Solución Numérica para la Ecuacón de Schrödinger

Autores/as

  • Lucy Salazar Rojas Universidad Nacional de Trujillo
  • Esteban Castillo Pereda Universidad Nacional de Trujillo
  • Edgar Rodríguez Horna Universidad Nacional de Trujillo

Resumen

En este trabajo se analiza la existencia de la solución de la ecuación no lineal de Schrödinger.

Citas

Brezis, H. (2010) Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media.

Dautray, R. and Lions, J. L. (2012) Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I. Vol. 5. Springer Science & Business Media.

Kreuter, M. (2015) Sobolev Spaces of Vector-Valued Functions. Ulm Univer- sity Faculty of Mathematics and Economies.

Lions, J.L. (1969) Quelques methodes de resolution des problemes aux limites non lineaires. Vol. 1. Dunod;Gauthier-Villars, Paris.

Mederiros, L. A. and Milla, M. A. (2000) Espa ̧co de Sovolev (Inicia ̧c ̃ao aos Problemas El ́ıticos n ̃ao Homogˆeneos). Instituto de Matem ́atica-UFRJ, Rio de Janeiro.

Newell, A. (1985) Solitons in mathematics and physics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

Sulem, C. and Sulem, P. (1999) The nonlinear Schr ̈odinger equation. Ap- plied Mathematical Sciences, vol. 139. New York: Springer-Verlag. Self-focusing and wave collapse.

Temam, R. (1979) Navier-Stokes equations: theory and numerical analysis. North-Holland Publishing Company. New York.

Descargas

Publicado

2019-08-16