ALTERACIÓN DE LOS PARÁMETROS AgNOR EN ERITROCITOS DE Orechromis niloticus EXPUESTOS A DICROMATO DE POTASIO

Autores/as

  • Julio León Universidad Nacional de Trujillo.
  • Zulita Adriana Prieto Lara Profesora del Departamento de CC.BB. Universidad Nacional de Trujillo. Trujillo, Perú

Resumen

El objetivo fue cuantificar la variación de los parámetros de las regiones AgNOR en eritrocitos de sangre periférica de Oreochromis niloticus por una exposición prolongada a dicromato de potasio. Los individuos de Oreochromis niloticus fueron expuestos a dicromato de potasio durante 90 días, se colectaron muestras de sangre de cada pez antes y después de la exposición a los tratamientos. Se cuantificaron área y número de regiones AgNOR por célula y se realizaron las comparaciones estadísticas con una significancia de p<0.05. Los resultados muestran que el área de las regiones AgNOR de los grupos expuestos a dicromato de potasio fueron significativamente mayores al grupo control (p<0.05). El número promedio de las regiones AgNOR no fueron significativamente diferentes al grupo control (p=0.099). Se concluye que los valores altamente significativos en el área de las regiones AgNOR (p<0.05) en los grupos expuestos a dicromato de potasio indica la alta demanda de síntesis de proteínas que podría estar relacionada con la activación de la división celular en las células de sangre periférica.
Palabras clave: Dicromato de potasio, Cr VI, Oreochromis niloticus, regiones AgNOR, genotoxicidad.
ABSTRACT The objective of this study is to quantify variation of AgNOR regions parameters in peripheral blood erythrocytes of Oreochromis niloticus under treatment with potassium dichromate. Individuals of Oreochromis niloticus were exposed to potassium dichromate for 90 days, blood samples were taken from each fish before and after the exposure to the treatments. Area and number of AgNOR regions were quantified per cell and analyzed by statistical comparisons, p<0.05 was considered significant. Results showed that area of AgNOR regions in groups exposed to potassium dichromate was significantly higher than control group (p<0.05). The average of the AgNOR regions per cell was not statistically significant different (p=0.099). It is concluded that highly significant values in the AgNOR regions area of groups exposed to potassium dichromate indicate a high demand of protein synthesis that could be related to the activation of cellular division in peripheral blood cells.
Key words: Dichromate of potassium, Cr IV, Oreochromis niloticus, AgNOR regions, genotoxicity.
Recibido: 18 de Mayo de 2015
Aceptado: 11 de Diciembre de 2015

Biografía del autor/a

Julio León, Universidad Nacional de Trujillo.

 
Laboratorio de Genética, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo. Trujillo, Perú

Zulita Adriana Prieto Lara, Profesora del Departamento de CC.BB. Universidad Nacional de Trujillo. Trujillo, Perú

Profesora del Departamento de Ciencias Biológicas, Universidad Nacional de Trujillo. Trujillo, Perú

Citas

Derenzini M. The AgNORs. Micron. 2000;31:117-120.

Treré D, Ceccarelli C, Montanaro L, Tosti E, Derenzini M. Nucleolar Size and Activity Are Related to pRb and p53 Status in Human Breast Cancer. J Histochem Cytochem. 2004; 52: 1601–1607.

Schmidt EV. The role of c-myc in cellular growth control. Oncogene. 1999; 18:2988- 2996.

Brustmann H., Riss P., Naudi S. Nucleolar Organizer Regions As Markers of Endometrial Proliferation: A Study of Normal, Hyperplastic, and Neoplastic Tissue Hum Pathol. 1995; 26: 664-667.

Kanematsu E, Matsui H, Deguchi T, Yamamoto O, Korematsu M, Kobayashi A, et al. Significance of AgNOR Counts for Distinguishing Carcinoma From Adenoma and Hyperplasia in Parathyroid Gland. Hum

Pathol. 1997; 28: 421-427.

Çavaş T, Ergene-Gözükara S. Evaluation of the genotoxic potencial of lambdacyhalothrin using nuclear and nucleolar biomarkers on fish cells. Mutat Res. 2003; 534: 93-99.

Cavas T, Ergene-Gözükara S. Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as

cytogenotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat Res. 2003; 538: 81–91.

Arkhipchuk VV, Garanko NN. Using the nucleolar biomarker and the

micronucleus test on in vivo fish fin cells. Ecotoxicol Environ Safety. 2005; 62: 42–52.

France, International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Tratamientos

mg/L Días Nro./cel. x ± SD Área/cel. x ± SD 0.0 0 1.1 1± 0.037 0.24 ± 0.029 90 1.42 ± 0.313 0.31 ± 0.0360.4 0 1.11 ± 0.030 0.23 ± 0.026

1.63 ± 0.055 0.42 ± 0.043* 0.8

1.15 ± 0.067 0.24 ± 0.030 90 1.84 ± 0.103 0.45 ± 0.058*

SCIENDO 17(2), 2014 León y Prieto 27 Chemicals to Humans. Chromium, nickel and welding. 1990

Devi K. D, Rozati R, Banu BS, Jamil K, Grover P. In vivo genotoxic effect of potassium dichromate in mice leukocytes using comet assay. Food Chem Toxicol. 2001; 39: 859–865.

Blasiak J, Kowalik J. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat Res. 2000; 469: 135–145.

Cavas T, Garanko NN, Arkhipchuk VV. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol. 2005; 43: 569–574.

Sienra E, Armienta MA, Gonsebatt ME. Potassium dichromate increases the micronucleus frequency in the crayfish Procambarus clarkii. Environ Pollut. 2003;126: 367–370.

Prieto Z, León-Incio J, Quijano-Jara C, Fernández R, Polo-Benites E, Vallejo-Rodríguez R, et al. Efecto genotóxico del dicromato de potasio en eritrocitos de sangre periférica de Oreochromis niloticus (tilapia).2008; 25(1):51-58.

Shtiza A, Swennen R, Tashko A. Chromium and nickel distribution in soils, active river, overbank sediments and dust around the Burrel chromium smelter (Albania). J Geochem Explor. 2005; 87(3): 92-108.

Krystek P, Ritsema R. Monitoring of chromium species and11 selected metals in emission and immission of airborne environment. Int J Mass Spectrom. 2007; 265(1): 23-29.

Barceloux DG. Chromium. J Toxicol Clin Toxicol. 1999; 37(2): 173-94.

Lees PS. Chromium and disease: review of epidemiologic studies with particular reference to etiologic information provided by measures of exposure. Environ Health Perspect. 1991; 92: 93-104.

Derenzini M, Treré D, Pession A, Govoni M, Sirri V, Chieco P. Nucleolar size indicates the rapidity of cell proliferation in cancer tisúes. J Pathol. 2000;191: 181-186.

Derenzini M. The AgNORs. Micron. 2000; 31:117-120.

Levina A, Lay PA. Mechanistic studies of relevance to the biological activities of chromium. Coord Chem Rev. 2004; 249: 281-298.

Kirpnick-Sobol Z, Reliene R, Schiestl RH.Carcinogenic Cr(VI) and the Nutritional Suplement Cr(III) Induce DNA Deletions in Yeast and Mice. Cancer Res. 2006; 66: 3480-3484.

Udroiu I. The micronucleus test in piscine erythrocytes. Aquatic Toxicol 2006; 79: 201-204.

Wang S, Leonard SS, Ye J, Ding M, Shi X. The role of hydroxyl radical as a messenger in Cr (VI)-induced p53 activation. Am J Physiol Cell Physiol. 2000; 279: 868-875.

Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M, et al. The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer. 2006; 53: 295-302.

Treré D, Ceccarelli C, Montanaro L, Tosti E, Derenzini M. Nucleolar Size and Activity Are Related to pRb and p53 Status in Human Breast Cancer. J Histochem Cytochem. 2004; 52: 1601–1607.

Descargas

Publicado

2016-01-11

Número

Sección

Artículos Originales