Especies de Trichoderma aislados de suelos de cultivo de Solanum tuberosum de Huamachuco, Perú. 2012
Resumen
Se aisló e identificó cuatro especies del genero Trichoderma a partir de suelos de cultivos de papa, Solanum tuberosum, de siete caseríos del distrito de Huamachuco (Departamento de La Libertad, Perú), entre abril y junio del 2012. Se colectó 17 muestras de suelos de la rizósfera de terrenos de cultivos de papa, las cuales se procesaron mediante siembras por superficie en placas Petri, conteniendo Agar Sabouraud con estreptomicina (30 ug/mL) y subsecuente incubación a 25°C por 3 a 5 días; posteriormente, se realizaron las observaciones microscópicas con azul de lactofenol. Para efectuar la identificación a nivel de especie se realizaron cultivos puros y luego microcultivos utilizándose claves taxonómicas de identificación. De las 17 muestras obtenidas, 11 cultivos nativos presentaron Trichoderma correspondientes a cuatro especies: T. atroviride, T. viride, T. harzianum y T. pseudokonigii de muestras de suelo de seis caseríos: Nueve de Octubre, Markahuamachuco, Sausacocha, Puente Piedra, Wiracochapampa y La Ramada.
Palabras clave: Trichoderma, agar Sabouraud, identificación, suelos
Citas
Küçük Ç, Kivanç M. Isolation of Trichoderma Spp. and Determination of Their Antifungal, Biochemical and Physiological Features. Turk J Biol 2003; 27: 247-253.
Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP et. al. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance. Appl Environ Microbiol 2005; 71(7):3959-3965.
Zeilinger S, Omann M. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism. Gene Regul Syst Bio 2007; 1: 227-234.
Howell CR. Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. Plant Dis. 2003; 87(1): 4-10.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma – plant – pathogen interactions. Soil Biol Biochem 2008; 40: 1-10.
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 2007; 37: 1–20.
Goss EM, Cardenas ME, Myers K, Forbes GA, Fry WE, Restrepo S et. al. The Plant Pathogen Phytophthora andina Emerged via Hybridization of an Unknown Phytophthora Species and the Irish Potato Famine Pathogen, P. infestans. PLoS One 2011; 6(9): e24543.
Lorito M, Woo SL, Garcia I, Colucci G, Harman GE, Pintor-Toro JA et. al. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 1998; 95: 7860-7865.
Benhamou N, Chet I. Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani: Ultrastructure and Gold Cytochemistry of the Mycoparasitic Process. Phytopathology 1993; 83(10): 1062-1071.
Pakula TM, Salonen K, Uusitalo J, Penttilä M. The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology 2005; 151: 135–143.
Brotman Y, Briff E, Viterbo A, Chet I. Role of Swollenin, an Expansin-Like Protein from Trichoderma, in Plant Root Colonization. Plant Physiol 2008; 147: 779 – 789.
Hoitink HAJ, Madden LV, Dorrance AE. Systemic Resistance Induced by Trichoderma spp.: Interactions Between the Host, the Pathogen, the Biocontrol Agent, and Soil Organic Matter Quality. Phytopathology 2006; 96(2): 186 – 189.
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma-Species Opportunistic Avirulent Plant Symbionts. Nat Rev Microbiol 2004; 2: 43 – 56.
Handelsman J, Stabb EV. Biocontrol of Soilborne Plant Pathogens. Plant Cell 1996; 8: 1855 – 1869.
Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A et. al. Cellulose Synthesis in Phytophthora infestans Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell 2008; 20: 720-738.
Lahlali R, Hijri M. Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 2010; 311: 152-159.
Carisse O, El Bassam S, Benhamou N. Effect of Microsphaeropsis sp. Strain P130A on Germination and Production of Sclerotia of Rhizoctonia solani and Interaction Between the Antagonist and the Pathogen. Phytopathology 2001; 91(8): 782-791.
Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol 1997; 63(8): 3189-3198.
Harman GE. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 2006; 96(2): 190-194.
Gams W, Bissett J. Morphology and identification of Trichoderma. En: Kubicek CP, Harman GE. (eds.) Trichoderma y Gliocladium – Basic biology, taxonomy and genetics. Gran Bretaña: Taylor y Francis; 2002. pp.3-34.
Samuels GJ, Chaverri P, Farr DF, McCray EB. Trichoderma Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Disponible en Web: http://trichodermaIndex.cfm.Completada en Octubre del 2002.
Harman GE. Myths and Dogmas of Biocontrol Changes in Perceptions Derive from Research on Trichoderma harzianun T-22. Plant Dis. 2000; 84(4): 377-393.
Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010; 87(3):787-799.
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 2007; 37: 1–20.
Samuels GJ. Trichoderma: Systematics, the Sexual State, and Ecology. Phytopathology 2006; 96: 195-206.
Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol 2004; 7: 249-260.
Savoie JM, Mata G. Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism. Mycologia 2003; 95(2):191-199.
Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I et. al. Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism. Appl Environ Microbiol 1999; 65(3): 929-935.
Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V et. al. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen activated protein kinase. Proc Natl Acad Sci U S A 2003; 100(26): 15965-15970.
Yao Q, Sun TT, Liu WF, Chen GJ. Gene Cloning and Heterologous Expression of a Novel Endoglucanase Swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 2008; 72(11): 2799-2805.
Samuels GJ, Chaverri P, Farr DF, McCray EB. Trichoderma Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Disponible en Web: http://trichodermaIndex.cfm.Completada en Octubre del 2002.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 REVISTA REBIOL
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Política propuesta para revistas que ofrecen acceso abierto
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la «Licencia de reconocimiento» de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (por ejemplo, depositarla en un repositorio institucional o publicarla en un libro) siempre que se indique la publicación inicial en esta revista.
- Los autores tienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la revista REBIOL (autores del trabajo, revista, volumen, número y fecha).