Incremento del rendimiento y calidad nutricional del arroz con fertilización NPK complementada con micronutrientes

Jairo Cedeño, Galo Cedeño, Johanna Alcívar, Jessica Cargua, Frowen Cedeño, George Cedeño, Gonzalo Constante

Resumen


El objetivo de la investigación fue evaluar el efecto de la fertilización NPK complementada con micronutrientes sobre el rendimiento y calidad nutricional del arroz. Se condujo un experimento en diez fincas arroceras de la zona de San Jacinto, Rocafuerte, Manabí. En cada finca se establecieron dos parcelas de 100 m2, donde una recibió fertilización NPK + micronutrientes y la otra solo fertilización convencional con NPK. En ambos casos la dosis de fertilización fue de 180, 70 y 60 kg ha-1 de N, P y K, respectivamente. En el primer caso se utilizaron fertilizantes compuestos que incluyeron micronutrientes y en el segundo caso fertilizantes convencionales. Los datos fueron analizados con prueba estadística de t de Student para observaciones pareadas. Las principales variables registradas fueron rendimiento y contenido nutricional del grano. Se evidenció un incremento en rendimiento del 36,85% con la fertilización NPK + micronutrientes en relación al tratamiento control con NPK. De forma similar el contenido proteico, Fe y Zn se incrementó en 18,33, 31,58 y 33,33%, respectivamente, con la aplicación de micronutrientes, en contraste a la fertilización tradicional con NPK. Los resultados mostraron que la aplicación de micronutrientes contribuyó significativamente al incremento del rendimiento y calidad del grano de arroz.

 


Palabras clave


nutrición del arroz; elementos menores; productividad; biofortificación; calidad nutraceútica.

Texto completo:

PDF

Referencias


Ahmad, W.; Niaz, N.; Kanwal, S.; Rahmatullah; Khalid, M. 2009. Role of boron in plant growth: a review. J. Agric. Res. 47(3): 329 – 338.

Alamdari, M.; Mobasser, H. 2014. The effect of macro and micro-nutrient fertilizers on yield and yield attributes of rice in a calcareous soil. American Journal of Experimental Agriculture 4(12): 1604-1615.

Ashrafi, E.; Pirdashti, H.; Niknejhad, Y. 2014. Effect of iron, zinc and silicon application on quantitative parameters of rice (Oryza Sativa L. CV. Tarom Mahalli). Intl J Farm & Alli Sci. 3 (5): 529-533.

Alshaal, T.; El-Ramady, H. 2017. Foliar Application: from Plant Nutrition to Biofortification. The Environment,Biodiversity & Soil Security 1: 71- 83.

Bashir, K.; Takahashi, R.; Nakanishi, H.; Nishizawa, N. The road to micronutrient biofortification of rice: progress and prospects. Frontiers in Plant Science 4(15): 1 – 7.

Bouis, H.; Saltzman, A. 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security 12: 49–58.

Cakmak, I.; Kutman, U. 2017. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science 69(1): 172-180.

Das, J.; Salam, R.; Kumar, R.; Bhutta, Z. 2013. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Systematic Reviews 2: 67.

Dutta, S.; Das, S.; Pale, G.; Iangrai, B.; Aochen, C.; Rai, M.; Pattanayak, A. 2016. Current status and future prospects of research on genetically modified rice: A review. Agricultural Reviews 37(1): 10-18.

Food and Agriculture Organization of the United Nations (FAO). 2009. Global agriculture towards 2050: High Level Expert Forum - How to Feed the World in 2050. 4 pp. Disponible en: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

Food and Agriculture Organization of the United Nations (FAO). 2014. A regional rice strategy for sustainable food security in Asia and the Pacific. Final Edition. 52 pp.

Gnanamanickam, S. 2009. Rice and its importance to human life. Prog Biol Con 8: 1-11.

Hafeez, B.; Khanif, Y.; Saleem, M. 2013. Role of zinc in plant nutrition- A review. American Journal of Experimental Agriculture 3(2): 374-391.

Hansch, R.; Mendel, R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12: 259–266.

International Food Policy Research Institute (IFPRI). 2014. Global Nutrition Report 2014: Actions and Accountability to Accelerate the World’s Progress on Nutrition. Washington, DC.

Jena, J.; Sethy, P.; Jena, T.; Misra, S.; Sahoo, S.; Dash, G.; Palai, J. 2018. Rice biofortification: A brief review. Journal of Pharmacognosy and Phyto-chemistry 7(1): 2644-2647.

Jin, Z.; Minyan, W.; Lianghuan, W.; Jiangguo, W. and Chunhai, S. 2008. Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain. Journal of Plant Nutrition 31: 1599–1611.

Kumar, S. 2014. Role of micronutrient in rice cultivation and management strategy in organic agriculture - a reappraisal. Agricultural Sciences 5: 765-769.

Kumar, D.; Singh, Sh.; Singh, Sw.; Mishra, S.; Chauhan, D.; Dubey, N. 2015. Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant. 37: 139.

Ministerio de Agricultura y Ganadería (MAG). 2016. Boletín situacional del cultivo de arroz. Sistema de Información Pública Agropecuaria. Quito, EC. Disponible en: http://sipa.agricultura.gob.ec/biblioteca/boletines_situacionales/2016/boletin_situacional_arroz_2016.pdf

Meena, N.; Fathima, P. 2017. Nutrient Uptake of Rice as Influenced by Agronomic Biofortification of Zn and Fe under Methods of Rice Cultivation. Int. J. Pure App. Biosci. 5(5): 456-459.

Mohanty, S. 2013. Trends in global rice consumption. Rice Today 12(1): 44–45.

Muthayya, S.; Sugimoto, J.; Montgomery, S.; Maberly, G. 2014. An overview of global rice production, supply, trade, and consumption. Ann. N.Y. Acad. Sci. 1324: 7–14.

Phattarakul, N.; Rerkasem, B.; Li, L.; Hu, L.; Zou, C.; Ram, H.; Sohu, B.; Kang, B.; Surek, H.; Kalayci, M.; Yazici, A.; Zhang, F.; Cakmak, I. 2012. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361: 131–141.

Radhika, K.; Hemalatha, S.; Maragatham, S.; Praveena, S. 2013. Effect of foliar application of micronutrients on the yield components of rice and soil available micronutrients status. Asian Journal of Soil Science 8(2): 419 – 421.

Rout, G.; Sahoo, S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3: 1-24.

Roholla, S.; Shahsavari, M.; Rezaei, M. 2011. A general overview on manganese (Mn) importance for crops production. Australian Journal of Basic and Applied Sciences 5(9): 1799-1803.

Saha, S.; Chakraborty, M.; Padhan, D.; Saha, B.; Murmu, S.; Batabyal, K.; Seth, A.; Hazra, G.; Mandal, B. and Bell, R. 2017. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research 210: 52–60.

Serraj, R.; McNally, K.; Slamet, I.; Kohli, A.; Haefele, S.; Atlin, G.; Kumar, A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy. Plant Production Science 14(1): 1–14.

Siddika, M.; Abedin, M.; Sharmin, T.; Hanif, M.; Chandra, P. 2016. Effect of different micronutrients on growth and yield of rice. International Journal of Plant and Soil Science 12(6): 1-8.

Shayganya, J.; Peivandya, N.; Ghasemi, S. 2012. Increased yield of direct seeded rice (Oryza sativa L.) by foliar fertilization through multicomponent fertilizers. Archives of Agronomy and Soil Science 58(10): 1091–1098.

Yamasaki, H.; Pilon, M.; Shikanai, T. 2008. How do plants respond to copper deficiency?. Plant Signaling & Behavior 3(4): 231-232.

Yuan, L.; Wu, L.; Yang, C.; Lv, Q. 2012. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. J Sci Food Agric. 93(2): 254-261.

Yruela, I. 2005. Copper in plants. Braziliam Journal of Plant Physiology 17(1): 145 – 156.

Zaman, Q.; Aslam, Z.; Yaseen, M.; Ihsan, M.; Khaliq, A.; Fahad, S.; Bashir, S.; Ramzani, P.; Naeem, M. 2017. Zinc biofortification in rice: leveraging agricultura to moderate hidden hunger in developing countries. Archives of Agronomy and Soil Science 64(2): 147-161.

Zhu, G.; Peng, S.; Huang, J.; Cui, K.; Nie, L.; Wang. F. 2016. Genetic improvements in rice yield and concomitant increases in radiation and nitrogen use efficiency in middle reaches of Yangtze river. Scientific Reports 6: 21049.

Zhang, C.; Zhao, W.; Gao, A.; Su, T.; Wang, Y.; Zhang, Y.; Zhou, X.; He, X. 2017. How Could Agronomic Biofortification of Rice Be an Alternative Strategy With Higher Cost-Effectiveness for Human Iron and Zinc Deficiency in China?. Food and Nutrition Bulletin 39(2): 246-259.

Received May 29, 2018.

Accepted November 12, 2018.

Corresponding author: alex.musaespam@gmail.com (G. Cedeño).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2018.04.05

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

           

  

      

            

    

     

   

                             

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe