EFECTO DE BACTERIAS PROBIÓTICAS EN LA SUPERVIVENCIA DE LARVAS DE Argopecten purpuratus FRENTE AL DESAFÍO DE Vibrio anguillarum y Aeromonas salmonicida

Autores/as

  • Ángel Pablo Castro Alvarado Facultad de Ciencias, Universidad Nacional del Santa, Perú. Av. Universitaria s/n. Ciudad Universitaria, Urbanización Bellamar, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0002-5984-0587
  • Álvaro Edmundo Tresierra Aguilar Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0000-0001-8611-7426
  • José Manuel Villanueva Carlos Facultad de Ciencias, Universidad Nacional del Santa, Perú. Av. Universitaria s/n. Ciudad Universitaria, Urbanización Bellamar, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0002-5056-0001

Resumen

El objetivo fue evaluar el efecto de bacterias probióticas provenientes del intestino de Argopecten purpuratus en el desafío de bacterias patógenas Vibrio anguillarum y Aeromonas salmonicida en larvas de Argopecten purpuratus. Se aislaron 30 cultivos microbianos del intestino de A. purpuratus adultos de los cuales 12 presentaron acción inhibitoria. Se seleccionaron cinco bacterias con acción antagonista para ambas bacterias patógenas in vitro. La evaluación se realizó mediante sobrecapa con la bacteria patógena. Después de 24 horas de adición de cinco bacterias candidatas a probióticos en las larvas, por separado se desafío con las bacterias patógenas. ANOVA de dos factores indica que los tratamientos son estadísticamente diferentes (p<0,05) para V. anguillarum y para A. salmonicida. Los probióticos rotulados como Prob A y Prob B redujeron la mortalidad larval por las bacterias patógenas. El Prob A, a 106 células/mL al cabo de 72 horas redujo a 29,88% cuando fue desafiado con A. salmonicida y 34,86% con V. anguillarum; en cambio, el Prob B a 106 células/mL redujo 47,83% cuando fue desafiado con A. salmonicida y 61,08% con V. anguillarum en comparación con el control. Se identificó molecularmente a Prob A como Pseudomonas stuzeri y Prob B como Bacillus sp.

Palabras clave: Argopecten purpuratus, probióticos, desafío larval.

Abstract

The objective was to evaluate the effect of probiotic bacteria from the intestine of Argopecten purpuratus in the challenge of pathogenic bacteria Vibrio anguillarum and Aeromonas salmonicida in larvae of Argopecten purpuratus. Thirty microbial cultures were isolated from the intestine of adult A. purpuratus, of which 12 showed inhibitory action. Five bacteria with antagonistic action were selected for both pathogenic bacteria in vitro. The evaluation was carried out by overcoating with the pathogenic bacteria. After 24 hours of addition of five candidate bacteria to probiotics in the larvae, they were separately challenged with the pathogenic bacteria. Two-factor ANOVA indicates that the treatments are statistically different (p<0.05) for V. anguillarum and for A. salmonicida. Probiotics labeled Prob A and Prob B reduced larval mortality from pathogenic bacteria. Prob A, at 106 cells/mL after 72 hours, reduced to 29.88% when challenged with A. salmonicida and 34.86% with V. anguillarum; In contrast, Prob B at 106 cells /mL reduced 47.83% when challenged with A. salmonicida and 61.08% with V. anguillarum compared to the control. Prob A was molecularly identified as Pseudomonas stuzeri and Prob B as Bacillus sp.

Keywords: Argopecten purpuratus, probiotics, larval challenge

* Autor para correspondencia: E. mail: acastro@uns.edu.pe

DOI: http://dx.doi.org/10.17268/rebiol.2021.41.01.13

Citas

Abasolo-Pacheco, F., Campa-Córdova, Á. I., Mazón-Suástegui, J. M., Tovar-Ramírez, D., Araya, R., & Saucedo, P. E. (2017). Enhancing growth and resistance to Vibrio alginolyticus disease in catarina scallop (Argopecten ventricosus) with Bacillus and Lactobacillus probiotic strains during early development. Aquaculture Research, 48(9), 4597–4607.

ADEX. (s.f.). Retrieved July 31, 2020, from https://www.adexperu.org.pe/notadeprensa/exportacion-de-pesca-para-chd-crece-27-9-el-2018/

Azéma, P., Travers, M.-A., Benabdelmouna, A., & Dégremont, L. (2016). Single or dual experimental infections with Vibrio aestuarianus and OsHV-1 in diploid and triploid Crassostrea gigas at the spat, juvenile and adult stages. Journal of Invertebrate Pathology, 139, 92–101.

De la Fuente, M., & Fúandez, V. (2019). Evaluación in vitro de bacterias marinas para potencial biocontrol en cultivo de moluscos bivalvos. Revista de Biologia Marina y Oceanografia, 54(3), 272–282.

De Silva, B. C. J., Hossain, S., Dahanayake, P. S., & Heo, G. J. (2019). Aeromonas spp. from marketed Yesso scallop (Patinopecten yessoensis): molecular characterization, phylogenetic analysis, virulence properties and antimicrobial susceptibility. Journal of Applied Microbiology, 126(1), 288–299.

Escamilla-Montes, R., Luna-González, A., Flores-Miranda, M. del C., Álvarez-Ruiz, P., Fierro-Coronado, J. A., Sánchez-Ortiz, A. C., & Ávila-Leal, J. (2015). Isolation and characterization of potential probiotic bacteria suitable for mollusk larvae cultures. Thai Journal of Veterinary Medicine, 45(1), 11–21.

Gao, X.-Y., Liu, Y., Miao, L.-L., Li, E.-W., Hou, T.-T., & Liu, Z.-P. (2017). Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2, and characterization of the active substance. AMB Express, 7(1), 23.

Gao, X., Zhang, M., Li, X., Han, Y., Wu, F., & Liu, Y. (2018). Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish & Shellfish Immunology, 76, 143–152.

Gaspar, C., Donders, G. G., Palmeira-de-Oliveira, R., Queiroz, J. A., Tomaz, C., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, A. (2018). Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Express, 8(1), 153.

Giri, S. S., Jun, J. W., Yun, S., Kim, H. J., Kim, S. G., Kim, S. W., Woo, K. J., Han, S. J., Oh, W. T., Kwon, J., Sukumaran, V., & Park, S. C. (2020). Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture, 514, 734489.

Glover, T., & Mitchell, K. (2016). An Introduction to Biostastic (I. Waveland Press (Ed.); Third Edit).

Gutiérrez, M., Jaúregui, A., Barros, A., & Ruiz, J. (2017). Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos. Revista Mutis, 7.

Hardi, E. H., Kusuma, I. W., Suwinarti, W., Saptiani, G., & Agustina. (2016). Antagonistic activity of extra cellular product and component bacteria of Pseudomonas sp. against Aeromonas hydrophila from tilapia aquaculture in East Borneo. AIP Conference Proceedings, 1755(1), 130001.

Hoque, F., Jawahar Abraham, T., Nagesh, T. S., & Kamilya, D. (2019). Pseudomonas aeruginosa FARP(72) Offers Protection Against Aeromonas hydrophila Infection in Labeo rohita. Probiotics and Antimicrobial Proteins, 11(3), 973–980.

Kesarcodi-Watson, A., Miner, P., Nicolas, J.-L., Asmani, K., & Robert, R. (2016). Pathogenic threats and probiotic use in larviculture of the scallop, Pecten maximus. Aquaculture Research, 47(4), 1221–1230.

Kluger, L. C., Taylor, M. H., Wolff, M., Stotz, W., & Mendo, J. (2019). From an open-access fishery to a regulated aquaculture business: the case of the most important Latin American bay scallop (Argopecten purpuratus). In Reviews in Aquaculture (Vol. 11, Issue 1, pp. 187–203).

Knipe, H., Temperton, B., Lange, A., Bass, D., & Tyler, C. R. (2021). Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture, 13(1), 324–352.

Kuebutornye, F. K. A., Abarike, E. D., Lu, Y., Hlordzi, V., Sakyi, M. E., Afriyie, G., Wang, Z., Li, Y., & Xie, C. X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry, 46(3), 819–841.

Kuk-Dzul, J., & Diaz, V. (2016). The Relationship between Mollusks and Oxygen Concentrations in Todos Santos Bay, Baja California, Mexico. Journal of Marine Biology, 2016, 1–10.

Lauzon, H. L., Dimitroglou, A., Merrifield, D. L., Ringø, E., & Davies, S. J. (2014). Probiotics and Prebiotics: Concepts, Definitions and History. In Aquaculture Nutrition (pp. 169–184).

León, J., Aponte, J. J., Cuadra, D., Galindo, N., Jaramillo, L., Vallejo, M., & Marguet, E. (2016). Actinomicetos aislados de Argopecten purpuratus productores de enzimas extracelulares y con actividad inhibitoria de patógenos marinos. Revista de Biologia Marina y Oceanografia y Oceanografía, 51(1), 69–80.

Panda, S. H., Goli, J. K., Das, S., & Mohanty, N. (2017). Production, optimization and probiotic characterization of potential lactic acid bacteria producing siderophores. AIMS Microbiology, 3(1), 88–107.

Pellon, F., Orozco, R., & León, J. (2014). Bacterias marinas con capacidad antimicrobiana aisladas de moluscos bivalvos en cultivos. Revista Peruana de Biología, 8(2), 159–170. https://doi.org/10.15381/rpb.v8i2.6718

Qi, X., Xue, M., Cui, H., Yang, K., Song, K., Zha, J., Wang, G., & Ling, F. (2020). Antimicrobial activity of Pseudomonas monteilii JK-1 isolated from fish gut and its major metabolite, 1-hydroxyphenazine, against Aeromonas hydrophila. Aquaculture, 526, 735366.

Rasmussen-Ivey, C. R., Hossain, M. J., Odom, S. E., Terhune, J. S., Hemstreet, W. G., Shoemaker, C. A., Zhang, D., Xu, D.-H., Griffin, M. J., Liu, Y.-J., Figueras, M. J., Santos, S. R., Newton, J. C., & Liles, M. R. (2016). Classification of a Hypervirulent Aeromonas hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes. Frontiers in Microbiology, 7, 1615.

Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 1–27.

Ringø, E., Zhou, Z., Vecino, J. L. G., Wadsworth, S., Romero, J., Krogdahl, Å., Olsen, R. E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H. L., Martinsen, L. L., De Schryver, P., Bossier, P., Sperstad, S., & Merrifield, D. L. (2016). Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutrition, 22(2), 219–282.

Robson, A. A., Halsey, L. G., & Chauvaud, L. (2016). Feet, heat and scallops: what is the cost of anthropogenic disturbance in bivalve aquaculture? Royal Society Open Science, 3(3), 150679.

Rojas, I., Cárcamo, C., Stambuk, F., Mercado, L., Rojas, R., Schmitt, P., & Brokordt, K. (2021). Expression of immune-related genes during early development of the scallop Argopecten purpuratus after Vibrio splendidus challenge. Aquaculture, 533, 736132.

Rojas, R., Miranda, C. D., Romero, J., Barja, J. L., & Dubert, J. (2019). Isolation and pathogenic characterization of Vibrio bivalvicida associated with a massive larval mortality event in a commercial hatchery of scallop Argopecten purpuratusin Chile. Frontiers in Microbiology, 10(MAY).

Smith, C. (2017). Comparación de especies de Vibrio asociadas a la semilla de Argopecten purpuratus (Lamarck, 1819) proveniente de cultivo controlado y del medio natural. Tesis de maestria, Universidad Peruana Cayetana Heredia.

Sohn, S., Lundgren, K., Tammi, K., Smolowitz, R., Nelson, D., Rowley, D., & Gomez-Chiarri, M. (2016). Efficacy of Probiotics in Preventing Vibriosis in the Larviculture of Different Species of Bivalve Shellfish. Journal of Shellfish Research, 35, 319–328.

Tan, L. T. H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Streptomyces bacteria as potential probiotics in aquaculture. In Frontiers in Microbiology (Vol. 7, Issue FEB).

Vadassery, D. H., & Pillai, D. (2020). Quorum quenching potential of Enterococcus faecium QQ12 isolated from gastrointestinal tract of Oreochromis niloticus and its application as a probiotic for the control of Aeromonas hydrophila infection in goldfish Carassius auratus (Linnaeus 1758). Brazilian Journal of Microbiology, 51(3), 1333–1343.

Wanka, K. M., Damerau, T., Costas, B., Krueger, A., Schulz, C., & Wuertz, S. (2018). Isolation and characterization of native probiotics for fish farming. BMC Microbiology, 18(1), 119.

White, M. M., McCorkle, D. C., Mullineaux, L. S., & Cohen, A. L. (2013). Early exposure of bay scallops (Argopecten irradians) to high CO₂ causes a decrease in larval shell growth. PloS One, 8(4), e61065.

Zhou, S., Xia, Y., Zhu, C., & Chu, W. (2018). Isolation of Marine Bacillus sp. with Antagonistic and Organic-Substances-Degrading Activities and Its Potential Application as a Fish Probiotic. Marine Drugs, 16(6).

Descargas

Publicado

2021-07-02

Cómo citar

Castro Alvarado, Ángel P., Tresierra Aguilar, Álvaro E., & Villanueva Carlos, J. M. (2021). EFECTO DE BACTERIAS PROBIÓTICAS EN LA SUPERVIVENCIA DE LARVAS DE Argopecten purpuratus FRENTE AL DESAFÍO DE Vibrio anguillarum y Aeromonas salmonicida. REBIOL, 41(1), 127-135. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/3614