Volatile organic compounds: plant natural defense mechanisms against herbivorous arthropods and an opportunity for plant breeding of cotton

Ronald Villamar-Torres, Seyed Mehdi, Gabriel Liuba-Delfini, Luz García, Christopher-Robin Viot

Resumen


Plants’ natural defense mechanisms against herbivorous arthropods include the emission of volatile organic compounds (VOC). Nowadays field observations about plant-insect interactions are better understood thanks to the increasingly scientific investigations over recent decades. There are now more precise data about molecules, action modes and physiological and genetic bases of these plant defense mechanisms. VOC present an important potential for crop protection and pesticide use reduction. In the present review, we focus on the latest research advances about plant protection provided by VOC, considering experimental methods of volatile analysis and the involved genes toward genetic improvement of natural defense in the future varieties, particularly for Upland cotton Gossypium hirsutum.


Palabras clave


stress; insect; terpene; secondary metabolites; Gossypium hirsutum.

Texto completo:

PDF

Referencias


Alborn, H.T.; Turlings, T.C.J.; Jones, T.H.; Stenhagen, G.; Loughrin, J.H.; Tumlinson, J.H. 1997. An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion. Science 276(5314): 945–949.

Arimura, G.; Ozawa, R.; Nishioka, T.; Boland, W.; Koch, T.; Kuhnemann, F.; Takabayashi, J. 2002. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J, 29.

Atiama-Nurbel, T.; Quilici, S.; Boyer, E.; Deguine, J.-P.; Glenac, S.; Bialecki, A. 2015. Volatile Constituents of Cucumis sativus. Chemistry of Natural Compounds 51(4): 771–775.

Aubourg, S.; Lecharny, A.; Bohlmann, J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267(6): 730-745.

Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117(4): 426–436.

Bernasconi, M.L.; Turlings, T.C.J.; Ambrosetti, L.; Bassetti, P.; Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomologia Experimentalis et Applicata 87(2): 133-142.

Brévault, T.; Renou, A.; Vayssières, J.-F.; Amadji, G.; Assogba-Komlan, F.; Diallo, M. D.; … Clouvel, P. 2014a. DIVECOSYS: Bringing together researchers to design ecologically-based pest management for small-scale farming systems in West Africa. Crop Protection 66: 53–60.

Bruce, T.J.A.; Midega, C.A.O.; Birkett, M.A.; Pickett, J.A.; Khan, Z.R. 2010. Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biology Letters 6(3): 314–317.

insma, M.; IJdema, H.; Van Loon, J.J.A.; Dicke, M. 2008. Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomologia Experimentalis et Applicata 128(1): 109–116.

Câmara, A.C.L.; do Vale, A.M.; Mattoso, C.R.S.; Melo, M.M.; Soto-Blanco, B. 2016. Effects of gossypol from cottonseed cake on the blood profile in sheep. Tropical Animal Health and Production 48(5): 1037–1042.

Catola, S.; Centritto, M.; Cascone, P.; Ranieri, A.; Loreto, F.; Calamai, L.; Balestrini, R.; Guerrieri, E. 2018. Effects of single or combined water deficit and aphid attack on tomato volatile organic compound (VOC) emission and plant-plant communication. Environmental and Experimental Botany 153: 54–62.

Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66(1): 212–229.

Chen, F.; Tholl, D.; D’Auria, J.C.; Farooq, A.; Pichersky, E.; Gershenzon, J. 2003. Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. The Plant Cell 15(2): 481–494.

Chen, M.-S. 2008. Inducible direct plant defense against insect herbivores: A review. Insect Science 15(2): 101–114.

d’Eeckenbrugge, G.C.; Lacape, J.-M. 2014. Distribution and Differentiation of Wild, Feral, and Cultivated Populations of Perennial Upland Cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLOS ONE 9(9): e107458.

D’Alessandro, M.; Turlings, T.C.J. 2005. In Situ Modification of Herbivore-Induced Plant Odors: A Novel Approach to Study the Attractiveness of Volatile Organic Compounds to Parasitic Wasps. Chemical Senses 30(9): 739–753.

Degen, T.; Dillmann, C.; Marion-Poll, F.; Turlings, T.C.J. 2004. High Genetic Variability of Herbivore-Induced Volatile Emission within a Broad Range of Maize Inbred Lines. Plant Physiology 135(4): 1928–1938.

Dicke, M.; Baldwin, I.T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help.’ Trends in Plant Science 15(3): 167–175.

Dong, F.; Fu, X.; Watanabe, N.; Su, X.; Yang, Z. 2016. Recent Advances in the Emission and Functions of Plant Vegetative Volatiles. Molecules 21(2): 124.

Dubey, N.K.; Goel, R.; Ranjan, A.; Idris, A.; Singh, S.K.; Bag, S.K.; Chandrashekar, K.; Deo-Pandey, K.; Kumar-Singh, P.; Sawant, S.V. 2013. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genomics 14: 241.

Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198(1): 16–32.

Erb, M.; Lenk, C.; Degenhardt, J.; Turlings, T. C. J. 2009. The underestimated role of roots in defense against leaf attackers. Trends in Plant Science 14(12): 653–659.

Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Pichersky, E. 2011. The tomato terpene synthase gene family. Plant Physiology 157(2): 770-789.

Fothergill, W.T; 1968. Gas chromatography. Technique. Proceedings of the Royal Society of Medicine 61(5): 525–528.

Gershenzon, J.; Dudareva, N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology 3(7): 408–414.

Griffith, M.; Walker, J.R.; Spies, N.C.; Ainscough, B.J.; Griffith, O.L. 2015. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. PLOS Computational Biology 11(8): e1004393.

Hagenbucher, S.; Eisenring, M.; Meissle, M.; Romeis, J. 2017. Interaction of transgenic and natural insect resistance mechanisms against Spodoptera littoralis in cotton. Pest Management Science 73: 1670-1678.

Huang, X.; Xiao, Y.; Köllner, T.G.; Zhang, W.; Wu, J.; Wu, J.; Guo, Y.; Zhang, Y. 2013. Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Plant Physiology and Biochemistry 73: 302–308.

Huang, X.-Z.; Chen, J.-Y.; Xiao, H.-J.; Xiao, Y.-T.; Wu, J.; Wu, J.-X.; Zhou, J.-J.; Zhang, Y.-J.; Guo, Y.-Y. 2015. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. Scientific Reports 5: 11867.

Huffaker, A.; Pearce, G.; Veyrat, N.; Erb, M.; Turlings, T.C.J.; Sartor, R.; Shen, Z.; Briggs, S.P.; Vaughan, M.M.; Alborn, H.T.; Teal, P.E.A.; Schmelz, E.A. 2013. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proceedings of the National Academy of Sciences 110(14): 5707–5712.

Iijima, Y. 2014. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant. Metabolites 4(3): 699–721.

Irmisch, S.; Jiang, Y.; Chen, F.; Gershenzon, J.; Köllner, T.G. 2014. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biology 14: 270.

Jazayeri, S.M.; Melgarejo-Muñoz, L.M.; Romero, H.M. 2015. RNA-SEQ: a glance at technologies and methodologies. Acta Biológica Colombiana 20(2): 23-35.

Jazayeri, S.M.; Villamar-Torres, R.V. 2017. Genomic and transcriptomic approaches toward plant selection. Journal of Science and Research: Revista Ciencia e Investigación 2(8): 54–64.

Kallenbach, M.; Oh, Y.; Eilers, E.J.; Veit, D.; Baldwin, I.T.; Schuman, M.C. 2014. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal 78(6): 1060–1072.

Kappers, I.F.; Aharoni, A.; Herpen, T.W.J.M.; Luckerhoff, L.L.P.; Dicke, M.; Bouwmeester, H.J. 2005. Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 309(5743): 2070-2.

Kessler, A.; Halitschke, R. 2007. Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Current Opinion in Plant Biology 10(4): 409–414.

Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. 2006. Diversity and distribution of floral scent. The Botanical Review 72: 1.

Köllner, T. G.; Held, M.; Lenk, C.; Hiltpold, I.; Turlings, T.C. J.; Gershenzon, J.; Degenhardt, J. 2008. A maize (E)-β-Caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. The Plant Cell 20(2): 482–494.

Köpke, D.; Schröder, R.; Fischer, H.M.; Gershenzon, J.; Hilker, M.; Schmidt, A. 2008. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228(3): 427–438.

Kost, C.; Heil, M. 2006. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. Journal of Ecology 94(3): 619–628.

Krempl, C.; Heidel-Fischer, H.M.; Jiménez-Alemán, G.H.; Reichelt, M.; Menezes, R.C.; Boland, W.; Vogel, H.; Heckel, D.G.; Joußen, N. 2016. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology 78: 69–77.

Külheim, C.; Padovan, A.; Hefer, C.; Krause, S.T.; Köllner, T.G.; Myburg, A.A.; … Foley, W.J. 2015. The Eucalyptus terpene synthase gene family. BMC Genomics 16: 450.

Kusano, M.; Iizuka, Y.; Kobayashi, M.; Fukushima, A.; and Saito, K. 2013. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis. Metabolites 3(2): 223–242.

Lampson, B. D.; Khalilian, A.; Greene, J. K.; Han, Y. J.; Degenhardt, D. C.; Lampson, B. D.; … Degenhardt, D.C. 2014. Development of a Portable Electronic Nose for Detection of Cotton Damaged by Nezara viridula (Hemiptera: Pentatomidae). Journal of Insects 2014: e297219.

Leghari, M.A.; Kalroo, A.M.; Leghari, A.B. 2001. Studies on host plant resistance to evaluate the tolerance/susceptibility against cotton pests. Pakistan Journal of Biological Science 4: 1506–1508.

Liang, P.-H.; Ko, T.-P.; Wang, A. H.-J. 2002. Structure, mechanism and function of prenyltransferases. European Journal of Biochemistry 269(14): 3339–3354.

Loreto, F.; Dicke, M.; Schnitzler, J.-P.; Turlings, T.C.J. 2014. Plant volatiles and the environment. Plant, Cell and Environment 37(8): 1905–1908.

Loughrin, J.H.; Manukian, A.; Heath, R.R.; Turlings, T. C.; Tumlinson, J.H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proceedings of the National Academy of Sciences of the United States of America 91(25): 11836–11840.

Martin, D.M.; Aubourg, S.; Schouwey, M.B.; Daviet, L.; Schalk, M.; Toub, O.; … Bohlmann, J. 2010. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays. BMC Plant Biology 10: 226.

Negre-Zakharov, F.; Long, M.C.; Dudareva, N. 2009. Floral Scents and Fruit Aromas Inspired by Nature. In A. E. Osbourn and V. Lanzotti (Eds.), Plant-derived Natural Products. Springer US. pp. 405–431.

Oliveira, C.M.; Auad, A.M.; Mendes, S.M.; Frizzas, M.R. 2014. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection, 56, 50–54.

Ormeño, E.; Goldstein, A.; Niinemets, Ü. 2011. Extracting and trapping biogenic volatile organic compounds stored in plant species. TrAC Trends in Analytical Chemistry 30(7): 978–989.

Oshlack, A.; Robinson, M.D.; Young, M.D. 2010. From RNA-Seq reads to differential expression results. Genome Biology 11(12): 220.

Padovan, A.; Keszei, A.; Wallis, I.R.; Foley, W.J. 2012. Mosaic Eucalypt Trees Suggest Genetic Control at a Point That Influences Several Metabolic Pathways. Journal of Chemical Ecology 38(7): 914–923.

Pare, P. W.; Tumlinson, J.H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol, 114.

Paré, P. W.; Tumlinson, J.H. 1999. Plant Volatiles as a Defense against Insect Herbivores. Plant Physiology 121(2): 325–332.

Pinto-Zevallos, D.M.; Bezerra, R.H.S.; Souza, S.R.; Ambrogi, B.G. 2018. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Experimental and Applied Acarology 74(3): 261–274.

Renou, A.; Togola, M.; Téréta, I.; Brévault, T. 2012. First Steps Towards “Green” Cotton in Mali. Outlooks on Pest Management 23(4): 173–176.

Risticevic, S.; Pawliszyn, J. 2013. Solid-Phase Micro-extraction in Targeted and Nontargeted Analysis: Displacement and Desorption Effects. Analytical Chemistry 85(19): 8987–8995.

Robert, C.A.M.; Erb, M.; Hiltpold, I.; Hibbard, B.E.; Gaillard, M.D.P.; Bilat, J.; … Zwahlen, C. 2013. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnology Journal 11(5): 628–639.

Rodriguez-Saona, C.R.; Frost, C.J. 2010. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Plant Signaling and Behavior 5(1): 58–60.

Rohmer, M. 2009. Mevalonate-independent methyl- erythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure and Applied Chemistry 75(2–3): 375–388.

Rose, U.; Manukian, A.; Heath, R.R.; Tumlinson, J.H. 1996. Volatile Semiochemicals Released from Undamaged Cotton Leaves (A Systemic Response of Living Plants to Caterpillar Damage). Plant Physiology 111(2): 487–495.

Schnee, C.; Köllner, T.G.; Held, M.; Turlings, T.C.J.; Gershenzon, J.; Degenhardt, J. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America 103(4): 1129–1134.

Schoonhoven, L.M.; Loon, J.J.A. van; Dicke, M. 2005. Insect-plant biology.; (Ed.2), xvii + 421 pp.

Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. 2008. Biosynthesis of plant-derived flavor com-pounds. The Plant Journal 54(4): 712–732.

Shendure, J.; Ji, H. 2008. Next-generation DNA sequencing. Nature Biotechnology 26(10): 1135–1145.

Shiojiri, K.; Kishimoto, K.; Ozawa, R.; Kugimiya, S.; Urashimo, S.; Arimura, G.; … Takabayashi, J. 2006. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proceedings of the National Academy of Sciences 103(45): 16672–16676.

Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namieśnik, J. 2010. Current trends in solid-phase microextraction (SPME) fibre coatings. Chemical Society Reviews 39(11): 4524–4537.

Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Röse, U. S. R.; Schnitzler, J.-P. 2006. Practical approaches to plant volatile analysis. The Plant Journal 45(4): 540–560.

Ton, J.; D’Alessandro, M.; Jourdie, V.; Jakab, G.; Karlen, D.; Held, M.; Turlings, T.C.J. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. The Plant Journal 49(1): 16–26.

Trapp, S.C.; Croteau, R.B. 2001. Genomic Organization of Plant Terpene Synthases and Molecular Evolu-tionary Implications. Genetics 158(2): 811–832.

Turlings, T.C.J.; Tumlinson, J.H.; Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250.

Van Bramer, S.; Goodrich, K.R. 2015. Determination of Plant Volatiles Using Solid Phase Microextraction GC–MS. Journal of Chemical Education 92(5): 916–919.

Vas, G.; Vékey, K. 2004. Solid-phase micro-extraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry 39(3): 233–254.

Villamar-Torres, R.O.; Liu-Ba, G.A.; Legavre, T.; Viot, C. 2016. Los compuestos orgánicos volátiles, defensa natural del algodón #Gossypium hirsutum# mejorable gracias a la biotecnología. CIBB-BA-EO-061 [Communication avec actes].

Viot, C. 2016. La biotecnología y su utilización en conservación y caracterización de los recursos genéticos de #Gossypium barbadense# y en mejoramiento del algodón. Available in: http://www.ipaperu.org/index.php?option=com_docmanandtask=doc_detailsandgid=52andItemid=76

War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior 7(10): 1306–1320.

War, A.R.; Sharma, H.C.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. 2011. Herbivore induced plant volatiles. Plant Signaling and Behavior 6(12): 1973–1978.

Yang, C.; Wang, J.; Li, D. 2013a. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: A review. Analytica Chimica Acta 799: 8–22.

Yang, C.-Q.; Wu, X.-M.; Ruan, J.-X.; Hu, W.-L.; Mao, Y.-B.; Chen, X.-Y.; Wang, L.-J. 2013b. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum). Phytochemistry 96: 46–56.

Zhou, M.; Zhang, C.; Wu, Y.; Tang, Y. 2013. Metabolic engineering of gossypol in cotton. Applied Microbiology and Biotechnology 97(14): 6159–6165.

Received February 3, 2018.

Accepted June 3, 2018.

Corresponding author: ronald.villamar_torres@cirad.fr (R. Villama-Torres).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2018.02.14

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

  

 

   

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe