BASES ORTONORMALES DE WAVELETS DE SOPORTE COMPACTO

Autores/as

  • Raúl Saráchaga Villanueva Universidad Nacional de Trujillo
  • Santos Ñique Romero Universidad Nacional de Trujillo
  • Marcos Ferrer Reyna Universidad Nacional de Trujillo

Resumen

El objetivo principal en este trabajo es construir wavelets ψ de soporte compacto. Para ello tomaremos la función escala φ siendo de soporte compacto.



Palabras claves. b.o.n. wavelets, soporte compacto.


Citas

Chui, C. K., An Introduction to wavelets., Academic Press, London, 1992.

Chui, C. K.(ed.), Wavelets: a tutorial in theory and applications., Academic Press, London,

Cohen, A.; Daubechies. I; Feauveau, J. C., Biorthogonal bases of compactly supported

wavelets, Comm. in Pure and Appl. Math., 45: 485-560, 1992.

Cohen, A.; Daubechies. I; Vial, P., Wavelets on the internal and fast wavelet transforms.,

Comput. Harmonic Analysis 1(1): 54-81, 1993.

Combes, J.M; Grossmann, A.; Tchatmitchian,P.(eds.), Wavelets, time frecuency methods

and phase space., 1st. International Wavelets Conference, Marseille, December 1987. Inverse

Problems and Theoretical Imaging, Springer, 1989.

Daubechies, I.; Grossman, A.; Meyer, Y., Painless nonorthogonal expansions., J. Math.

Phys. 27: 1271-1283, 1986.

Daubechies, I., Time-frecuency localization operators:a geometric phase space aproach., IEEE

Trans. Inform. Theory. 36: 961-1005. 1990.

Daubechies, I., Orthonormal bases of compactly supported wavelets., Communications in Pure and Applied Mathematics, 41: 909-996, 1988.

Daubechies, I., Ten Lectures on Wavelets., CBMS-NSF Series in Appl.Math. SIAM Publ.Philadelphia,1992.

Daubechies,I.;Mallat, S.;Willsky,A.(eds)., Special issue on wavelet transforms and mul- tiresolution signal analysis, IEEE Trans. Inform.Theory 38,1992.

Gomes,S. M.; Cortina, E., Convergence estimates for the wavelet-Galerkin method., To ap- pear in SIAM Jr. Numer. Anal.

Gomes, S. M., Wavelet analysis and approximation results., preprint 1993.

Grossmann,A. and Morlet, J., Descomposition of Hardy functions into square integrable

wavelets., SIAM J.Math. Anal.,15:723-736.1984.

Mallat , S., A theory for multiresolution signal decomposition: the wavelet representacion.,

IEEE Trans. on Pattern Anal. Machine Intell.11(7):674-693.1989.

Mallat, S., Multiresolution approcimations and wavelet orthonormal basis of L2(R).,

Meyer, Y., Ondelettes et Operaturs., Hermann, Paris,1990.

Meyer, Y.(ed)., Wavelets and Applications., Springer-Verlag, Berlin, 1992.

Morlet, J.;Arens, G.;Fourgeau,I. and Giard, D., Wave propagation and sampling theory,

Geophysics, 47: 203-236.1982.

Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press. Wellesley,MA,

Descargas

Publicado

2019-08-16