Efecto del extracto acuoso de Moringa oleifera sobre el índice mitótico y la frecuencia de micronucleos en Allium cepa
Resumen
Moringa oleifera es usada alrededor del mundo debido a que se le atribuye diversas propiedades medicinales; sin embargo, poco se sabe sobre sus efectos adversos sobre el material genético. El objetivo de este estudio fue evaluar el efecto del extracto acuoso de semillas de M. oleifera sobre el índice mitótico y la frecuencia de micronúcleos utilizando el test Allium. Se expusieron los raíces de Allium cepa a 0.05, 0.1, 0.5 y 1g/L de extracto acuoso de semillas de M. oleifera durante 8 horas y se analizaron las raicillas a las 0, 48 y 72 horas de recuperación. A partir de las 48 horas se evidenció daño citotóxico con disminución del índice mitótico en todas las raíces expuestas al extracto con respecto al tratamiento 0 g/L y sin alterar el índice de cada fase mitótica. No se observaron diferencias significativas en las frecuencias de micronúcleos entre los tratamientos. Las alteraciones del IM pueden deberse a la presencia de sustancias desconocidas o poco estudiadas, que se encuentran presentes en M. oleifera, tales como glucosinolatos, isotiocianatos, etc.
Palabras clave: Extracto acuoso, Moringa, Índice Mitótico, Micro núcleos
Citas
Salaverry O, Cabrera J. Florística de algunas plantas medicinales. Rev. Perú. Med. Exp. Salud pública, 2014; 31(1):165-168.
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013; 1830(6), 3670-3695. doi: 10.1016/j.bbagen.2013.02.008
Oblitas G, Hernández-Córdova G, Chiclla M, Antich-Barrientos M, Ccorihuamán-Cusitito L, Romaní F. Empleo de plantas medicinales en usuarios de dos hospitales referenciales del Cusco, Perú. Rev. Perú. Med. Exp. Salud pública, 2013; 30(1):64-68.
Organización Mundial de la Salud (OMS). Estrategia de la OMS sobre la medicina tradicional 2014-2023. China: Hong Kong SAR, 2013. Disponible en http://apps.who.int/iris/bitstream/10665/95008 /1/9789243506098_spa.pdf
Fretel A. Moringa, el árbol de la vida. 2014. Disponible en http://diariocorreo.pe/ciudad/moringa-el-arbol-de-la-vida-551177/
Bonal RR, Rivera ORM, Bolívar CME. Moringa oleifera: una opción saludable para el bienestar. MEDISAN, 2012; 16(10):1596-1599.
Ramachandran C, Peter KV, Gopalakrishnan PK. Drumstick (Moringa oleifera): A Multipurpose Indian Vegetable. Economic Botany, 1980; 34: 276-283. doi:10.1007/BF02858648
Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International journal of molecular sciences, 2015; 16(6):12791-12835. doi: 10.3390/ijms160612791
Nweze NO, Nwafor FI. Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. IOSR J Pharmacy and Biol Sci. 2014; 9(1):99-103.
Sujatha BK, Patel P. Moringa oleifera–Nature’s Gold. Imperial J Interdisciplinary Res. 2017; 3(5):1175-1179.
Bhattachary A, Agrawal D, Sahu PK, Kumar S, Mishra SS, Patnaik S. Analgesic effect of ethanolic leaf extract of Moringa oleifera on albino mice. Indian J Pain, 2014; 28:89-94. doi: 10.4103/0970-5333.132846
Minaiyan M, Asghari G, Taheri D, Saeidi M, NasrEsfahani S. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. AJP, 2014; 4(2):18-24.
Al-Malkil AL, El Rabey HA. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats. BioMed Res Internat. 2015:1-13. doi: 10.1155/2015/381040
Ofem OE, Ikip EE, Archibong AN, Chukwu JA. Moringa oleifera Lam extract attenuates gastric ulcerations in high salt loaded rats. European Journal of Biological Research, 2017; 7(1):59-67. doi: 10.5281/zenodo.290641
Osameyan TA. Comparative evaluation of the hypotensive effects of the seed and leaf extracts of Moringa oleifera Lam (Moringaceae) in laboratory animals. [Tesis Doctoral] Ahmadu Bello University, Zaria, Nigueria, 2015.
Charoensin S. Antioxidant and anticancer activities of Moringa oleifera leaves. J Medicinal Plants Res. 2014; 8(7):318-325. doi: 10.5897/JMPR2013.5353
Jaramillo CJ, Espinoza AJ, D’Armas H, Troccoli L, de Astudillo LR. Concentraciones de alcaloides, glucósidos cianogénicos, polifenoles y saponinas en plantas medicinales seleccionadas en Ecuador y su relación con la toxicidad aguda contra Artemia salina. Rev Biol Trop. 2016; 64(3):1171-1184.
Soria N, Ramos P. Uso de plantas medicinales en la atención primaria de salud en Paraguay: algunas consideraciones para su uso seguro y eficaz. Mem Inst Investig Ciencias de la Salud, 2015; 13(2):08-17. doi: 10.18004/Mem.iics/1812-9528/2015.013(02)08-017
Canett-Romero R, Arvayo-Mata KL, Ruvalcaba-Garfias NV. Aspectos tóxicos más relevantes de Moringa oleifera y sus posibles daños. Biotecnia, 2014; 16(2):36-43.
Oyagbemi AA, Omobowale TO, Azeez IO, Abiola JO, Adedokun RA, Nottidge HO. Toxicological evaluations of methanolic extract of Moringa oleifera leaves in liver and kidney of male Wistar rats. J Basic and Clin Physiol and Pharmacol, 2013; 24(4):307-312. doi: 10.1515/jbcpp-2012-0061
Ajibade TO, Arowolo R, Olayemi FO. Phytochemical screening and toxicity studies on the methanol extract of the seeds of Moringa oleifera. J Complementary and Integrative Medicine, 2013; 10(1): 11-16. doi: 10.1515/jcim-2012-0015
Asare GA, Gyan B, Bugyei K, Adjei S, Mahama R, Addo P. Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol, 2012; 139(1):265-272. doi: 10.1016/j.jep. 2011.11.009
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017; jem-20160801. doi: 10.1084/jem.20160801
Matsuyama R, Kitamoto S, Tomigahara Y. Lack of genotoxic potential of permethrin in mice evaluated by the comet assay and micronucleus test. Toxicological & Environmental Chemistry, 2018; 100(1), 92-102. doi: 10.1080/02772248.2017.1401627
Yan C, Yang F, Wang Z, Wang Q, Seitz F, Luo Z. Changes in arsenate bioaccumulation, subcellular distribution, depuration, and toxicity in Artemia salina nauplii in the presence of titanium dioxide nanoparticles. Environm Sci: Nano, 2017; 4(6), 1365-1376. doi: 10.1016/j.aquatox.2018.03.009
Ng C T, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Intern J Nanomedicine, 2017; 12:1621-1637. doi: 10.2147/IJN.S124403
Khan AH, Libby M, Winnick D, Palmer J, Sumarah M, Ray MB, Macfie S. M. Uptake and phytotoxic effect of benzalkonium chlorides in Lepidium sativum and Lactuca sativa. J Environm Management, 2018; 206:490-497. doi: 10.1016/j.jenvman.2017.10.077
Hu Y, Tan L, Zhang SH, Zuo YT, Han X, Liu N, et al. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay. Environm Sci and Pollution Res, 2017; 24(2):1509-1517. doi: 10.1007/s11356-016-7873-9
Datta S, Singh J, Singh J, Singh S, Singh S. Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustainable Environ Res, 2018. doi: 10.1016/j.serj.2018.01.005
Levan A. The effect of colchicine on root mitoses in Allium. Hereditas, 1938 24(9):471-486. doi: 10.1111/j.1601-5223.1938.tb03221.x
Fatma F, Verma S, Kamal A, Srivastava A. Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa. Physiol and Mol Biol of Plants, 2018; 24(1):115-123. doi: 10.1007/s12298-017-0490-3
Rahman MM, Rahman MF, Nasirujjaman K. A study on genotoxicity of textile dyeing industry effluents from Rajshahi, Bangladesh, by the Allium cepa test. Chem and Ecol, 2017; 33(5):434-446. doi: 10.1080/ 02757540.2017.1316491
Ciappina AL, Ferreira FA, Pereira IR, Sousa TR, Matos FS, Reis PRM, et al. Toxicity of Jatropha curcas L. latex in Allium cepa test. Bioscience J, 2017; 33(5):1295-1304. doi: 10.14393/BJ-v33n5a2017-33835
Grant WF. Higher plant assays for the detection of chromosomal aberrations and gene mutations—a brief historical background on their use for screening and monitoring environmental chemicals. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1999; 426(2):107-112. doi: 10.1016/ S0027-5107(99)00050-0
Ndabigengesere A, Narasiah KS, Talbot BG. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res, 1995; 29(2):703-710. doi: 10.1016/0043-1354(94)00161-Y
Mustafa Y, Suna AE. Genotoxicity testing of quizalofop-P-ethyl herbicide using the Allium cepa anaphase-telophase chromosome aberration assay. Caryologia, 2008; 61(1):45-52. doi: 10.1080/00087114. 2008.10589608
Tjio JH, Levan A. The use of oxyquinoline in chromosome analysis. Anal. Estac. Expl. Aula Dei., 1950; 2:21-64. Disponible en https://digital.csic.es/handle/10261/33645
Berrocal AM, Blas RH, Flores J, Siles MA. Evaluación del potencial mutagénico de biocidas (vertimec y pentacloro) sobre cebolla. Revista Colombiana de Biotecnología, 2013; 15(1):17-27
Ragazzo P, Feretti D, Monarca S, Dominici L, Ceretti E, Viola G, et al. Evaluation of cytotoxicity, genotoxicity, and apoptosis of wastewater before and after disinfection with performic acid. Water research, 2017; 116:44-52. doi: 10.1016/j.watres.2017.03.016
Kumar G, Pandey A. Ethyl methane sulphonate induced changes in cyto-morphological and biochemical aspects of Coriandrum sativum L. J of the Saudi Society of Agricultural Sci, 2018. Disponible en https://www.sciencedirect.com/science/article/pii/S1658077X17303673
Malakahmad A, Manan TSBA, Sivapalan S, Khan T. Genotoxicity assessment of raw and treated water samples using Allium cepa assay: evidence from Perak River, Malaysia. Environ Sci and Pollution Res, 2017; 25(6):421-5436. doi: 10.1007/s11356-017-0721-8
Bortolotto LFB, Barbosa FR, Silva G, Bitencourt TA, Beleboni RO, Baek SJ, et al. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed & Pharmacother, 2016; 85:425-433. doi: 10.1016/j.biopha.2016.11.047
Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J, et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nature communications, 2017; 8: 14728. doi: 10.1038/ncomms14728
Hannah C, Priya EJS, Mammen A. Duration dependent mutagenic study of Cola drinks on Allium cepa L. Biosciences Biotech Res Asia, 2010; 7(2):807-812.
Elsayed EA, Sharaf-Eldin MA, Wadaan M. In vitro evaluation of cytotoxic activities of essential oil from Moringa oleifera seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. Asian Pacific J Cancer Prevention, 2015; 16(11):4671-4675. doi: 10.7314/APJCP.2015.16.11.4671
Adebayo IA, Arsad H, Samian MR. Antiproliferative effect on breast cancer (Mcf7) of Moringa oleifera seed extracts. African J Traditional, Complementary, and Alternative Med, 2017; 14(2):282 -287. doi: 10.21010/ ajtcam.v14i2.30
Maiyo FC, Moodley R, Singh M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→ 4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anti-Cancer Agents in Medicinal Chemistry, 2016; 16(5):648-656. doi: 10.2174/ 1871520615666151002110424
Alimba CG, Aladeyelu AM, Nwabisi IA, Bakare AA. Micronucleus cytome assay in the differential assessment of cytotoxicity and genotoxicity of cadmium and lead in Amietophrynus regularis. EXCLI Journal, 2018; 17: 89-101. doi: 10.17179/excli2017-887
Kasamoto S, Masumori S, Tanaka J, Ueda M, Fukumuro M, Nagai M, et al. Reference control data obtained from an in vivo comet-micronucleus combination assay using Sprague Dawley rats. Exp and Toxicol Pathol, 2017; 69(4):187-191. doi: 10.1016/j.etp.2017.01.002
Njan AA, Atolani O, Olorundare OE, Afolabi SO, Ejimkonye BC, Crucifix PG, et al. Chronic toxicological evaluation and reversibility studies of Moringa oleifera ethanolic seed extract in Wistar rats. Trop J Health Sci, 2018; 25(1). Disponible en https://www.ajol.info/index.php/tjhc/article/view/166445
Kim Y, Jaja-Chimedza A, Merrill D, Mendes O, Raskin I. A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats. Toxicol Reports, 2018; 5:418-426. doi: 10.1016/j.toxrep.2018.02.012
Fahey JW, Olson ME, Stephenson KK, Wade KL, Chodur GM, Odee D, et al. The Diversity of Chemoprotective Glucosinolates in Moringaceae (Moringa spp.). Scientific reports, 2018; 8(1):7994. doi: 10.1038/s41598-018-26058-4
Suzuki I, Cho YM, Hirata T, Toyoda T, Akagi JI, Nakamura Y, et al. Toxic effects of 4‐methylthio‐3‐butenyl isothiocyanate (Raphasatin) in the rat urinary bladder without genotoxicity. J Appl Toxicol, 2017; 37(4):485-494. doi: 10.1002/jat.3384
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 REVISTA REBIOL
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Política propuesta para revistas que ofrecen acceso abierto
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la «Licencia de reconocimiento» de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (por ejemplo, depositarla en un repositorio institucional o publicarla en un libro) siempre que se indique la publicación inicial en esta revista.
- Los autores tienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la revista REBIOL (autores del trabajo, revista, volumen, número y fecha).