Efecto de la intensidad de diodos electroluminosos y fotoperiodo en la optimización de la producción de biomasa de Spirulina (Arthrospira)

V. Vásquez-Villalobos, D. Vergaray, J. Méndez, I. Barrios, R. Baquedano, C. Caldas, J. Cruz, J. Gamboa, I. Rivera

Resumen


Se optimizó la producción de biomasa (ф) de cultivos batch de Spirulina sp. en fotobiorreactores a escala de laboratorio (FBL) de 0,2 L, por efecto de X1: intensidad de diodos electroluminosos (LED’s) entre 1,25 a 41,7 klux y X2: fotoperiodo de12/12 a 24/0, h de luz/h de oscuridad (L/O) utilizando un diseño compuesto central rotacional (DCCR) y metodología de superficie de respuesta (MSR). Asimismo, se evaluaron las características hidráulicas y el valor ф de un cultivo batch de Spirulina en un fotobiorreactor de canal bucle cerrado abierto a la atmósfera (FB-BCAA) por efecto de la iluminación LED de 8,3±1,9 klux y fotoperiodos de 12/12 y 24/0 h L/O. En los FBL se encontró dos zonas óptimas de ф, ambas con una intensidad LED de 21,5 klux y fotoperiodos 12/12 y 24/0 h L/O, siendo los valores ф de 1,65 y 1,62 respectivamente. El modelo matemático que indicó estas zonas fue de segundo orden (p = 0,000396 < 0,05) con una consistencia de predicción de R² = 0,92. En el FB-BCAA, el cultivo de Spirulina sp. con fotoperiodo de 12/12 h L/O, mostró un valor ф de 0,72, una adaptación más rápida de λ = 4,62 h, una mayor velocidad específica de crecimiento de μmax= 0,033 h-1 y menor tiempo de consumo de energía de 74,05 h; comparado con el cultivo desarrollado con fotoperiodo 24/0 h L/O. Los parámetros hidráulicos del FB-BCAA fueron: volumen de operación 2,5 L, velocidad de flujo 0,26 m/s, números de Reynolds (Re) 15488, Froude (Fr) 0,60 y Vedernikov (Ved) 0,90.


Palabras clave


Spirulina; fotobiorreactor; air-lift; hold-up; LED; optimización; fotoperiodo

Texto completo:

PDF

Referencias


Amini-Khoeyi, Z.; Seyfabadi, J.; Ramezanpour, Z. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae Chlorella vulgaris. Aquaculture International 20(1):41-49.

Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. 2016. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry. 194: 1056-1063.

Brennan, L.; Owende, P. 2010. Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14: 557-577.

Carvalho, A.; Silva, S.; Baptista, J.; Malcata, F. 2011. Light requirements in microalgae photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89: 1275-1288.

Cheirsilp, B., Torpee, S., 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology 110: 510–516.

Chen, C. 1995. Free-Surface Stability Criterion as Affected by Velocity Distribution. Journal of Hydraulic Engineering 121: 736-743.

Chen, C.; Yeh, K.; Aisyah, R.; Lee, D.; Chang, J. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102: 71-81.

Chen, Z.; Zhang, X.; Jiang, Z.; Chen, X.; He, H.; Zhang, X. 2016. Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles Installation, Bioresource. Technology 219: 387-391.

Contreras-Flores, C.; Peña-Castro, J.; Flores-Cotera, L.; Cañizares-Villanueva, R. 2003. Avances en el diseño conceptual de fotobiorreactores para el cultivo de microalgas. Interciencia 28(8): 450-456.

da Silva, M.; Casazza, A.; Ferrari, P.; Perego, P.; Bezerra, R.; Converti, A.; Porto, A. 2016. A new bioenergetic and thermodynamic approach to batch photo-autotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions. Bioresource Technology 207: 220-228.

del Álamo, J. 2005. La organización a gran escala de canales turbulentos. Tesis Escuela Técnica Superior de Ingenieros Aeronáuticos. Universidad Politécnica de Madrid. Pp. 120.

Dubinsky, Z.; Matsukawa, R.; Karube, I. 1995. Photobiological aspects of algal mass culture. Journal of Marine Biotechnology 2:61-65.

Fang, F.; Lu, W.; Shan, Q.; Cao, J. 2014. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats. Carbohidrate Polymers 106: 1-6.

Gallardo-Rodríguez, J..; Sánchez-Mirón, A.; García-Camacho, F.; Cerón-García, M.; Belarbi, E.; Chisti, Y.; Molina-Grima, E. 2009. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnology Progress 25(3): 792-800.

García-Camacho, F.; Gallardo-Rodríguez, J.; Sánchez-Mirón, A.; Belarbi, E.; Chisti, Y.; Molina-Grima, E. 2011. Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochemistry 46: 936-944.

Godoy, E.; Rangel-Yagui, C.; Sato, S.; Monteiro de Carvalho, J. 2011. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology 42(1): 362-373.

Gordon, J.; Polle, J. 2007. Ultrahigh bioproductivity from algae. Applied Microbiology and Biotechnology 76(5): 969-975.

Gudin, C.; Chaumont, D. 1991. Cell-Fragility – The Key Problem of Microalgae Mass Production in Closed Photobioreactors. Bioresource Technology 38(2-3):145-151.

Handler, R.; Canter, C.; Kalnes, T.; Lupton, F.; Kholiqov, O.; Shonnard, D.; Blowers, P. 2012. Evaluation of environmental impacts from microalgae cultivation in open air raceways ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Research 1(1): 83-92.

Habib, M.; Parvin, M.; Huntington, T.; Hasan, M. 2008. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1034. Rome FAO. 33p.

Jiménez, C.; Cossío, B.; Niell, F. 2003. Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221: 331-345.

Kebede, E.; Ahlgren, G. 1996. Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 332(2): 99-109.

Li, M.; Hu, D.; Liu H. 2014. Photobioreactor with ideal light-dark cycle designed and built from mathematical modeling and CFD simulation. Ecological Engineering 73: 162-167.

López-Rosales, L.; García-Camacho, F.; Sánchez-Mirón, A.; Contreras-Gómez, A.; Molina-Grima, E. 2015. An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresource Technology 197: 375-382.

Markou, G; Georgakakis, D. 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy 88: 3389-3401.

Mitsuhashi, S.; Fujimoto, M.; Muramatsu, H.; Tanlshita, K. 1994. Effect of simple shear flow on photosynthesis rate and morphology of micro algae. Acta Astronautica 33: 179-187.

Pedrosa-Bezerra, R.; Chuei-Matsudo, M.; Sato, S.; Perego, P.; Converti, A.; Monteiro de Carvalho, J. 2012. Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects. Biomass and Bioenergy. 37: 309-317.

Prussi, M.; Buffi, M.; Casini, D.; Chiaramonti, D.; Martelli, F.; Carnevale, M.; Tredici, M.; Rodolfi, L. 2014. Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass and bioenergy 67: 390-400.

Ramírez-Mérida, L.; Zepka, Q.; Jacob-Lopes, E. 2015a. Current Status, Future Developments and Recent Patents on Photobioreactor Technology. Recent Patents on Engineering 9 (2): 80-90.

Ramírez-Mérida, L.; Zepka, Q.; Jacob-Lopes, E. 2015b. Why does the Photobioreactors Fail? Journal of Bioprocessing & Biotechniques 5:7.

Raposo, M.; de Morais, A. 2015. Microalgae for the prevention of cardiovascular disease and stroke. Life Sciences 125: 32-41.

Ravelonandro, P.; Ratianarivo, D.; Joannis-Cassand, C.; Isambertc, A.; Raherimandimby, M. 2011. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and bioproducts Processing 89: 209-216.

Rengifo. M.A.; Vargas, C. 2012. Caracterización óptica de Diodos emisores de Luz mediante sus espectros de emisión y patrones de radiación. Scientia et Technica. Universidad Tecnológica de Pereira. 51: 66-70.

Richmond, A.; Hu, Q. 2013. Handbook of Microalgal Culture: Applied phycology and biotechnology. Wiley Blackwell. 736 pp.

Rodrigues, M.; Ferreira, L.; Converti, A.; Sato, S.; Carvalho, J. 2010. Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresource Technology 101: 4491-4498.

Rodríguez, A.; Triana, F. 2006. Evaluación del pH en el cultivo de Spirulina spp. (=Arthrospira) bajo condiciones de laboratorio. Tesis Microbiólogo Industrial. Pontificia Universidad Javeriana. Bogotá.

Serbana, M.C.; Sahebkarb, A.; Dragan, S.; Stoichescu-Hogea, G.; Ursoniu, S.; Andrica, F.; Banach, M. 2016. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clinical Nutrition. 35 (4): 842-851.

Singh, R.M.; Sharma, S. 2012. Development of suitable photobioreactor for algae production – A review. Renewable and Sustainable Energy Reviews 16: 2347-2353.

Ugwu, C.; Aoyagi, H.; Uchiyama, H. 2008. Photo-bioreactors for mass cultivation of algae. Bioresource Technology 99(10): 4021-4028.

Vásquez-Villalobos, V.; Arteaga, P.; Chanamé, K.; Esquivel, A. 2013. Modelamiento matemático y por redes neuronales artificiales del crecimiento de Spirulina sp. en fotobiorreactor con fuente de luz fluorescente e iluminación en estado sólido. Scientia Agropecuaria 4: 199-209.

Vásquez-Villalobos, V.; Vergaray, D.; Suarez, S.; Valladares, J.; Zamora, A.; Gaspar, K.; Escurra, X. 2014. Influencia de la proporción de agua de mar y bicarbonato en la producción de biomasa de Spirulina sp. con iluminación de diodo emisor de luz. Scientia Agropecuaria 5: 199-209.

Wen-Qing, S; Si-Dong, L.; Gao-Rong, L.; Wen-Hua, W.; Qing-Xiang, Ch.; Yong-Qiang, L.; Xu-Wei, L. 2016. Investigation of main factors affecting the growth rate of Spirulina. Optik – International Journal for Light and Electron Optics 127(16): 6688-6694.

Yean-Chang, Ch. 2011. The effect of shifts in medium types on the growth and morphology of Spirulina platensis (Arthrospira platensis). Journal of Marine Science and Technology 19(5): 565-570.

Zucarelli, G.V.; Morresi, M. del V. 2015. Flujo en canales abiertos: caracterización en cursos de la provincia de Santa Fé, República Argentina. Dpto. Hidrología. Universidad Nacional de Litoral. Disponible en: http://www.fceia.unr.edu.ar/curiham/Secciones/Cuadernos/Pdf-991/zucarelli-morresi.pdf

Received September 15, 2015.

Accepted March 11, 2017.

Corresponding author: vvasquezv@upao.edu.pe (V. Vásquez-Villalobos).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2017.01.04

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe