Efecto de la potencia de la fuente Dc en la densidad y temperatura electrónica del plasma durante el depósito de películas delgadas de nitruro de tungsteno
Resumen
En el presente trabajo se determinó el efecto sobre la densidad y temperatura electrónica del plasma debido a la variación de la potencia de la fuente de corriente continua durante el depósito de las películas delgadas de nitruro de tungsteno crecidas sobre sustratos de silicio.
Se utilizó un difractómetro de rayos X, un espectrógrafo y una cámara ICCD. Los espectros fueron utilizados para determinar la densidad y temperatura electrónica del plasma con diferentes valores de potencia. En la medida que incrementa la potencia de la fuente de corriente continua, la temperatura electrónica y la densidad electrónica del plasma varían en forma curvilínea.
Palabras claves: Nitruro de tungsteno, densidad electrónica, temperatura electrónica, películas delgadas, potencia.
ABSTRACT
In this study we determined the effect on density and plasma electronic temperature due to the variation of the DC sputtering power during deposition of thin films of tungsten nitride grown on silicon substrates. To wich we used a X-ray diffractometer, sputtering camera, a spectrograph and ICCD camera. The spectra were used to calculate the density and plasma electronic temperature for each value of power supply. When increased the DC sputtering power, the electron temperature and the plasma electron density have a curvilinear variation.
Key words: Tungsten nitride, electronic density, electronic temperature, thin films, power
Citas
Huang, C.F., B.Y. Tsui, and C.H. Lu. Thermal stability and electrical characteristics of tungsten nitride gates in metal-oxide-semiconductor devices, Japanese Journal of Applied Physics, 47 (2): 872-878. 2008.
Cheng, H.E. and M.H. Hon. Influence of TiN coating thickness on the wear of Si3N4 -based cutting tools, Surface and Coating Technology 81: 256-261.
Lee, C.W and Y. T. Kim. High temperature thermal stability of plasma-deposited tungsten nitride Schottky contacts to GaAs, Solid-State Electronics, 38 (3): 679-682. 1995.
Chatterjee, S., Y. Kuo and J. Lu. Thermal annealing effect on electrical properties of metal nitride gate electrodes with hafnium oxide gate dielectrics in nano-metric MOS devices, Microelectronis Engineering 85 (1): 202-209. 2008.
Bäuerle, D. Laser Processing and Chemistry, Springer-Verlag, Berlin. Germany. 1996.
Abdelouahdi, K., C. Sant, C. Legrand-Buscema, P. Aubert, J. Perrière, G. R e n o u a n d P h . H o u d y. Microstructural and mechanical investigations of tungsten carbide films deposited by reactive RF sputtering, Surface and Coatings Technology, 200 (22-23): 6469-6473. 2006.
Kovaè, J., P. Panjan and A. Zalar. XPS analysis of WC thin films prepared by x y sputter deposition, Vacuum, 82 (2):150-153. 2007.
Polcar, T., N. Parreira and A. C a v a l e i r o. Tr i b o l o g i c a l characterization of tungsten nitride coatings deposited by reactive magnetron sputtering, Wear 262: 655-665.2007
Shen, Y., Y. Mai, W. McBride, Q. Zhang and D. McKenzie. Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films, Thin Solid Films 372: 257-264. 2000.
Hones, P., N. Martin, M. Regula and F. Lévy. Sctructural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D: Appl. Phys. 36: 1023-1029. 2003.
1. Soto, G., W. De la Cruz, F. F. Castillon, J. A. Días, R. Machorro, and M.H. Farías. Tungsten nitride films grown via pulsed laser deposition studied in sity by electron spectroscopies.Applied Surface Science, 214 (1-4): 58-67. 2003.
Lange, S., H. Bartzsch, P. Frach, and K. Goedicke. Pulse magnetron sputtering in a reactive gas mixture of variable composition to manufacture multilayer and gradient optical properties of metal nitride gate coatings, Thin Solid Films 502: 29-33. 2006.
Restrepo, E., A. Devia, R. Cogollo, A. Mariño y H. Sánchez. Espectrocopía óptica de un sistema de magnetron sputtering, Revista Colombiana de Física, 34 (2): 488-492. 2002.
Harilal, S.S., et al, Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82 (5): 2140-2146. 1997.
Nam, S. and Young K. Excitation temperature and Electron number density measured for end-on-view inductively coupled plasma discharge. Bull Korean Chem. Soc., 22(8): 827-832. 2001.
Pérez-Tijerina, E., J. Bohigas and R. Machorro. Density and temperature sensitive line ratios in plasma generated by laser ablation, J. Appl. Phys. 90 (7): 3192-3199. 2001.
Pérez-Tijerina, E., J. Bohigas and R. Machorro. Density and temperature maps of an aluminium plasma produced by laser ablation, Revista Mexicana de Física 51 (2): 153-156. 2005.
Glusker, J.P., M. Lewis and M. Rossi.Crystal Structure Analysis for Chemists and Biologists, VCH Publisher, New York.USA. 1994.
Soto, G., W. De la Cruz and M. Farías. XPS, AES, and EELS characterizationof nitrogen-containing thin films, Journal of Electrón Spectroscopy and Related Phenomena, 135: 27-39. 2004.
International Centre for Diffraction data. Powder Diffraction File, 2003.
Harilal, S.S. Spatial and temporal evolution of argon sparks, Applied Optics, 43 (19): 3931-3937. 2004.
Harilal, S.S., B. O'Shay and M.S. T i l l a c k . S p e c t r o s c o p i c characterization of laser-induced tin plasma, J. Appl. Phys. 98: 013306-1, 013306-7. 2005.
Griem, H.R. Plasma Spectroscopy, McGraw-Hill, New York, USA. 1964.
lhttp://physics.nist.gov/PhysRefData/ASD/lines_form.html
Bekefi, G. 1976. Principles of Laser Plasmas, John Wiley & Sons, Inc. New York, USA.
Yamamoto, T., M. Kawate, H. Hasegawa and T. Suzuki, 2005. Effects of nitrogen on microstructures of WNx films synthesized by cathodic arc method, Surface & Coatings technology, 193: 372-374.