Influence of the content and particle size of rice husk ash on the water susceptibility of asphalt mixtures

Autores/as

  • Daniel Martínez-Cerna Facultad de Ingeniería, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú https://orcid.org/0009-0004-8834-0321
  • Cinthya Alvarado Departamento de Ingeniería Civil, Arquitectura y Urbanismo, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n – Ciudad Universitaria, Trujillo, Perú https://orcid.org/0000-0002-8874-4885

DOI:

https://doi.org/10.17268/scien.inge.2025.02.05

Palabras clave:

asphalt mixtures, water susceptibility, rice husk ash, stability, TSR Test

Resumen

This study investigates how rice husk ash (RHA) content and particle size influence the water susceptibility of asphalt mixes. A two-factor experiment was conducted, varying RHA proportions (2.5%, 5.0%, and 7.5%) and particle sizes (149, 74, and 53 µm). The RHA, sourced from agro-industrial wastes in Trujillo, Peru, was previously analyzed by, scanning electron microscopy (SEM) showed irregular, porous, and angular particles, typical of ashes produced at moderate temperatures, which enhance binder interaction and internal friction. The ash analysis also identified crystalline phases like cristobalite and quartz, suggesting chemical reactivity. Coarse and fine aggregates met Peruvian standards for durability and wear resistance. The optimal asphalt cement content was 4.39%, balancing cohesion, stability, and air voids. The experimental results indicate that adding 5.0% RHA, especially with particle sizes smaller than 53 µm, significantly improves the mixture's resistance to moisture damage. This not only enhances the longevity of pavements but also promotes sustainability by incorporating waste materials into road construction. The incorporation of RHA not only improves the technical performance of asphalt mixtures, but also represents an environmentally beneficial strategy by reusing an abundant agricultural waste, reducing the environmental impact and promoting a circular economy.

Citas

Adwar, N. N., & Albayati, A. H. (2024). Enhancing Moisture Damage Resistance in Asphalt Concrete: The Role of Mix Variables, Hydrated Lime and Nanomaterials. Infrastructures, 9(10), 173–173. https://doi.org/10.3390/infrastructures9100173

Alireza A., & Rezvan B. (2021). Evaluation of the Influence of Antistripping Agents on Water Sensitivity of the Stone Matrix Asphalt Mixture Modified by Recycled Ground Tire Rubber and Waste Polyethylene Terephthalate. Advances in Materials Science and Engineering, 2021, 1–18. https://doi.org/10.1155/2021/8029702

Al-Saffar, Z. H., Mohamed H., & Oleiwi A., S. (2024). Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics. Infrastructures, 9(2), 25. https://doi.org/10.3390/infrastructures9020025

Alvarado, C., Martínez-Cerna, D., & Hernán Alvarado-Quintana. (2023). Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation. Buildings, 14(1), 112–112. https://doi.org/10.3390/buildings14010112

Antunes, V., Freire, A. C., Quaresma, L., & R. Micaelo. (2015). Effect of the chemical composition of fillers in the filler–bitumen interaction. Construction and Building Materials, 104, 85–91. https://doi.org/10.1016/j.conbuildmat.2015.12.042

Bassheet, S. & Latief, R. (2025) Impact of Using Polyethylene Polymer on Properties of Hot Asphalt Mixture by Conducting Semi-Wet and Dry Mixing Process. International Journal of Engineering. Transactions B: Applications, 38(5). https://doi.org/10.5829/ije.2025.38.05b.13

Bastidas-Martínez, J. G., Ruge, J. C., & Herrera Cano, C. E. (2024). Mechanical performance of an asphalt stabilized base with natural asphalt, hydrated lime and Portland cement. Construction and Building Materials, 446, 137938. https://doi.org/10.1016/j.conbuildmat.2024.137938

Camargo-Pérez, R., Moreno-Navarro, F., Alvarez, A. E., Walubita, L. F., & Fuentes, L. (2024). Influence of recycled rice husk ash filler on the mechanical performance of asphalt mixtures: A mortar scale analy-sis. Construction and Building Materials, 414, 134832–134832. https://doi.org/10.1016/j.conbuildmat.2023.134832

Cao, S., Li, P., Nan, X., Yi, Z., & Sun, M. (2023). Optimization of Aggregate Characteristic Parameters for Asphalt Binder—Aggregate System under Moisture Susceptibility Condition Based on Random Forest Analysis Model. Applied Sciences, 13(8), 4732–4732. https://doi.org/10.3390/app13084732

Chilaka, C., Kunnoth, B., Sridhar, Rao, P. V., Surampalli, R. Y., Zhang, T. C., & Puspendu B. (2022). Effects of Different Parameters and Co-digestion Options on Anaerobic Digestion of Parboiled Rice Mill Wastewater: a Review. BioEnergy Research, 17(2), 1191–1207. https://doi.org/10.1007/s12155-022-10522-1

Deb, P., Singh, & Kh. Lakshman. (2023). Effect of Curing on Failure Characteristics of Cold Mix Asphalt Containing Different Fillers. Iranian Journal of Science and Technology, Transactions of Civil Engi-neering, 47(4), 2467–2483. https://doi.org/10.1007/s40996-023-01035-8

Guo, F., Li, R., Lu, S., Bi, Y., & He, H. (2020). Evaluation of the Effect of Fiber Type, Length, and Content on Asphalt Properties and Asphalt Mixture Performance. Materials, 13(7), 1556–1556. https://doi.org/10.3390/ma13071556

Hayder K., Ruddock, F., & Atherton, W. (2018). A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166–175. https://doi.org/10.1016/j.conbuildmat.2018.03.252

Hidayat, R., A., Nissa, R. C., Sukamto, Nuraini, L., Nurtanto, M., & Ramadhani, W. S. (2023). Analysis of rice husk biochar characteristics under different pyrolysis temperature. IOP Conference Series: Earth and Environmental Science, 1201(1), 012095. https://doi.org/10.1088/1755-1315/1201/1/012095

Hussein, F. K., Ismael, M. Q., & Ghasan F. (2023). Rock Wool Fiber-Reinforced and Recycled Concrete Ag-gregate-Imbued Hot Asphalt Mixtures: Design and Moisture Susceptibility Evaluation. Journal of Composites Science, 7(10), 428–428. https://doi.org/10.3390/jcs7100428

Jwaida, Z., Quraishy, Q. A. A., Almuhanna, R. R. A., Dulaimi, A., Bernardo, L. F. A., & Andrade, J. M. de A. (2024). The Use of Waste Fillers in Asphalt Mixtures: A Comprehensive Review.CivilEng. https://doi.org/10.3390/civileng5040042

Jweihan, Y. S., Al-Kheetan, M. J., & Rabi, M. (2023). Empirical Model for the Retained Stability Index of Asphalt Mixtures Using Hybrid Machine Learning Approach. Applied System Innovation, 6(5), 93–93. https://doi.org/10.3390/asi6050093

Kim, K., & Le, M. (2023). Feasibility of Pellet Material Incorporating Anti-Stripping Emulsifier and Slaked Lime for Pothole Restoration. Buildings, 13(5), 1305–1305. https://doi.org/10.3390/buildings13051305

Kosma, V., Suren H., Diamanti, E., Ajay D., & Giannelis, E. P. (2017). Bitumen nanocomposites with im-proved performance. Construction and Building Materials, 160, 30–38. https://doi.org/10.1016/j.conbuildmat.2017.11.024

Kumar D., S., Adediran, A., Rodrigue Kaze, C., Mohammed Mustakim, S., & Leklou, N. (2022). Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Construction and Building Materials, 345, 128341. https://doi.org/10.1016/j.conbuildmat.2022.128341

Lee, S.-Y., & Le, M. (2024). Advanced Asphalt Mixtures for Tropical Climates Incorporating Pellet-Type Slaked Lime and Epoxy Resin. Journal of Composites Science, 8(11), 442–442. https://doi.org/10.3390/jcs8110442

Lim, S. M., He, M., Hao, G., Ng, T. C. A., & Ong, G. P. (2024). Recyclability potential of waste plastic-modified asphalt concrete with consideration to its environmental impact. Construction and Building Materials, 439, 137299. https://doi.org/10.1016/j.conbuildmat.2024.137299

Liou, T.-H., Tseng, Y.-K., Zhang, T.-Y., Liu, Z.-S., & Chen, J.-Y. (2023). Rice husk char as a sustainable ma-terial for the preparation of graphene oxide-supported biocarbons with mesoporous structure: A char-acterization and adsorption study. Fuel, 344, 128042. https://doi.org/10.1016/j.fuel.2023.128042

Liu, S., Zhang, G., Gao, A., Niu, Q., Xie, S., Xu, B., & Pan, B. (2023). Study on the Performance of Phase-Change Self-Regulating Permeable Asphalt Pavement. Buildings, 13(11), 2699–2699. https://doi.org/10.3390/buildings13112699

Maha, M. R. A., Idham, M. K., Hainin, M. R., Naqibah, S. N., & Amirah, N. A. (2022). Application of Alter-native Filler in Asphalt Mixture: An Overview from Indonesia Perspective.IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/971/1/012005

Mahto, S. K., Raju, N. K., & Nirala, S. K. (2024). Assessment of moisture susceptibility and stripping effect in wax based warm mix asphalt. Innovative Infrastructure Solutions, 9(12). https://doi.org/10.1007/s41062-024-01793-y

Ministry of Agrarian Development and Irrigation of Peru (2024). Perfil Productivo Agropecuario de La Liber-tad. Ministerio de Desarrollo Agrario y Riego.

Ministry of transport and communications of Peru (2013). Manual of materials testing.

Mistry, R., Roy, T. K., Aldagari, S., & Fini, E. H. (2023). Replacing Lime with Rice Husk Ash to Reduce Car-bon Footprint of Bituminous Mixtures.C. https://doi.org/10.3390/c9020037

Muhammad N., Syed H., Khan S., Khan, K., & Bibi, T. (2019). Pozzolanic Reactivity and the Influence of Rice Husk Ash on Early-Age Autogenous Shrinkage of Concrete. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00150

Peyman M. (2016). Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations. Construction and Building Materials, 116, 403–412. https://doi.org/10.1016/j.conbuildmat.2016.04.143

Raj, A., Sivakumar, M., & R. Anjaneyulu. (2022). Investigation of Curing and Strength Characteristics of Cold-Mix Asphalt with Rice Husk Ash–Activated Fillers. Journal of Transportation Engineering Part B Pavements, 148(4). https://doi.org/10.1061/jpeodx.0000408

Ram K., & Ramakrishna G. (2022). Performance evaluation of sustainable materials in roller compacted concrete pavements: a state of art review. Journal of Building Pathology and Rehabilitation, 7(1). https://doi.org/10.1007/s41024-022-00212-y

Sajadi, S. R., G. Shafabakhsh, & H. Divandari. (2025). Improving the Rutting Resistance of Bitumen and Asphalt Mixtures using Polyurethane/Carbon Nanotube Composites. International Journal of Engi-neering, 38(7), 1447–1461. https://doi.org/10.5829/ije.2025.38.07a.02

Sarkar, A., & Elseifi, M. A. (2023). Experimental evaluation of asphalt mixtures with emerging additives against cracking and moisture damage. Journal of Road Engineering, 3(4), 336–349. https://doi.org/10.1016/j.jreng.2023.07.001

Shenyang, A. Mohammed-Noor K., H, Waleed J., N, & Abd Al-Hamza, M. (2021). Durability and Aging Characteristics of Sustainable Paving Mixture. International Journal of Engineering. Transactions B: Applications, 34(8). https://doi.org/10.5829/ije.2021.34.08b.07

Trevizan P., Rosa, F. D., & Korf, E. P. (2023). Durability, Long-Term, and Environmental Evaluation of Al-kali-Activated Alternative Soluble Silica Source for Recycled Asphalt Pavement Stabilization. Journal of Materials in Civil Engineering, 36(2). https://doi.org/10.1061/jmcee7.mteng-16168

Valdés-Vidal, Calabi-Floody, Sanchez-Alonso, Díaz, & Fonseca, (2020). Highway trial sections: Perfor-mance evaluation of warm mix asphalt and recycled warm mix asphalt. Construction and Building Materials, 262, 120069–120069. https://doi.org/10.1016/j.conbuildmat.2020.120069

Valentin, J., J. Trejbal, V. Nežerka, T. Valentová, & Faltus, M. (2021). Characterization of quarry dusts and industrial by-products as potential substitutes for traditional fillers and their impact on water suscepti-bility of asphalt concrete. Construction and Building Materials, 301, 124294–124294. https://doi.org/10.1016/j.conbuildmat.2021.124294

Vargas, C., & Hanandeh, A. E. (2022). Features Importance and Their Impacts on the Properties of Asphalt Mixture Modified with Plastic Waste: A Machine Learning Modeling Approach. International Journal of Pavement Research and Technology, 16(6), 1555–1582. https://doi.org/10.1007/s42947-022-00213-7

Ye, Z., & Zhao, Y. (2023). Polyolefin Elastomer Modified Asphalt: Performance Characterization and Modi-fication Mechanism. Buildings, 13(5), 1291–1291. https://doi.org/10.3390/buildings13051291

Zangooeinia, P., Moazami, D., Bilondi, M. P., & Zaresefat, M. (2023). Improvement of pavement engineer-ing properties with calcium carbide residue (CCR) as filler in Stone Mastic Asphalt. Results in Engineer-ing, 20, 101501. https://doi.org/10.1016/j.rineng.2023.101501

Zarroodi, R., Hashjin, N. G., Faraji, M., & Payami, M. (2023). The investigation of surface free energy com-ponents and moisture sensitivity damage of asphalt mixes modified with carbon black using the sessile drop method. SN Applied Sciences, 5(11). https://doi.org/10.1007/s42452-023-05513-6

Zhu, C., Zhang, H., Wang, Z., Guo, X., & Li, J. (2024). Microstructure and road performance of emulsified asphalt cold recycled mixture containing waste additives and/or cement. Construction and Building Materials, 448, 138199. https://doi.org/10.1016/j.conbuildmat.2024.138199

Zhu, J., Saberian, M., Li, J., Yaghoubi, E., & Rahman, M. T. (2023). Sustainable use of COVID-19 discarded face masks to improve the performance of stone mastic asphalt. Construction and Building Mate-rials, 398, 132524–132524. https://doi.org/10.1016/j.conbuildmat.2023.132524

Descargas

Publicado

2025-07-28

Cómo citar

Martínez-Cerna, D. ., & Alvarado, C. . (2025). Influence of the content and particle size of rice husk ash on the water susceptibility of asphalt mixtures. SCIÉNDO INGENIUM, 21(2), 69-79. https://doi.org/10.17268/scien.inge.2025.02.05

Número

Sección

Artículos Originales