NOCIONES SOBRE LA ESTRUCTURA Y EVOLUCIÓN DEL SISTEMA NERVIOSO DE ALGUNOS INVERTEBRADOS

Autores/as

Resumen

Se describe la estructura general del sistema nervioso (SN) de algunos invertebrados, así como su conformación particular en algunos filos basales. Se estudia la estructura general de los mismos, comparándolas cuando es posible, y en algunos casos se aborda la anatomía e histología de órganos puntuales. Estos son de suma importancia para trazar la evolución del SN ya sea dentro de cada filo o entre los mismos. La anatomía e histología del SN de los invertebrados es muy dispar. Existen redes neurales difusas, ganglionadas o sistemas nerviosos centrales. Entre los últimos se presenta generalmente un cerebro anterior y dorsal, unido a una o más cuerdas nerviosas ventrales, macizas. Histológicamente poseen los cuerpos neuronales en la periferia de las masas nerviosas. A pesar de las diferencias entre ellos y con los vertebrados, y a través del análisis de estas estructuras y de los patrones de desarrollo se concluye que es probable que el origen de las neuronas, de la centralización y de la cefalización del SN hayan sido eventos únicos, aunque se admite que aún falta mucho para estudiar en este campo y no es posible aseverar nada en forma definitiva.

Palabras clave: Evolución morfológica, relaciones entre vertebrados e invertebrados, sistema nervioso.

Abstract

The general structure of the nervous system (SN) of complex invertebrates is described, as well as its particular conformation in some basal phyla. Their general conformation is studied, comparing them when possible, and in some cases the anatomy and histology of specific organs is addressed. These are of utmost importance to trace the evolution of the SN either within each phylum or be tween them. The anatomy and histology of the SN of invertebrates is very uneven among them. There are diffuse neural networks, ganglionic or central nervous systems. Among the latter there is generally a fore and dorsal brain, attached to one or more massive ventral nerve cords. Histologically, they have neuronal bodies on the periphery of nerve masses. Despite the differences between them and with vertebrates, and through the analysis of these structures and development patterns it is concluded that it is likely that the origin of neurons, centralization and cephalization of the SN have been unique events although it is admitted that there is still a long way to go to study in this field and it is not possible to affirm anything definitively.

Keywords: Invertebrates and vertebrates relationships, morphological evolution, nervous system.

* Autor para correspondencia: sergio.pablo.urquiza@unc.edu.ar

DOI: http://dx.doi.org/10.17268/rebiol.2021.41.02.11

Citas

Almudí, I., & Pascual-Anaya, J. (2019). How do morphological novelties evolve? Novel approaches to define novel morphologies. Old Questions and Young Approaches to Animal Evolution, 107-132.

Arendt D. (2021). Elementary nervous systems. Philosopical Transactions of Royal Society B, 376: 20200347.

Arendt, D. (2008). The evolution of cell types in animals: emerging principles from molecular studies. Nature Reviews Genetics, 9 (11), 868-882.

Arnellos, A., & Keijzer, F. (2019). Bodily complexity: Integrated multicellular organizations for contraction-based motility. Frontiers in physiology, (10), 1-17.

Beckers, P., Helm, C., & Bartolomaeus, T. (2019). The anatomy and development of the nervous system in Magelonidae (Annelida)–insights into the evolution of the annelid brain. BMC evolutionary biology, 19(1), 1-21.

Berzins, I. K., Yanong, R. P., LaDouceur, E. E., & Peters, E. C. (2021). Cnidaria. En: LaDouceur E.B. (Ed.) Invertebrate Histology, 55- 86. John Wiley & Sons, Inc.

Biserova, N. M., Gordeev, I. I., Korneva, J. V., & Salnikova, M. M. (2010). Structure of the glial cells in the nervous system of parasitic and free-living flatworms. Biology Bulletin, 37(3), 277-287.

Brunet, T. & Arendt, D. (2016). From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philosophical Transactions of the Royal Society B, 371 (1685),1-14.

Brunet, T.; Fischer, A. H.; Steinmetz, P. R.; Lauri, A.; Bertucci, P. & Arendt, D. 2016. The evolutionary origin of bilaterian smooth and striated myocytes. Elife, 5: e19607. DOI: 10.7554/eLife.19607

Brusca, R., Moore, W., Shuster, S. (2018). Invertebrados. 3a edição. Editora Guanabara-Koogan, Rio de Janeiro. 1010pp.

Budelmann, B. U. (1995). The cephalopod nervous system: what evolution has made of the molluscan design. En: Breidbach, O. & Kutsch, W. The nervous systems of invertebrates: An evolutionary and comparative approach, 115-138. Birkhäuser Basel.

Burkhardt, P., & Sprecher, S. G. (2017). Evolutionary origin of synapses and neurons–Bridging the gap. Bioessays, 39 (10),1700024.

Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy: evolution and adaptation. John Wiley & Sons.

Campbell, R. A., & Turner, G. C. (2010). The mushroom body. Current Biology, 20(1),11-12.

Cole, A. G., Kaul, S., Jahnel, S. M., Steger, J., Zimmerman, B., Reischl, Richards, G., Rentzsch, F., Steimetz, P., & Technau, U. (2020). Muscle cell type diversification facilitated by extensive gene duplications. bioRxiv.

Decraemer, W., Coomans, A., & Baldwin, J. (2013). Morphology of Nematoda. En; Schmidt-Rhaesa, A. (Ed.) Nematoda (V.2), 1- 60. De Gruyter.

Deryckere, A., & Seuntjens, E. (2018). The cephalopod large brain enigma: are conserved mechanisms of stem cell expansion the key? Frontiers in physiology, 9, 1160.

Faller, S., Rothe, B. H., Todt, C., Schmidt-Rhaesa, A., & Loesel, R. (2012). Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorphology, 131(2), 149-170.

Foelix, R. F. (2011). Biology of spiders. Oxford University Press, New York.

Gabella G: Autonomic Nervous System (2001) Encyclopedia of life sciences, Macmillan Publishers Ltd, Nature Publishing Group.

Garm, A., Poussart, Y., Parkefelt, L., Ekström, P., & Nilsson, D. E. (2007). The ring nerve of the box jellyfish Tripedalia cystophora. Cell and tissue research, 329(1), 147-157.

Genzano, G. N., Schiariti, A., & Mianzan, H. W. (2014). Cnidaria. Los Invertebrados Marinos. Fundación Félix de Azara, Buenos Aires, 67-85.

Giribet, G., & Edgecombe, G. D. (2020). The invertebrate tree of life. Princeton University Press.

Groh, C., & Rössler, W. (2020). Analysis of synaptic microcircuits in the mushroom bodies of the honeybee. Insects, 11(1), 43.

Gutnick, T., Shomrat, T., Mather, J. A., & Kuba, M. J. (2017). The cephalopod brain: Motion control, learning, and cognition. En: Saleuddin, S., & Mukai, S. (Eds.). Physiology of Molluscs 137-177. Apple Academic.

Hartenstein, V. (2017). The central nervous system of invertebrates. En: Sheperd, S (Ed.) The Wiley Handbook of Evolutionary Neuroscience. 173-235.

Harzsch, S., & Krieger, J. (2021). Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. Arthropod Structure & Development, 65, 101100.

Hejnol, A., & Rentzsch, F. (2015). Neural nets. Current Biology, 25(18), R782-R786.

Heuer, C. M., & Loesel, R. (2009). Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphology, 128(3), 219-226.

Heuer, C. M., Müller, C. H., Todt, C., & Loesel, R. (2010). Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Frontiers in zoology, 7(1), 1-21.

Hochner, B. (2010). Functional and comparative assessments of the octopus learning and memory system. Front. Biosci., (2), 764-771.

Hochner, B. (2013). How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs. Brain Behav. Evol., (82),19–30. doi: 10.1159/000353419.

Keijzer, F., & Arnellos, A. (2017). The animal sensorimotor organization: a challenge for the environmental complexity thesis. Biology & philosophy, 32(3), 421-441.

Koizumi, O., Hamada, S., Minobe, S., Hamaguchi-Hamada, K., Kurumata-Shigeto, M., Nakamura, M., & Namikawa, H. (2015). The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology, 118(2), 79-88.

Kristan Jr, W. B. (2016). Early evolution of neurons. Current Biology, 26(20), 949-954.

LaDouceur, E. (2021). Invertebrate Histology. John Wiley & Sons, Inc.

Lefebvre, L., Reader, S. M., & Boire, D. (2007). The evolution of encephalization. En: Kaas JH (ed): Evolution of Nervous Systems. New York, Academic Press, (1),121–141

Leon, A. (2019). ¿Cuándo apareció el sistema nervioso? Enfoque evolutivo en metazoos no vertebrados. REBIOL, 39(1), 50-55.

Loesel, R.; Wolf, H.; Kenning, M.; Harzsch, S. & Sombke, A. (2013). Architectural principles and evolution of the arthropod central nervous system. En: Minelli, A.; Boxshall, G. y Fusco, G. (eds.). Arthropod biology and evolution: molecules, development, morphology. Springer Science & Business Media.

Luo, L. (2016). Principles of neurobiology. Garland Science. United States of American.

Lüscher, C., & Petersen, C. (2013). The synapse. En: (Galizia C. G. y Lledo, P. M. Eds.). Neurosciences-From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg.

Martin, C., Gross, V., Hering, L., Tepper, B., Jahn, H., de Sena Oliveira, I., Stevenson, P. & Mayer, G. (2017). The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. Journal of Comparative Physiology A, 203(8), 565-590.

Martín-Durán, J. M., Pang, K., Børve, A., Lê, H. S., Furu, A., Cannon, J. T., Jondelius, U. & Hejnol, A. (2018). Convergent evolution of bilaterian nerve cords. Nature, 553(7686), 45-50.

Martínez, P., Hartenstein, V., & Sprecher, S. G. (2017). Xenacoelomorpha nervous systems. En: Sherman, M. (Ed.) Oxford Research Encyclopedia of Neuroscience. Oxford University Press, USA.

Mather, J. A., & Kuba, M. J. (2013). The cephalopod specialties: complex nervous system, learning, and cognition. Canadian Journal of Zoology, 91(6), 431-449.

Matheson, T. (2002). Invertebrate nervous systems. Encyclopedia of life sciences, Macmillan Publishers Ltd, Nature Publishing Group.

Mayer, G. (2016). Onycophora. Structure and Evolution of Invertebrate Nervous Systems. En: Schmidt-Rhaesa, A., Harzsch, S. y Purschke, G. (Eds.). Oxford University Press.

Maza, F. J., Sztarker, J., Cozzarin, M. E., Lepore, M. G., & Delorenzi, A. (2021). A crabs' high‐order brain center resolved as a mushroom body‐like structure. Journal of Comparative Neurology, 529(3), 501-523.

Meinertzhagen, I. A. (2010). The organisation of invertebrate brains: cells, synapses and circuits. Acta Zoologica, 91 (1), 64- 71.

Molnár, K., Kriska, G., & Lőw, P. (2021). Annelida. En: E.B. La Douceur (Ed.) Invertebrate Histology, 185-219. John Wiley & Sons, Inc.

Moroz, L. L. (2009). On the independent origins of complex brains and neurons. Brain, behavior and evolution, 74(3), 177-190.

Moroz, L. L., & Romanova, D. Y. (2021). Selective Advantages of Synapses in Evolution. Front. Cell Dev. Biol. 9: 726563.

Nation, J. L. (2016). Insect physiology and biochemistry. CRC press, Boca Raton.

Nesher, N., Levy, G., Zullo, L., & Hochner, B. (2020). Octopus Motor Control. En: Sherman, M. (Ed.) Oxford Research Encyclopedia of Neuroscience. Oxford University Press, USA.

Orrhage, L., & Müller, M. C. (2005). Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia, 535(1), 79- 111.

Pagán, O. R. (2019). The brain: a concept in flux. Philosophical Transactions of the Royal Society B, 374(1774), 20180383.

Pannese. E. (2015). Neurocytology. Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells. Springer International Publishing Switzerland.

Pfeiffer, K., & Homberg, U. (2014). Organization and functional roles of the central complex in the insect brain. Annual review of entomology, (59), 165-184.

Ponder, W. F., Lindberg, D. R., & Ponder, J. M. (2019). Biology and Evolution of the Mollusca. CRC Press.

Purschke (2016). Annelida. Basal groups and pleistoannelida. En: Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G. (Eds.) Structure and Evolution of Invertebrate Nervous Systems. Oxford University Press, 254-312.

Riebli, N., & Reichert, H. (2016). The first nervous system. The Wiley Handbook of Evolutionary Neuroscience, 125-152.

Rieger R. & Ladurner P. (2003). The Significance of Muscle Cells for the Origin of Mesoderm in Bilateria. Integrative and comparative biology, (43), 47-54.

Rogers S. Nervous system (2013). En: Simpson S.J. & Douglas A.E. (Eds.) The Insects: Structure and Function (5th edition), Cambridge University Press.

Roth, G. (2013). The long evolution of brains and minds. New York: Springer

Ryan, J. F., & Chiodin, M. (2015). Where is my mind? How sponges and placozoans may have lost neural cell types. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684) 20150059.

Satterlie, R. A. (2011). Do jellyfish have central nervous systems? Journal of Experimental Biology, 214(8), 1215-1223.

Schmidt-Rhaesa, A. (2007). The evolution of organ systems. Oxford University Press.

Seipel, K., & Schmid, V. (2005). Evolution of striated muscle: jellyfish and the origin of triploblasty. Developmental biology, 282(1), 14-26.

Shigeno S, Andrews P.L.R, Ponte, G. & Fiorito, G (2018). Cephalopod Brains: An overview of Current Knowledge to Facilitate Comparison With Vertebrates. Front. Physiol. 9:952. doi:10.3389/fphys.2018.00952

Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457(7231), 818-823.

Sinakevitch, I., Long, S. M., & Gronenberg, W. (2020). The central nervous system of whip spiders (Amblypygi): large mushroom bodies receive olfactory and visual input. Journal of Comparative Neurology, 529(7), 1642-1658.

Slater, M. H. (2013). Cell types as natural kinds. Biological Theory, 7 (2), 170-179.

Sombke, A. y Rosemberg, J. (2016) Myriapoda. Structure and Evolution of Invertebrate Nervous Systems. En: SchmidtRhaesa, A., Harzsch, S. y Purschke, G. (Eds.) Oxford University Press 2016.

Sombke, A., Rosenberg, J. & Hilken, G. (2011) Chilopoda – the nervous system En: Minelli, A. (Ed.) The myriapoda. A Treatise on zoology – anatomy, taxonomy, biology

Steinmetz, P. R., Kraus, J. E., Larroux, C., Hammel, J. U., AmonHassenzahl, A., Houliston, E., Wörheide, G., Nickel, M., Degnan, B., & Technau, U. (2012). Independent evolution of striated muscles in cnidarians and bilaterians. Nature, 487(7406), 231-234.

Strausfeld, N. J. (2018). The divergent evolution of arthropod brains: Ground pattern organization and stability through geological time. En: Byrne, J. H. (Ed.) The Oxford Handbook of Invertebrate Neurobiology New York, NY: Oxford University Press. 31-68.

Strausfeld, N. J., & Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science, 340(6129), 157-161.

Strausfeld, N. J., Hansen, L., Li, Y., Gomez, R. S., & Ito, K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning & memory, 5(1), 11-37.

Sumner‐Rooney, L., & Sigwart, J. D. (2018). Do chitons have a brain? New evidence for diversity and complexity in the polyplacophoran central nervous system. Journal of morphology, 279(7), 936-949.

Takahashi, T. (2020). Comparative aspects of structure and function of Cnidarian neuropeptides. Frontiers in endocrinology, 11, 339.

Tsubouchi, A., Yano, T., Yokoyama, T., Murtin, C., Otsuna, H. & Ito, K. (2017). Topological and modality-specific representation of somatosensory information in the fly brain. Science, 358(6363), 615–623.

Urquiza, S. P. & Carezzano, F. J. (2018). Morfología Animal. Tomo I. Editorial Sima, Córdoba. 160 pp.

Urquiza, S. P. & Carezzano, F. J. (2019). Morfología Animal. Tomo II. Editorial Sima, Córdoba. 180 pp.

Urquiza-Bardone, S. P., & Carezzano, F. J. (2013). Las uniones celulares y la emergencia de los animales. The Biologist (Lima), 11(2).

Weir, K., Dupre, C., van Giesen, L., Lee, A. S., & Bellono, N. W. (2020). A molecular filter for the cnidarian stinging response. Elife, 9, e57578.

Wolff, G. H., & Strausfeld, N. J. (2015). Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology, 25 (1), 38-44.

Young, J.Z. (1971). The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford.

Descargas

Publicado

2021-11-30

Cómo citar

Urquiza, S. P. (2021). NOCIONES SOBRE LA ESTRUCTURA Y EVOLUCIÓN DEL SISTEMA NERVIOSO DE ALGUNOS INVERTEBRADOS. REBIOL, 41(2), 256-276. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/4060

Número

Sección

ARTÍCULOS DE REVISIÓN / OPINIÓN