Efecto de la temperatura de recocido en la cristalinidad y tamaño de nanoparticulas de ZnO sintetizadas por el método Sol-Gel
Resumen
Se han producido nanopartículas de ZnO a través del método Sol-Gel, evaluando el efecto de la temperatura de recocido (350, 450, 550 y 650°C) sobre su cristalinidad y tamaño.
Mediciones de difracción de rayos X evidencian que, incluso sin necesidad de recocido, las nanopartículas de ZnOpresentan fase wurtzita con estructura hexagonal sin presencia de fases secundarias. La cristalinidad de las nanopartículas mejora a medida que aumenta la temperatura, produciéndose al mismo tiempo un aumento en su tamaño desde 10 hasta 30nm. Los resultados de FT-IR muestran la presencia de grupos acetato en las nanopartículas sin recocido, eliminándose con el tratamiento térmico. Mediante espectroscopiaRaman se han determinado tres bandas características del ZnO en las nanopartículas sin recocido, siendo la H más intensa la correspondiente al modo E cuya intensidad aumentó para las nanopartículas 2 recocidas a 650°C para la cual se observaron otras bandas características del ZnO. Los resultados de fotoluminiscencia muestran que las nanopartículas presentan una intensa
emisión ultravioleta pero débil emisión visible, no apreciándose efecto significativo del recocido.
Palabras clave: Nanoparticulas, óxido de zinc, Sol-Gel, recocido, cristalinidad.
ABSTRACT
ZnO nanoparticles have been synthesizedby using the Sol-gel method and the effect of annealing temperature (350, 450, 550 y 650°C) on theircrystallinity and size have been evaluated. X-ray diffraction measurements evidenced thatall ZnO nanoparticles showed hexagonal wurtzite, and no secondary phases were detected. Enhancing of crystallinityand an increasing of average particle size, from 10 to 30nm, as annealing temperature increased was clearly observed. Fourier Transform Infrared results showed the presence of acetate groups on no annealed nanoparticles, which were eliminated after annealing treatment. By Raman spectroscopy three characteristic bands of ZnO have been identified in as synthesized H nanoparticles, being the most intense the corresponding to the E mode, whose intensity 2 increased for the nanoparticles annealed at 650°C for which other characteristic bands of ZnO were clearly identified. Photoluminescence spectra showed that ZnOnanoparticles present an intense ultraviolet and a weak visible emission, and no significant effect of annealing was observed.
Key words: Nanoparticles, zinc oxide, Sol-Gel, annealing, crystallinity
Citas
Poole Ch.Jr. y Owens F.J. Introduction to nanotechnology, John Wiley&Sons, New Jersey 2003. pp. 90
Lines MG. Nanomaterials for practical functional uses. J. Alloys Comp. 449 (2008) 242-245
Morkoç H y Özgür Ü. Zinc Oxide. Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. Germany 2009 pp. 19
Solanki PR, Kaushik A, Ansari A.A. y Malhotra B.D.Nanostructured zinc oxide platform for cholesterol
sensorAppl. Phys. Lett. 2009;94:143901
Rehman S, Ullah R, Butt AM y Gohar ND. Strategies of making TiO and ZnO 2 visible light active. J. Hazard. Mater.
; 170:560-569
Jalal R, Goharshadi E, Abareshi M, Moosavi M y col.ZnOnanofluids: Green synthesis, characterization, and
antibacterial activity. Mater. Chem. Phys. 2010;121:198-201
Eskandari M, Haghighi N, Ahmadi V,Haghighi F y Mohammadi SHR. Growth and investigation of antifungal properties of ZnOnanorod arrays on the glass. Physica B 2011;406:112-114
Ko S, Lee D, Kang H, y col. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011;11:666-671
Perales O, Parra A, Singhal R, Voyles P, Zhu Y, Jia Wy Tomar M. Evidence of ferromagnetism in Zn MO (M=Ni, 1-x x
Cu) nano crystals for spintronicsNanotechnology 2007;18:315606
Li J, Guo D, Wang X, Wang H, Jiang H y Chen B. The Photodynamic Effect of Different Size ZnO Nanoparticles on
Cancer Cell Proliferation In Vitro. Nanoscale Res. Lett. 2010;5:1063-1071
Jáuregui S, Perales O, Noriega L y Castillo L, Structural, Optical and Magnetic properties of Co-doped ZnONanopowders, en Mater. Res. Soc. Symp. Proc. 2011;Vol. 1292
Lawes G,Risbud A, Ramirez A y Seshadri R. Absence of ferromagnetism in Co and Mn substituted polycrystalline
ZnO. Phys. Rev. B 2005;71:045201.
Baek S, Song J y Lim S. Improvement of the optical properties of ZnOnanorods by Fe doping. Physica B 2007;399:101-104
S. Jáuregui, Perales O, Jia W, Vázquez O y Angelats L. Structural, optical and luminescent properties of luminescent properties of ZnO:Eu3+ nanocrystal prepared by modified Sol-Gel method.Mater. Res. Soc. Symp. Proc. 2009; Vol. 1174:1174-
Yang L, Wang X, Li Z, Liu P y col. (Er, Yb)-co-doped multifunctional ZnO transparent hybrid materials:fabrication, luminescent and magnetic properties. J. Phys. D: Appl. Phys.
;44:155404
Hench LL y West JK. The Sol-Gel Process. Chem. Rev. 1990;90:33-72.
Wang H y Xie Ch. Effect of annealing temperature on the microstructures and photocatalytic property of colloidal ZnO nanoparticles. J. Phys. Chem. Solids 2008;69:2440-2444.
Zak AK, Abrishami ME, Abd W. Majid, R. Yousefi y col. Effects of annealing temperature on some structural and
optical properties of ZnO nanoparticles prepared by a modified sol-gelcombustion method. Ceramics International 2011;37:393-398
Zhou J, Zhao F, Wang Y, Zhang YyYang L. Size-controlled synthesis of ZnO nanoparticls and their photoluminescence properties. J. Lumin. 2007;122-123:195-197
De Berardis B, Civitelli G, Condello M y col. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. & Appl. Pharmacol.
;246:116-127
Hammad T, Salem J y Harrison R. The influence of annealing temperature on the structure, morphologies and optical properties of ZnO nanoparticles Superlatt. &Microstruct. 2010;47:335-340
Jáuregui S,Perales O, Urcia S, Asmat M y Quezada E. Structural and Magnetic Properties of Zn CoO Nanoparticles 1-x x Prepared by a Simple Sol-Gel Method at Low Temperature, en Mater. Res. Soc. Symp. Proc. Vol. 2010; Vol. 1201:1201-H10-34
Fewster, Paul F.X-Ray Scattering fromn Semiconductors. 2 edition. ImperialCollege Press. Singapore, 2003 pp. 73.
Phillips, J.C. Bonds and Bands in Semiconductors. Academic Press.New York, 1973. pp. 42
Yang J,Liu X, Yang L, Wang Yy col. Effect of annealing temperature on the structure and optical properties of ZnO
nanoparticles. J. Alloys Comp. 2009;447:632-635
Bányai, Ladislaus y Koch, Stephan. Semiconductor Quantum Dots. World Scientific, Publishing Co. Pte. Ltd.
Singapore, 1993. pp. 37
Irimpan L, Nampoori VP y Radhakrishnan P. Visible luminescence mechanism in nanoZnO under weak confinement regime. J. Appl. Phys. 2008;104:13112
Damen TC, Porto SPS y Tell B. Raman Effect in Zinc Oxide. Phys. Rev. 1966;142:570-574
Cuscó R,Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B. y Phys. Lett. 2004;84:4941-4943 col.Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007;75
Joshi P, Chakraborti S, Chakrbarti Pyc l . Role of Surface
AdsorbedAnionicSpecies in AntibacterialActivity of ZnO Quantum Dots Against Escherichia coli. J. Nanosci. Nanotechnol. 2009;9:1-7
DjuršiæAB, Leung YH, Tam K.H y col. D e f e c t e m i s s i o n s i n Z n O nanostructures.Nanotechnology 2007;18:09570
Li D,Leung YH, Djurišiæ AB y col. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004;85:1601-1603
Wang X, Li Q, Liu Z, Zhang J y Wang R.Low-temperature growth and properties of ZnO nanowires. Appl. Phys. Lett. 2004;84:4941-4943
Liu H, Zhang X, Li L, Wang YX y col. :165202 Role of point defects in room- temperature ferromagnetism of Cr- doped ZnO. Appl. Phys. Lett. 2007;91 :072511
AntibacterialActivity of ZnO Quantum
Yan Z, Ma Y, Wang D y col. Impact of .annealing on morphology and ferromagnetism of ZnOnanorods.Appl. Phys. Lett. 2008;92:081911