Excitaciones plasmónicas cuadrupolares y octupolares en nanopartículas metálicas elipsoidales
Resumen
Palabras clave
Texto completo:
PDFReferencias
Aizpurua J.; Bryant G. W.; Richter L. J.; García de Abajo F. J. 2015; Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B 71, 235420: 1 – 13.
Brongersma M. L.; Kik, P. G. 2017. Surface Plasmon Nanophotonics. Springer Series in Optical Sciences. Editorial Board. Georgia Institute of Technology. 269 pp.
Claro, F. 1982. Absorption spectrum of neighboring dielectric grains. Physial Review. B 25: 7875-7876.
Danckwerts, M.; Novotny, L. 2017. Optical Frecuency Mixing at Coupled Gold Nanoparticles. Physical Review Letters 98, 026104: 1 – 4.
Gersten, J.; Nitzan, A. 1981. Spectroscopic properties of molecules interacting with small dielectric particles. The Journal Chemical Physcis 75, 1139: 1139 – 11.52.
Guzatov, D. V.; Klimov, V. V. 2015. Radiative decay engineering by triaxial nanoellipsoid. The Journal of Chemical Physcis Letters 412: 341 – 346.
Hobson, E. W. 1931. Theory of Spherical and Ellipsoidal Harmonics. Editor: Cambridge University Press, Cambridge. 500 pp.
Isaak, D.; Mayergoyz, Donald R.; Fredkin y Zhang Z. 2015. Electrostatic (plasmon) resonances in nanoparticles. Physical Review. B 72, 155412: 1 – 15.
Kawata, S.; Ono, A.; Verma P. 2018. Subwavelength color imaging with a metalic nanolens. Nature Photonics 2: 438 – 442.
King, P. D. C.; Veal, T. D; Jefferson, P. H.; Hatfield, S. A.; Piper, L. F. J.; McConville, C. F. 2018. Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors. Physical Review B 77, 045316: 1 – 6.
Klimov, V. V. 2008, Nanoplasmonics, (en Ruso). Physics-Uspekhi Nauk and Lebedev Physcis Institute, Russian Academy of Sciences, Moscow, Russian Federation. 8 (51): 839 – 844.
Klimov, V. V. and Ducloy M. 2014. Sponteaneous emission rate and excited atom placed near a nanofiber. Physical Review A 69, 013812: 1 – 17.
Klimov, V. V.; Guzatov, D. V. 2017(a). Plasmonic atoms and plasmonic molecules. Journal of Applied Physical A 89: 305 – 314.
Klimov, V. V.; Guzatov, D. V. 2017(b). Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of a atom. Physical Review B 75, 024303: 1 – 7.
Klimov, V. V., Ducloy, M.; Letokhov, V. S. 2012. Spontaenous emission of a atom placed near a prolate nanospheroid. The European Physical Journal D – Atomic, Molecular, Optical and Plasma Physcis. 20: 133 - 148.
Klimov, V. V.; Guzatov, D. V. 2017(c). Sponteaneous emission of an atom placed near a nanobelt of elliptical cross section. Physical Review A 75, 052901: 1 – 13.
Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. 2017. Far-Field Opical Hyperlens Magnifying Sub-Diffraction-Limited Objetcs. Science 315: 1686.
Maier, S. A. 2017. Plasmonics: Fundamentals and Applications. Editorial: Springer. New York. 223 pp.
Mühlschlegel, P.; Eisler, H. J.; Martin, O. J. F.; Hecht, B.; Pohl, D. W. 2015. Resonant Optical Antennas. Science 308: 1607 – 1608.
Muskens, O.; Giannini, V.; Sanchez-Gil, J.; Gomez-Rivas, J. 2017. Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas. Nano Letters 7: 2871 – 2875.
Novotny, L. 2017. Effective Wavelength Scaling for Optical Antennas. Physical Review Letters 98, 266802: 1 – 4.
Pufall, M. R.; Berger, A.; Schultz S. 1997. Measurement of the scattered light magneto-optical Kerr effect from plasmon-resonant Ag particles near a magnetic film. Journal of Applied Physics 81: 5689 – 5691.
Ruppin, R. 1982(a). Decay of an excited molecule near a small metal sphere. The Journal of Chemical Physics 76: 1681 – 1684.
Ruppin, R. 1982(b). Surface modes of two spheres. Physical Review B 26: 3440 – 3444.
Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. 2015. Improving he Mismatch between Light and Nanoscale Objetcs with Gold Bowtie Nanoantennas. Physical Reviwe Letters 94, 017402: 1 – 4.
Smolyaninov, I. I.; Hung, Y. J.; Davis, C. C. 2017. Magnifying Superlens in the Visible Frequency Range. Science 315: 1699 – 1701.
Stratton, J. A. 1941. Electromagnetic Theory. McGraw-Hill Book Company. New York. 648 pp.
Trügler, A.; Hohenester, U. 2018. Strong coupling between a metallic nanoparticle and a single molecule. Physial Review B 77, 115403: 1 – 6.
Urzhumov, Y. A.; Shvets, G.; Fan, J.; Capasso, F.; Brandl, D.; Nordlander, P. 2017. Plasmonic nanoclusters: a path towards negative-index metafluids. Optics Express 15: 14129 – 14145.
Wang, D. S.; Kerker, M. 1981. Enhanced Raman scattering by molecules adsorbed at the surface of coloidal spheroids. Physical Review B 24: 1777 – 1790.
Whittaker, E. T.; Watson, G. N. 1963. A Course of Modern Analysis: An Introduction to the General of Infinite Processes and of Analytic Functions with an Account of the Principal Transcendental Functions. Editor: Cambridge University Press. Fourth Edition. Cambridge. 616 pp.
Enlaces refback
- No hay ningún enlace refback.
Indizada o resumida en:
|
|
| ||
| ![]() | ![]() | ||
Revista ciencia y tecnología, revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0 (CC BY-NC 3.0).
Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Escuela de Postgrado. Universidad Nacional de Trujillo. Trujillo, Perú.
Contacto: revistacytunt@unitru.edu.pe