera, F. 2010. Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering 100(3): 468–473.

Tolaba, M.P.; Peltzer, M.; Enriquez, N.; Lucı́a-Pollio, M. 2004. Grain sorption equilibria of quinoa grains. Journal of Food Engineering 61(3): 365–371.

Tsami, E. 1991. Heat of sorption of water in dried fruits. International Journal of Food Science and Technology 25(3): 350–359.

Van den Berg, C.; Bruin, S. 1981. Water activity and its estimation in food systems: theoretical aspects. In Water Activity: Influences on Food Quality (pp. 1– 61). New York: Academic Press.

Vilche, C.; Gely, M.; Santalla, E. 2003. Physical properties of quinoa seeds. Biosystems Engineering 86(1): 59–65.

Villa-Vélez, H.A.; de Souza, S.J.F.; Pumacahua-Ramos, A.; Polachini, T.; Telis-Romero, J. 2015. Thermo-dynamic properties of water adsorption from orange peels. Journal of Bioenergy and Food Science 2(2): 72–81.

Villa-Vélez, H.; Váquiro, H.; Bon, J.; Telis-Romero, J. 2012. Modelling Thermodynamic Properties of Banana Waste by Analytical Derivation of Desorption Isotherms. International Journal of Food Engineering 8(1): 1–19.

Received May 31, 2016. Accepted November 07, 2016.

* Corresponding author: (A. Pumacahua-Ramos).



Cómo citar

Pumacahua-Ramos, A., Gomez Vieira, J. A., Telis- Romero, J., Villa-Vélez, H. A., & Lopes Filho, J. F. (2016). Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa. Scientia Agropecuaria, 7(4), 409-417.



Artículos originales