POTENCIAL BIOFERTILIZANTE DE RIZOBACTERIAS ASOCIADAS A CULTIVOS AMAZÓNICOS DE IMPORTANCIA ECONÓMICA

Autores/as

Resumen

La rizósfera de los cultivos vegetales posee una gran diversidad microbiana, sobresaliendo la población de bacterias que viven en asociación
con las plantas y participan de la nutrición vegetal. Se evaluó el potencial biofertilizante de bacterias nativas aisladas del suelo rizosférico
de ocho especies vegetales de importancia económica de las provincias de Bagua y Utcubamba, región Amazonas, Perú. Los criterios de
selección fueron, la capacidad solubilizadora de fosfatos, la producción de ácido indol acético y la capacidad de fijación biológica de
nitrógeno (FBN), además de cuantificar las bacterias diazotróficas presentes en la rizósfera de cada especie vegetal estudiada. Se colectaron
muestras de suelo rizosférico de 57 parcelas ubicadas entre los 385 a 1677 m.s.n.m., mediante siembra directa, se aislaron bacterias, se
purificaron y se determinó su grupo funcional. Los suelos estudiados fueron de textura franco-arenosa y franco-limosa principalmente con
valores de pH entre 3,30 y 8,09. Se obtuvo 235 aislamientos de bacterias nativas del rizoplano de plantas de cacao, café, piña, plátano,
papaya, yuca, yacón y arroz y se seleccionaron 16 de estos cultivos pertenecientes a cuatro especies vegetales. La rizósfera de los cultivos
de café posee la mayor cantidad de bacterias fijadoras asimbióticas de nitrógeno, el cacao y el yacón destacan por las bacterias productoras
de ácido indol acético, y el café y papaya, por los solubilizadores de fosfatos. Es importante investigar las poblaciones rizósféricas nativas
de estos cuatro cultivos vegetales para aislar y seleccionar bacterias con potencial biofertilizante.

Palabras clave: Cultivos amazónicos, fijadores de nitrógeno, productores de ácido indol acético, solubilizadores de fosfatos.

 

Abstract

The biofertilizer potential of native bacteria isolated from the rhizospheric soil of eight plant species of economic importance from the
Bagua and Utcubamba provinces, Amazonas region, Peru, was evaluated. The selection criteria were the solubilizing capacity of phosphates,
the production of indole acetic acid and the asymbiotic fixation of atmospheric nitrogen, in addition to quantifying the diazotrophic bacteria
present in each plant species studied. 57 plots located between 385 to 1677 m.a.s.l. were sampled, obtaining 235 isolates of native rhizoplane
bacteria from cocoa, coffee, pineapple, banana, papaya, yucca, yacon and rice plants. The sampled soils were mainly loamy-sandy and
loamy-loamy, with a variable pH between 3.30 and 8.09. Sixteen bacterial cultures of four plant species with biofertilizer potential were
selected, finding that the rhizosphere of coffee crops has the highest amount of asbiotic nitrogen fixing bacteria, cocoa and yacon stand
out for hosting excellent producers of indole acetic acid coffee and papaya crops, excellent phosphate solubilizers were isolated. In order
to replace the use of chemical fertilizers, it is important to investigate the native rhizospheric populations of these four economically
important Amazonian crops in search of native bacteria with biofertilizer potential to mitigate the consequences to the environment.

Keywords: Amazonian crops, Biofertilizer potential, plant growth-promoting rhizobacteria.

*Autor para correspondencia: E. mail: jalvarado@unibagua.edu.pe

DOI: http://dx.doi.org/10.17268/rebiol.2021.41.02.01

Citas

Afa, M., Sadimantara, G., Rahni, N., & Sutariati, G. (2020). Isolation & Characterization Of Rhizobacteria From Local Shallots Rhizosphere As Promoting Growth Of Shallot (Allium Ascalonicum L.). 9(03), 6.

Agriculture, U. S. (2019). Soil Survey Field and Laboratory Methods Manual-Soil Survey Investigations Report No. 51 (Version 2) Issued 2014.

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1-20.

Alori, E., Glick, B., & Babalola, O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971

Andrade, L., de Souza, G., Nietsche, S., Xavier, A., Costa, M., Cardoso, A., Pereira, M., & Pereira, D. (2014). Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology (Seoul, Korea), 52(1), 27-34.

Argüello Navarro, A., Madiedo Soler, N., & Moreno Rozo, L. (2016). Cuantificación de bacterias diazótrofas aisladas de suelos cacaoteros (Theobroma cacao L.), por la técnica de Número Más Probable (NMP). Revista Colombiana de Biotecnología, 18(2), 40-47.

Banerjee, A., Bareh, D., & Joshi, S. (2017). Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. Journal of Soil Science and Plant Nutrition, ahead, 17(1), 127-140.

Barbosa, A., Cannavan, F., Navarrete, A., Teixeira, W., Kuramae, E., & Tsai, S. (2015). Amazonian Dark Earth and Plant Species from the Amazon Region Contribute to Shape Rhizosphere Bacterial Communities. Microbial Ecology, 69(4), 855-866.

Basu, A., Prasad, P., Das, S., Kalam, S., Sayyed, R., Reddy, M., & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140.

Bello, O., García, J., & Cuervo, W. (2015). Cuantificación de diazótrofos en la rizósfera del olivo (Olea europaea L.) cultivado en Boyacá, Colombia. Acta Agronómica, 65(2), 109-115.

Bhat, M., Kumar, V., Bhat, M., Wani, I., Dar, F., Farooq, I., Bhatti, F., Koser, R., Rahman, S., & Jan, A. (2020). Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Frontiers in Microbiology, 11, 1-20.

Bouyoucos, G. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agronomy Journal, 54(5), 464-465.

Cadena, S., & Martínez, B. (2020). Caracterización de cepas nativas de Pseudomonas spp. Y su efecto en_x000D_ la germinación y emergencia de Zea mays L. «maíz» en Lambayeque. [Tesis de Bachiller, Universidad Nacional Pedro Ruiz Gallo].

Cárdenas, D., Ramírez, L., & Moreno, L. (2013). Caracterización de actividades promotoras del crecimiento vegetal por rizobacterias y su efecto en cultivo de cilantro (Coriandrum sativum L.). Ecoe: Universidad Francisco de Paula Santander.

Cardenas, M., & Eduardo, M. (2007). Evaluación de la acción de un bioinoculante sobre un cultivo de crisantemo (Chrysanthemun morifolium var. Yoko ono) en período de enraizamiento. [Tesis título, Universidad Nacional Javeriana].

Chen, C., Zhang, J., Lu, M., Qin, C., Chen, Y., Yang, L., Huang, Q., Wang, J., Shen, Z., & Shen, Q. (2016). Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils, 52(4), 455-467.

Cordero, I., Ruiz-Díez, B., Balaguer, L., Richter, A., Pueyo, J., & Rincón, A. (2017). Rhizospheric microbial community of Caesalpinia spinosa (Mol.) Kuntze in conserved and deforested zones of the Atiquipa fog forest in Peru. Applied Soil Ecology, 114, 132-141.

Curi, M., Jiménez, V., & Ibarra, J.(2019). Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizosfera de Coffea spp. En Pichanaqui, Perú. Biotecnología Vegetal, 19(4), 285-295.

De Souza, R., Beneduzi, A., Ambrosini, A., da Costa, P., Meyer, J., Vargas, L., Schoenfeld, R., & Passaglia, L. M. (2013). The effect of plant growthpromoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and Soil, 366(1-2), 585-603.

Döbereiner, J., Baldani, V., & Baldani, J. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa SPI.

Duval, M., Capurro, J., Galantini, J., & Andriani, J. (2015). Utilización de cultivos de cobertura en monocultivo de soja: Efectos sobre el balance hídrico y orgánico. Cienc Scielo 33(2, 247-261).

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N., Bhatnagar, S., Eisen, J., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8), E911-E920.

Etesami, H., & Adl, S. (2020). Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. En M. Kumar, V. Kumar, & R. Prasad (Eds.), Phyto-Microbiome in Stress Regulation (pp. 147-203). Springer.

Fanin, N., Hättenschwiler, S., Schimann, H., & Fromin, N. (2015). Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest. Functional Ecology, 29(1), 140-150.

Fatawi, A., Pujiasmanto, B., Komariah, Zaki, M., & Noda, K. (2021). Application of organic amendments and PGPR on Salibu Rice yield for drought adaptation. IOP Conference Series: Earth and Environmental Science, 824(1), 012079.

Fernández-Ojeda, P., Acevedo, D., Villanueva-Morales, A., Uribe-Gómez, M., Fernández-Ojeda, P., Acevedo, D., Villanueva-Morales, A., & Uribe-Gómez, M. (2016). State of the essential chemical elements in the soils of natural, agroforestry and monoculture systems. Revista Mexicana de Ciencias Forestales, 7(35), 65-77.

Ferreira, L. de V. M., Carvalho, F. de, Andrade, J., & Moreira, F. de S. (2018). Growth promotion of common bean and genetic diversity of bacteria from Amazon pastureland. Scientia Agricola, 75(6), 461-469.

García, F., Muñoz, H., Carreño, C., & Mendoza, G. (2010). Characterization of native strains of Azospirillum spp. And its effect on growth of Oryza sativa L. “rice” in Lambayeque. Scientia agropecuaria, 107-116.

Giraldo, M., Ramírez J., Galán, A., & Naciones Unidas (Eds.). (2013). Amazonia posible y sostenible. Naciones Unidas.

Habibi, S., Djedidi, S., Ohkama-Ohtsu, N., Sarhadi, W., Kojima, K., Rallos, R., Ramirez, M., Yamaya, H., Sekimoto, H., & Yokoyama, T. (2019). Isolation and Screening of Indigenous Plant Growth-promoting Rhizobacteria from Different Rice Cultivars in Afghanistan Soils. Microbes and Environments, 34(4), 347-355.

Hernández-Rodríguez, A., Rives-Rodríguez, N., Acebo-Guerrero, Y., Diazde la Osa, A., Heydrich-Pérez, M., & Divan Baldani, V. (2014). Potencialidades de las bacterias diazotróficas asociativas en la promoción del crecimiento vegetal y el control de Pyricularia oryzae (Sacc.) en el cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal, 29(1), 1-10.

Jones, D., & Oburger, E. (2011). Solubilization of Phosphorus by Soil Microorganisms. En Phosphorus in Action (Vol. 26, pp. 169-198).

Kalyanasundaram, G., Syed, N., & Subburamu, K. (2021). Chapter 17- Recent developments in plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. En B. Viswanath (Ed.), Recent Developments in Applied Microbiology and Biochemistry (pp. 181- 192). Academic Press.

Karagoz, K., ateş, F., Karagöz, H., & Çakmakçı, R. (2012). Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. European Journal of Soil Biology, 50, 144-150.

Kaschuk, G., & Hungria, M. (2017). Diversity and Importance of Diazotrophic Bacteria to Agricultural Sustainability in the Tropics. En Diversity and Benefits of Microorganisms from the Tropics (pp. 269- 292).

Khan, M., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. (2010). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98.

Koua, S., N’golo, D., Alloue-Boraud, W., Konan, F., & Dje, K. (2020). Bacillus subtilis Strains Isolated from Cocoa Trees (Theobroma cacao L.) Rhizosphere for their use as Potential Plant Growth Promoting Rhizobacteria in Côte d’Ivoire. Current Microbiology, 77(9), 2258- 2264.

Landeros-Sánchez, C., Moreno-Seceña, J., Nikolskii, I., & BakhlaevaEgorova, O. (2011). Impacto de la agricultura sobre la biodiversidad (pp. 477-491).

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLOS ONE, 14(5), e0217018.

López-Ortega, M., Criollo-Campos, P., Gómez-Vargas, R., CameloRunsinque, M., Estrada-Bonilla, G., Garrido-Rubiano, M., & BonillaBuitrago, R. (2013). Characterization of diazotrophic phosphate solubilizing bacteria as growth promoters of maize plants. Revista Colombiana de Biotecnología, 15(2), 115-123.

Magalhães, N. dos S., Marenco, R., & Camargo, M. (2014). Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings? Scientia Agricola, 71(1), 58-65.

Medina, J., Chimal, C., Gómez, L., & Aguilar, J. (2014). Aislados bacterianos con potencial biofertilizante para plántulas de tomate. Terra latinoamericana, 32: 273-281.

Moreno, L., & Galvis, F. (2013). Potencial biofertilizante de bacterias diazótrofas aisladas de muestras de suelo rizosférico. Pastos y Forrajes, 36(1), 33-37.

Moreno, A., García, V., Reyes, J., Vásquez, J., & Cano, P. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83.

Muleta, D., Assefa, F., Börjesson, E., & Granhall, U. (2013). Phosphatesolubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 12(1), 73-84.

Myrold, D., Zeglin, L., & Jansson, J. (2014). The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 78(1), 3-10.

Nehra, V., Saharan, B., & Choudhary, M. (2016). Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. SpringerPlus, 5(1), 948.

Ogata-Gutiérrez, K., Chumpitaz-Segovia, C., Lirio-Paredes, J., Finetti-Sialer, M., & Zúñiga-Dávila, D. (2017). Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. World Journal of Microbiology and Biotechnology, 33(11), 203.

Panhwar, Q., Naher, U., Jusop, S., Othman, R., Latif, M., & Ismail, M. (2014). Biochemical and Molecular Characterization of Potential PhosphateSolubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth. PLOS ONE, 9(10), e97241.

Patel, J., Yadav, S., Bajpai, R., Teli, B., & Rashid, M. (2020). PGPR secondary metabolites: An active syrup for improvement of plant health. En Molecular Aspects of Plant Beneficial Microbes in Agriculture (pp. 195- 208). Elsevier.

Pii, Y., Borruso, L., Brusetti, L., Crecchio, C., Cesco, S., & Mimmo, T. (2016). The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiology and Biochemistry, 99, 39-48.

Quesada, C., Lloyd, J., Anderson, L., Fyllas, N., Schwarz, M., & Czimczik, C. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8(6), 1415-1440.

Rahman, S., Siddique, R., & Tabassum, N. (2017). Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Research Notes, 10(1), 531.

Rengel, Z., & Marschner, P. (2005). Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. The New Phytologist, 168(2), 305-312.

Reyes, I., Valery, A., & Valduz, Z. (2006). Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant and Soil, 287(1),

Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. En K. R. Hakeem, G. H. Dar, M. A. Mehmood, & R. A. Bhat (Eds.), Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health (pp. 181-196). Springer International Publishing.

Ríos-Ruiz, W., Torres-Chávez, E., Torres-Delgado, J., Rojas-García, J., Bedmar, E., & Valdez-Nuñez, R. (2020). Inoculation of bacterial consortium increases rice yield (Oryza sativa L.) reducing applications of nitrogen fertilizer in San Martin region, Peru. Rhizosphere, 14, 100200.

Sahoo, R., Ansari, M., Dangar, T., Mohanty, S., & Tuteja, N. (2014). Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma, 251(3), 511-523.

Salazar-Henao, J., Vélez-Bermúdez, I., & Schmidt, W. (2016). The regulation and plasticity of root hair patterning and morphogenesis. Development, 143(11), 1848-1858.

Santana-Aragone, D., Colina-Navarrete, E., Castro-Arteaga, C., CadenaPiedrahita, D., Sotomayor-Morán, A., Galarza- Centeno, E., & LópezVillacré, M. (2017). Microorganismos Fijadores De Nitrógeno Y Su Acción Complementaria A La Fertilización Química En El Cultivos De Coffea arabica L. European Scientific Journal, 13(3), 211-222.

Shin, W., Islam, Md. R., Benson, A., Joe, M., Kim, K., Gopal, S., Samaddar, S., Banerjee, S., & Sa, T. (2016). Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. Korean Journal of Soil Science and Fertilizer, 49, 17-29.

Sosa, M., Ruiz, E., Tun, J., Pinzón, L., & Reyes, A. (2019). Germinación, crecimiento y producción de glucanasas en Capsicum chinense Jacq. Inoculadas con Bacillus spp. Ecosistemas y Recursos Agropecuarios, 6(16), 137-146.

Souza, R. de, Ambrosini, A., & Passaglia, L. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401-419.

Sutariati, G., Rahni, N., Madiki, A., Mudi, L., & Fua, J. (2020). Isolation And Viability Test Of Seed Incorporated By Indigenous Rhizobacteria From Areca Nut As Plant Growth Promoting Rhizobacteria (PGPR). 9(01), 5: 3435-3439.

Tang, A., Haruna, A., Majid, N. Ab., & Jalloh, M. (2020). Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate- Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms, 8(3), 442.

Teng, Z., Chen, Z., Zhang, Q., Yao, Y., Song, M., & Li, M. (2019). Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environmental Science and Pollution Research, 26(33), 33976-33987.

Urgiles-Gómez, N., Avila-Salem, M., Loján, P., Encalada, M., Hurtado, L., Araujo, S., Collahuazo, Y., Guachanamá, J., Poma, N., Granda, K., Robles, A., Senés, C., & Cornejo, P. (2021). Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application. Agronomy, 11(8), 1531.

Vanegas, J., Flórez-Zapata, N., & Uribe-Vélez, D. (2012). Bioprospección de microorganismos promotores de crecimiento vegetal para su aplicación en el cultivo de arroz (pp. 151-178).

Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S., & Zhao, X. (2017). Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Scientific Reports, 7(1), 343.

Zheng, B., Zhang, D., Wang, Y., Hao, X., Wadaan, M., Hozzein, W., Peñuelas, J., Zhu, Y., & Yang, X. (2019). Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Scientific Reports, 9:25.

Descargas

Publicado

2021-11-24

Cómo citar

Alvarado Ibáñez, J. C., Mostacero León, J., & Gutiérrez Araujo, M. (2021). POTENCIAL BIOFERTILIZANTE DE RIZOBACTERIAS ASOCIADAS A CULTIVOS AMAZÓNICOS DE IMPORTANCIA ECONÓMICA. REBIOL, 41(2), 156-166. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/4018