ANALISIS NUMERICO PARA SOLUCIONAR ECUACIONES DIFERENCIALES PARCIALES PARABOLICOS: ECUACION DE SCHRODINGER EN DOS DIMENSIONES

Autores/as

  • Wilson Maco Vásquez Universidad Nacional de Trujillo
  • Lucy Salazar Rojas Uiversidad Nacional de Trujillo
  • Esteban Castillo Pereda Universidad Nacional de Trujillo
  • Edgar Rodríguez H. Universidad Nacional de Trujillo

Resumen

En el presente trabajo de investigación se estudia la existencia de la solución de la ecuación de Schrödinger no lineal.



Palabras clave: Ecuación de Schrödinger no lineal, método de Faedo-Galerkin.


Citas

Brezis, H. (2010) Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media.

Dautray, R. and Lions, J. L. (2012) Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I. Vol. 5. Springer Science & Business Media.

Kreuter, M. (2015) Sobolev Spaces of Vector-Valued Functions. Ulm Univer- sity Faculty of Mathematics and Economies.

Lions, J.L. (1969) Quelques methodes de resolution des problemes aux limites non lineaires. Vol. 1. Dunod;Gauthier-Villars, Paris.

Mederiros, L. A. and Milla, M. A. (2000) Espa ̧co de Sovolev (Inicia ̧c ̃aoaos Problemas El ́ıticos nao Homogêneos). Instituto de Matem ́atica-UFRJ, Rio de Janeiro.

Newell, A. (1985) Solitons in mathematics and physics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

Sulem, C. and Sulem, P. (1999) The nonlinear Schr ̈odinger equation. Ap- plied Mathematical Sciences, vol. 139. New York: Springer-Verlag. Self-focusing and wave collapse.

Temam, R. (1979) Navier-Stokes equations: theory and numerical analysis. North-Holland Publishing Company. New York.

Descargas

Publicado

2019-08-14