DESARROLLO DE UN SISTEMA DE DETECCIÓN DE OCRATOXINA A BASADO EN NANOSENSORES APTAMÉRICOS EN MICROPLACAS

Autores/as

Resumen

La ocratoxina A (OTA) es una micotoxina altamente tóxica producida por algunas variedades de hongos, capaz de contaminar productos agroindustriales, lo que ha obligado a establecer normas de regulación en varios países. Por tal motivo, es necesario contar con métodos confiables y sensibles para su detección temprana, que puedan ser utilizados de manera rutinaria. Los nanosensores aptaméricos representan una alternativa que puede mejorar la detección de moléculas de interés, debido a la alta afinidad y selectividad de los biorreceptores aptaméricos por objetivos específicos. Además, el uso de nanomateriales de metales nobles permite desarrollar sensores a partir de sus propiedades ópticas, como la resonancia de plasmón superficial localizado (LSPR), al poder monitorear los cambios en la superficie y relacionarlo con la concentración de una sustancia de interés. En este trabajo se muestran los avances en el desarrollo de un sistema alternativo de detección de OTA basado en nanosensores aptaméricos. El procedimiento contempla la síntesis y funcionalización de nanoesferas de oro (AuNEs) con un aptámero selectivo a OTA (APT), el proceso de modificación de microplacas con la hebra complementaria a dicho aptámero (HC) y la hibridación entre los oligonucleótidos conjugados. Finalmente, a modo de prueba de concepto, se realizaron algunas pruebas que permitieron discriminar la presencia de 336 ppb de OTA.

Palabras clave: Aptámeros, micotoxinas, microplacas, nanosensores, ocratoxina A, oro.

Abstract

Ochratoxin A (OTA) is a highly toxic mycotoxin produced by some varieties of fungi, capable of contaminating agro-industrial products, this has forced the establishment of regulatory standards in several countries. Therefore, it is required to have reliable and sensitive methods for its early detection that could be implemented in routine assays. Aptameric nanosensors are an alternative method that can improve the detection of specific target molecules, due to the high affinity and selectivity of aptameric bioreceptors for specific targets. In addition, the use of noble metal nanomaterials allows the development of sensors based on their optical properties such as localized surface plasmon (LSPR), as it is possible to monitor changes in their surface and relate them to the concentration of a target analyte. This work has focused in the development of an alternative OTA detection system, based on aptameric nanosensors. The procedure contemplates the synthesis and functionalization of gold nanospheres (AuNEs) with an OTA-selective aptamer (APT), a microplate surface modification procedure with the complementary strand to the aptamer (HC) and the hybridization between the oligonucleotides. Lastly, as a proof of concept, some assays were performed to discriminate the presence of 336 ppb of OTA.

Keywords: Aptamers, gold, microplates, mycotoxins, nanosensors, ochratoxin A.

*Autor para correspondencia: E. mail: bgalarreta@pucp.pe

DOI: http://dx.doi.org/10.17268/rebiol.2021.41.01.03

Citas

Arroyo-Manzanares, N., Huertas-Pérez, J. F., García-Campaña, A. M., Gámiz-Gracia, L. (2014). Simple methodology for the determination of mycotoxins in pseudocereals, spelt and rice. Food Control, 36(1), 94– 101.

Bastús, N. G., Comenge, J., Puntes, V. (2011). Kinetically controlled seeded growth synthesis of citrate stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir, 27(17), 11098– 11105.

Bennett, J. W., y Klich, M. (2003). Mycotoxins. Society, 16(3), 497–516.

Bunka, D. H. J., y Stockley, P. G. (2006). Aptamers come of age - At last. Nature Reviews Microbiology, 4(8), 588–596.

Farahi, R. H., Passian, A., Tetard, L., Thundat, T. (2012). Critical issues in sensor science to aid food and water safety. ACS Nano, 6(6), 4548– 4556.

Frens, G. (1973). Controlled nucletion for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science, 241(105), 20–22.

Galarreta, B. C., Tabatabaei, M., Guieu, V., Peyrin, E., Lagugné-Labarthet, F. (2013). Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry, 405(5), 1613–1621.

Guo, X., Wen, F., Zheng, N., Luo, Q., Wang, H., Wang, H., Li, S., Wang, J. (2014). Development of an ultrasensitive aptasensor for the detection of aflatoxin B1. Biosensors and Bioelectronics, 56, 340–344.

Haiss, W., Thanh, N. T. K., Aveyard, J., Fernig, D. G. (2007). Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Analytical Chemistry, 79(11), 4215–4221.

Halas, N. J., Lal, S., Chang, W.-S., Link, S., Nordlander, P. (2011). Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 111(6), 3913–3961.

Her, S., Jaffray, D. A., Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101.

Hernández, Y., Coello, Y., Fratila, R. M., de la Fuente, J. M., Lionberger, T. A. (2017). Highly sensitive ratiometric quantification of cyanide in water with gold nanoparticles via Resonance Rayleigh Scattering. Talanta, 167, 51–58.

Hernández, Y., Lagos, L. K., Galarreta, B. C. (2020). Development of a label- free-SERS gold nanoaptasensor for the accessible determination of ochratoxin A. Sensing and Bio-Sensing Research, 28, 100331.

Hurst, S. J., Lytton-Jean, A. K. R., Mirkin, C. A. (2006). Maximizing DNA loading on a range of gold nanoparticle sizes. Analytical Chemistry, 78(24), 8313–8318.

Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382 (6592), 607-609.

Nielsen, K. F., Ngemela, A. F., Jensen, L. B., De Medeiros, L. S., Rasmussen, P. H. (2015). UHPLC-MS/MS determination of ochratoxin a and fumonisins in coffee using QuEChERS extraction combined with mixed-mode SPE purification. Journal of Agricultural and Food Chemistry, 63(3), 1029–1034.

Saha, K., Agasti, S. S., Kim, C., Li, X., Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739– 2779.

Sanz, V., Conde, J., Hernández, Y., Baptista, P. V., Ibarra, M. R., De La Fuente, J. M. (2012). Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles. Journal of Nanoparticle Research, 14(6).

SENASA. (2017). Informe del monitoreo de residuos químicos y otros contaminantes en alimentos agropecuarios primarios. 1–132.

Turkevich, J., Stevenson, P. C., Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11(c), 55–75.

Turner, N. W., Subrahmanyam, S., Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: A review. Analytica Chimica Acta, 632(2), 168–180.

Wu, S., Duan, N., Zhu, C., Ma, X., Wang, M., Wang, Z. (2011). Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B 1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosensors and Bioelectronics, 30(1), 35–42.

Zhao, J., Zhang, X., Yonzon, C. R., Hoes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219–228.

Zinedine, A., y Mañes, J. (2009). Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control, 20(4), 334–344.

Descargas

Publicado

2021-06-22

Cómo citar

Saldaña, A., Hernandez, Y., & Galarreta, B. (2021). DESARROLLO DE UN SISTEMA DE DETECCIÓN DE OCRATOXINA A BASADO EN NANOSENSORES APTAMÉRICOS EN MICROPLACAS. REBIOL, 41(1), 23-34. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/3601