Antioxidant activity of the melanoidin fractions formed from D-Glucose and D-Fructose with L-Asparagine in the Maillard reaction

A. P. Echavarría, J. Pagán, A. Ibarz

Resumen


Melanoidins formed at the last stage of the Maillard reaction have been shown to possess certain functional properties, such as antioxidant activity. In order to gain more insight into these functional properties, soluble model systems melanoidins from L‑Asparagine with D‑glucose or D‑fructose fractionating by ultrafiltration were analyzed. The fractionating/concentration sequence of the melanoidin fraction (1-300 kDa) enabled five fractions to be produced.Additionally, the absorption of melanoidins was measured at different wavelengths (280, 325, 405) and browning at 420 nm. The fractionation effect of melanoidin systems on the color intensity, UV-absorbance scan wavelengths (nm), CIE, L*, a*, b* parameters and antioxidant activity were measured. For this purpose, antioxidant activity was evaluated through the free radical scavenging activity, including 1,1-diphenyl-2-picryl-hydrazil (DPPH) and 2,20-azinobis (3-ethylbenothiazoline-6-sulfonic acid), diammonium salt (ABTS). The results showed that the absorption of the melanoidins formed from Glucose/L-Asn was higher than for those derived from Fructose/L-Asn. On the other hand, their antioxidant power was lower than that for melanoidins formed from Fructose/L-Asn systems.


Palabras clave


Maillard reaction, Melanoidins, Model solutions, Fractionation, Antioxidant activity

Texto completo:

PDF (English)

Referencias


Bekedam, E.; Schols, H.; Van boekel, M.; Smit, G. 2006. High molecular weight melanoidins from coffee brew. Journal of Agriculture and Food Chemistry 54: 7658-7666.

Bekedam, E.; Roos, E.; Schols, H.; Martinus, A.; Smi, G. 2008. Low Molecular Weight Melanoidins in Coffee Brew. Journal of Agricultural and Food Chemistry 56: 4060–4067.

Borrelli, R.; Visconti, A.; Mennella, C.; Anese, M.; Fogliano, V. 2002.Chemical Characterization and Antioxidant Properties of Coffee Melanoidins. Journal of Agriculture and Food Chemistry 50: 6527-6533.

Brudzynski, K.; Miotto, D. 2011a. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chemistry 125(2): 570-575.

Brudzynski, K.; Miotto, D. 2011b. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chemistry 127(3): 1023-1030.

Carabasa-Giribet; Ibarz-Ribas, A. 2000. Kinetics of colour development in aqueous fructose systems at high temperatures. Journal of the Science of Food and Agriculture 80(14): 2105-2113.

Chandra, R.; Bharagava, R.; Rai, V. 2008. Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresource Technology 99: 4648–4680.

Delgado-Andrade, C.; Morales, F.J. 2005. Unraveling the Contribution of Melanoidins to the Antioxidant Activity of Coffee Brews. Journal of Agriculture and Food Chemistry 53: 1403-1407.

Dolphen, R.; Thiravetyan, P. 2011. Adsorption of melanoidins by chitin nanofibers. Chemical Engineering Journal 166: 890–895.

Echavarria, A.P.; Torras, C.; Pagán, J.; Ibarz, A. 2011. Fruit processing and membrane technology application. Food Engineering Reviews 3: 136-158.

Echavarría, A.; Pagán, J.; Ibarz, A. 2011. Effect of previous enzymatic recirculation treatment through a tubular ceramic membrane on ultrafiltration of model solution and apple juice. Journal of Food Engineering 102: 334-339.

Gniechwitz, D.; Reichardt, N.; Meiss, E.; Ralph, J.; Steinhart, H.; Blaut, M.; Bunzel, M. 2008. Characterization and Fermentability of an Ethanol Soluble High Molecular Weight Coffee Fraction. Journal of Agriculture and Food Chemistry 56: 5960–5969.

Hofmann, T.; Czerny, M.; Calligaris, S.; Schieberle, P. 2001. Model Studies on the Influence of Coffee Melanoidins on Flavor Volatiles of Coffee Beverages Journal of Agriculture and Food Chemistry 49: 2382-2386.

Ibarz, A.; Garza, S.; Pagán, J. 2008. Inhibitory effect of melanoidins from glucose–asparagine on carboxypeptidases activity. European Food Research and Technology 226: 1277–1282.

Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.; Raffaele, C. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology 11: 340-346.

Marti, M.; Ramos, S.; Mateos, R.; Rufián-Henares, J.; Morales, F.; Bravo, L.; Goya, L. 2009. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress. Journal of Agriculture of Food Chemistry 57: 7250-7258.

Miller, N.J.; Sampson, J.; Candeias, L.; BramLey, P.; Rice- Evans, C. 1996. Antioxidant activities of carotenes and xanthophylls. FEBS Letters 384: 240–242.

Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal Science and Technology 26: 211-219.

Morales, F.; Babbel, M. 2002. Melanoidins exert a weak antiradical activity in watery fluids. Journal of Agriculture and Food Chemistry 50: 4657-4661.

Morales, F. 2005. Assessing the non-specific hydroxyl radical scavenging properties of melanoidins in a Fenton-type reaction system. Analytica Chimica Acta 534: 171-176.

Morales, F. ; Jiménez-Pérez, S. 2001. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry 72: 119-125.

Nursten, H. 2005. Maillard Reaction - Chemistry, Biochemistry and Implications. Royal Society of Chemistry. p.p 6-10.

López-Galilea, I.; Peña, M.; Cid, C. 2008.Application of multivariate analysis to investigate potential antioxidants in conventional and torrefacto roasted coffee. European Food Research and Technology 227: 141-149.

Ozcelik, B.; Lee, J.H.; Min, D.B. 2003. Effect of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. Journal of Food Science 68: 487-490.

Rufián-Henares, J.; Morales, F. 2007. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Research International 40: 995-1002.

Silvanm, J.; Lagemaat, J.; Olano, A.; Castillo, M. 2006. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. Journal of Pharmaceutical and Biomedical Analysis 4: 1543–1551.

Tehrani, K.; Kersiene, M.; Adams, A.; Venskutonis, R.; De Kimpe, N. 2002. Thermal degradation studies of glucose/glycine melanoidins. Journal of Agricultural and Food Chemistry 50: 4062-4068.

Waffenschmidt, S.; Jaenicke, L. 1987. Assay of reducing sugars in the nanomole range with 2–2’bicinchoninate. Analytical Biochemistry 165: 337–340.

Wagner, K.; Reichhold, S.; Koschutnig, K.; Cheriot, S.; Billaud, C. 2007. The potential antimutagenic and antioxidant effects of Maillard reaction products used as natural antibrowning agents. Molecular Nutrition and Food Reserch. 51: 496 – 504.

Xu, Q.; Tao, W.; Ao, Z. 2007. Antioxidant activity of vinegar melanoidins. Food Chemistry 102: 841-849.

Received: 10/01/13

Accepted: 26/03/13

Corresponding author: E-mail: aibarz@tecal.udl.cat (A. Ibarz)




DOI: http://dx.doi.org/10.17268/sci.agropecu.2013.01.05

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

           

  

      

            

    

     

   

                             

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe