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Abstract 
 

Tree diversity plays a key role in mitigating climate change and enhancing ecosystem resilience. This study evaluated the contribution of 

trees across three habitats within the urban–rural gradient of Sucre, Bolivia: urban (UF), native (NF), and exotic (EF). Carbon sequestration, 

as well as taxonomic (TD), phylogenetic (PD), and functional (FD) diversity, were analyzed in relation to bioclimatic (temperature and 

precipitation) and geographic (altitude) factors. The methodology included the recording of botanical and ecological traits, along with the 

measurement of dendrometric classes (DBH ≥ 10 cm) in 12 temporary circular plots per habitat. Results showed higher carbon stocks in 

the urban forest (268.36 ± 2.76 MgC/ha), followed by the exotic (159.53 ± 0.86 MgC/ha) and the native forest (39.64 ± 0.41 MgC/ha). A 

total of 31 species from 19 families were identified, with marked evolutionary divergence between Pinaceae and Cupressaceae compared 

to Fabaceae. The urban habitat presented the highest taxonomic diversity (~51.6%), the highest phylogenetic diversity (~72%), and the 

greatest carbon fixation (~42%). These findings highlight the fundamental role of tree diversity in carbon sequestration, biodiversity 

conservation, and landscape connectivity, emphasizing the need to integrate it into sustainable urban–rural planning through adaptation 

and mitigation strategies that strengthen ecological resilience and ecosystem services in the urban–rural ecosystem of Sucre. 
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1. Introduction 

Urban-rural ecosystems represent a continuous 

gradient that connects densely populated and 

highly modified areas with less altered rural zones, 

integrating urban, natural, and human elements 

(McDonnell & Pickett, 1990; McDonnell et al., 1997). 

This gradient facilitates the exchange of resources 

such as food, water, and biodiversity, while 

promoting urban-rural sustainability and climate 

resilience (Barrico & Castro, 2016; Marshall et al., 

2018; Gebre & Gebremedhin, 2019). The transition 

between these ecosystems is crucial for assessing 

the impacts of urbanization on ecosystem services, 

especially carbon sequestration, and for designing 

sustainable urban planning strategies (Natuhara & 

Hashimoto, 2009; Cai et al., 2022; Guan et al., 2024; 

Gebru et al., 2025). 

Tree diversity plays a central role in carbon storage 

in these systems, influenced by factors like land use, 

environmental conditions, and level of urbanization. 

In non-urban forests, greater species diversity en-

hances aboveground biomass and, consequently, 

carbon storage due to niche complementarity 

among species (Borges et al., 2021). In tropical 

regions, species richness and evenness are posi-

tively correlated with stored carbon (Shirima et al., 

2015), while in urban areas, factors such as rising 

temperatures and pollution can limit carbon 

sequestration capacity (Warner et al., 2024). 

Global examples illustrate the carbon-capturing po-

tential of urban, native, and exotic forests. In 

Indonesia, the urban forest UI stores 468.02 t/ha, 

while the Rio de Janeiro botanical garden reaches 

104 ± 5 MgC/ha (Febiriyanti et al., 2021; Kurtz et al., 
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2024). Native forests, like the Yungas in Argentina, 

record 162 tC/ha (Manrique et al., 2011), and exotic 

ones, like Eucalyptus globulus in Ethiopia, store 

53.73 tC/ha (Solomon et al., 2024). These data un-

derscore the importance of sustainable manage-

ment to maximize climate change mitigation 

potential. 
 

In Bolivia, natural ecosystems show significant vari-

ations in carbon storage capacities. The chiquitano 

dry forests store between 209 and 213 tC/ha (Paz-

Roca & Mostacedo, 2020), while the Amazonian, 

Chaco, and High Andean forests range from 172.77 

to 187.45 tC/ha and 17.02 to 71.09 tC/ha, respec-

tively (Araujo-Murakami et al., 2016; Peralta-Rivero, 

2022). In urban settings, open forests in Cocha-

bamba store 35.34 tC/ha, while grasslands and 

streets in La Paz hold significantly lower values at 

0.89 and 0.83 tC/ha (Pacheco 2020; Maldonado et 

al., 2023). These figures highlight the importance of 

evaluating and managing biological diversity in ur-

ban and rural ecosystems. 
 

Taxonomic (TD), functional (FD), and phylogenetic 

diversity (PD) play key roles in carbon storage. In 

urban areas, species diversity improves soil carbon 

stocks by optimizing underground organism activ-

ity (Schittko et al., 2022), while in rural areas, traits 

like plant height and wood density are important 

predictors of carbon storage (Conti & Díaz, 2013; 

Mensah et al., 2024). Although phylogenetic diver-

sity complements storage capacity in rural areas, its 

effect in urban environments is limited (Lososová et 

al., 2016; Mensah et al., 2024). 
 

In the municipality of Sucre, Bolivia, urban-rural 

ecosystems comprise three main habitats: urban 

forest (UF), native forest (NF), and exotic forest (EF), 

collectively referred to as UNEF habitats. These eco-

systems are crucial for mitigating climate change ef-

fects through carbon storage. Additionally, tree di-

versity of these habitats is influenced by bioclimatic 

factors (temperature and precipitation), and geo-

graphical factors (altitude gradient), which need to 

be investigated to implement effective conservation 

strategies. 

Therefore, this study evaluated the contribution of 

trees in urban, natural, and exotic habitats to car-

bon retention, as well as their taxonomic, phyloge-

netic, and functional diversity, considering their re-

lationship with bioclimatic factors (temperature and 

precipitation) and geographic factors (altitude) in 

the urban–rural ecosystem of Sucre, Bolivia. The 

study was guided by the following research ques-

tions: (i) How do different habitat types (urban 

forest, native forest, and exotic forest) contribute to 

carbon stocks, and how are these related to biocli-

matic and geographic factors? and (ii) How do 

habitat types influence the taxonomic, phyloge-

netic, and functional diversity of trees and their re-

lationship with environmental factors? Collectively, 

the findings aim to provide evidence to better un-

derstand the role of tree diversity in carbon seques-

tration and to inform conservation strategies and 

sustainable urban planning. 

 
2. Methodology 
 

 

2.1. Study area  

The study area encompassed three distinct habitats 

within the urban and rural ecosystem of the 

municipality of Sucre: Urban Forest (19° 2'31.22"S 

and 65° 15'50.51"W), covering an area of 1 176 ha, 

with a landscape matrix composed of both native 

and exotic tree species, found in parks, plazas, 

avenues, and integrated into the city's architectural 

heritage. The Native Forest (18° 50'12.00"S and 65° 

6'35.30"W), spanning 11 756 ha, is recognized as the 

Monte Villca Municipal Protected Area, home to 

species such as Neoraimondia herzogiana 

(Caraparí) , Anadenantera colubrina (Willca), Aspi-

dosperma resonans (perilla), and Schinopsis lorentzii 

(Soto), which are endemic to the dry inter-Andean 

valleys in the basins of the Grande and Pilcomayo 

rivers. The Exotic Forest (18° 57'29.65"S and 65° 

22'19.50"W), covering 1 910 ha, is predominantly 

composed of tree plantations, including Pinus 

pseudostrobus, Pinus patula, Pinus radiata, 

Eucalyptus globulus and Eucalyptus camaldulensis 

(GAM-Sucre, 2021). These habitats were classified 

as UNEF forests (Urban Forest, Native Forest, Exotic 

Forest) within the urban ecosystem, based on their 

respective tree cover (Figure 1). The sampling unit 

size was calculated as 400 m² (Sampling in each plot 

was carried out to assess: botanical characteristics 

wood type, growth form, leaf type and fruit type), 

ecological characteristics (preferred habitat, root 

type, shade tolerance, pollination type), and stem 

diameter (≥ 10 cm DBH).  
 

Bioclimatic data (Bio 1 and Bio 12) were obtained 

from WorldClim (Fick & Hijmans, 2017) with a 2.5-

minute resolution using the raster package in “R”. 

Additionally, altitude gradient data (geographical 

variable) were collected at each evaluated site or 

plot (Table S1, Supplementary Material). 
 

Tree diversity in the UNEF habitats was assessed 

using predictor variables: types of UNEF habitats 

(UF, NF, EF), mean annual temperature and 

precipitation, and altitude gradients of the sampling 

sites. Response variables included wood density 

(WD), aboveground biomass (AGB), taxonomic 
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diversity (TD), phylogenetic diversity (PD), and 

functional diversity (FD) for the analysis. Sampling 

sites consisted of 12 plots (sampling units) in each 

type of UNEF habitat (Table S1, Supplementary 

Material). 

circular plot, with a radius of 11.28 m) based on the 

methodology of Vallejo-Joyas et al. (2005); 12 

temporary circular plots in each of the three forest 

types of UF, NF and EF, were established, in total 

covering a total sampling area of 1.44 ha.  
 

 

 
 

Figure 1. Map of the urban-rural ecosystem, municipality of Sucre, Bolivia, each forest type with 12 circular plots: a) Exotic forests, in peri-

urban areas; b) Urban forests, with both exotic and native trees in parks and plazas; and c) Native forests, with native trees in the 

municipal protected area. 
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2.2. Taxonomic determination of species 
 

Taxonomic identification of tree species was based 

on morphological characteristics of collected tree 

individuals at the study sites, classified using the 

APG IV system in the Agrobiodiversity collection of 

the herbarium (HSB) at the Institute of Agroecology 

and Food Security, Faculty of Agricultural Sciences, 

Universidad Mayor, Real y Pontificia de San 

Francisco Xavier de Chuquisaca. 

 

2.3. Aboveground carbon reserves (AGB) 
 

Forest biomass, the AGB of each tree, was 

estimated using the allometric equation (Eq. 7 of 

Chave et al.; 2014) defined as: AGBest = exp [−1.803 

+ 0.976E + 0.976 ln(ρ) + 2.673 ln(D) − 0.0299 ln(D)2] 

Where: AGBest is the estimated aboveground 

biomass in Mg, E is a measure of environmental 

stress, ρ is wood density (g/cm3), and D (cm) is the 

diameter at breast height (DBH) of the tree. 

Wood density values were obtained from the 

Global Wood Density database (GWD), available at 

http://dx.doi.org/10.5061/dryad.234. The biomass 

estimation per tree was performed using the 

BIOMASS package in R (Réjou-Méchain et al., 2017). 

AGB results for each type of UNEF habitat were 

evaluated in credibility intervals based on Bayesian 

inference and the posterior distribution of 

estimated AGB parameters (Table S2, Supplemen-

tary Material). Carbon stored values for each tree 

species in the three types of forests (UF, NF, EF) 

were calculated assuming that 50% of AGB consists 

of carbon (Malhi et al., 2004). 

 

2.4. Taxonomic diversity 
 

Taxonomic tree diversity sampled in circular plots in 

each UNEF habitat was used to assess taxonomic 

diversity (TD), representing alpha diversity by 

analyzing each UNEF habitat separately in the three 

sampled forests. 

 

2.5. Phylogenetic diversity 
 

A phylogenetic tree was constructed, based on the 

species list, and classified according to the APG IV 

system (i.e., family/genus/species) (Chase et al., 

2016). Species identification was achieved at the 

taxonomic level for 96.77% of all sampled species, 

ensuring a robust foundation for phylogenetic 

analysis. The list was processed using the 

V.PhyloMaker2 (Jin & Qian, 2022), function config-

ured in the Leipzig Catalogue of Vascular Plants 

(LCVP) botanical nomenclature database (Freiberg 

et al., 2020). The phylogenetic diversity (PD) was 

calculated using the Faith's Index (Faith, 1992), 

based on the phylogenetic hypothesis of species, 

summing branch lengths according to the sampling 

sites or UNEF habitats on the phylogenetic tree 

topology (Figure S1, Table S3: Supplementary 

Material), representing the evolutionary history of 

each site or UNEF habitat. 

 

2.6. Functional diversity 
 

A functional trait matrix, was constructed based on 

the examination of eight traits related to: a) wood 

type (wood, semi-wood), b) growth form (tree, 

shrub, palm, climber), c) leaf type (broad, scale-like, 

needle-like), d) fruit type (berry, bracts, capsule, 

cone, date, drupe, follicle, legume, syconium), e) 

preferred growth habitat (dry, wet, semi-wet), f) 

root type (deep, shallow), g) shade tolerance (low, 

medium, high), and h) pollination type (birds, 

insects, wind) (Table S4, Figure S2:Supplementary 

Material). These functional ranges were collected 

from the Plant Trait Database (https://www.try-

db.org/) (Díaz et al., 2016) for each species and 

compared with data collected during the sampling 

process. 
 

Subsequently, a functional dendrogram was built 

from the species and functional traits matrix using 

the Gower distance method for continuous and cat-

egorical data, and the UPGMA clustering method. 

Finally, we used the "as.phylo" function from the 

APE package in R (Paradis & Schliep, 2019) to gen-

erate the topological phylogenetic tree into a den-

drogram representing functional diversity (FD) 

based on botanical and ecological species traits 

(Pavoine & Bonsall, 2011), by summing branch 

lengths according to the UNEF habitats (Faith, 

1992). 

 

2.7. Forest composition 
 

The tree composition in the 36 plots evaluated in 

the UNEF habitats was analyzed using a non-metric 

multidimensional scaling (NMDS) of species abun-

dance in each plot. NMDS analysis was performed 

using PAST software with the Bray-Curtis 

dissimilarity measure (Hammer et al., 2011). The 

NMDS axis scores were used as a dissimilarity 

measure between habitat type. The Whittaker 

diagram was used to determine species dominance 

in the habitats, related species diversity and 

abundance distribution in each community. Species 

were classified according to their relative 

abundance, with the most abundant on the X-axis 

and the abundances represented on a logarithmic 

(log10) scale on the Y-axis. 
 

http://dx.doi.org/10.5061/dryad.234
https://www.try-db.org/
https://www.try-db.org/
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2.8. Statistical analysis 

The carbon reserve estimation adjustment was con-

ducted by combining the total height of each tree 

and individuals with GWD estimates. A vector of 

height (H) and relative standard error (RSE) was 

constructed assuming a 0.5 m error in directly 

measured trees. Additionally, AGBmonteCarlo was 

applied, setting height values and errors 

considering direct or estimated tree measurements. 

A negative binomial generalized linear model 

(GLM.NB) was used to investigate variations among 

habitats and carbon reserves. After model 

construction, the model's normality and residue 

distribution, significance probability (p-values), and 

dispersion parameter indicating slight data over 

dispersion, was checked. ANOVA was applied to 

the model, and the significance of the differences 

between habitat effects was estimated using 

Tukey's post hoc tests in the multcomp package in 

R (Bretz et al., 2016). Multiple linear regression 

models were also applied to examine the variation 

among habitat types (UF, EF, EF) and bioclimatic 

variables (mean annual temperature and 

precipitation), geographical variables (altitude), 

carbon reserve, and biotic variables (taxonomic, 

phylogenetic, and functional diversity). 

The modelling structure included: i) specifying the 

model type according to the data types (continu-

ous, count, categorical), ii) performing basic model 

residual diagnostics considering variance homoge-

neity, residue normality, over dispersion, and zero 

inflation using the ape library in R, iii) conducting 

advanced model residual diagnostics using the 

DHARMa library in R (Hartig & Hartig 2017). The 

most appropriate models were: Gaussian GLM for 

taxonomic diversity (TD) (DP: 1.272727, AIC: 115.7), 

negative binomial GLM for phylogenetic diversity 

(PD) (DP: 1.101017, AIC: 472.87), and Gaussian GLM 

for functional diversity (FD) (DP: 0.03986208, AIC: -

8.9727). The dispersion parameter values indicate 

nearness to 1 suggesting no over dispersion, 1.5 in-

dicating over dispersion, and the Akaike Infor-

mation Criterion (AIC) refers to the model quality, 

where lower AIC values indicate better model fit 

and complexity balance. 
 

3. Results and discussion 
 

3.1 Carbon stocks in UNEF habitats 

The three habitat types identified in this study 

maintain carbon stocks, with UF showing the 

highest average carbon stock (276.35 ± 2.30 

MgC/ha), followed by EF (159.53 ± 0.86 MgC/ha), 

and NF (39.64 ± 0.41 MgC/ha) (Figure 2a). Carbon 

stock is significantly associated with habitat type 

(F(2,33) = 17.49, p < 0.001). Tukey post-hoc tests 

revealed significant differences in carbon stocks 

between NF-EF (p < 0.001) and UF-NF (p < 0.001), 

with lower significance for UF-EF (p < 0.035) (Figure 

2a; Table S5, S6: Supplementary Material). 

Carbon stock (0–41 MgC/ha) is highest in temporary 

plots with a mean temperature of 15 ºC (Figure 2b), 

showing a negative but significant relationship 

(F(1,34) = 9.046, p < 0.004) (Table S7, Supplementary 

Material). Similarly, carbon stock is greatest with an 

annual mean precipitation between 650–700 mm, 

exhibiting a highly significant positive relationship 

(F(1,34) = 15.034, p < 0.001) (Figure2c). Additionally, 

there is a significant direct positive relationship 

(F(1,34) = 8.4887, p < 0.0062) between carbon stock 

(0–41 MgC/ha) and altitudinal gradient (2700–3000 

m.a.s.l.) in the evaluated plots (Figure 2d). 

The results of this study demonstrate the influence 

of habitat types on carbon stocks. Urban forests (UF 

= 276.35 ± 2.30 MgC/ha) exhibited the highest 

carbon storage compared to exotic forests (EF) and 

native forests (NF). This elevated value is attributed 

to the dasometric characteristics of the diverse tree 

species (native and exotic), the advanced age of the 

trees, which exceeds 100 years, and municipal 

management of green areas. However, the carbon 

stock reported in 14 plots in the Achumani area of 

La Paz, Bolivia (0.83 MgC/ha; Pacheco, 2020), is 

significantly lower than the average in the present 

study (1.77 MgC/ha). This discrepancy may be 

explained by factors such as the number and type 

of plots, tree height, diameter, age, and species 

composition. 

In contrast, studies in other regions report higher 

carbon stocks in urban forests. In Chapultepec Park, 

Mexico, total carbon stock was estimated at 11,226 

MgC/ha (López-López et al., 2018), whereas the ur-

ban forest in UI, Indonesia, recorded storage up to 

468.02 t/ha (Febiriyanti et al., 2021). Conversely, the 

arboretum of the Rio de Janeiro Botanical Garden 

reported lower aboveground carbon density, at 104 

± 5 MgC/ha (Kurtz et al. 2024). In eight U.S. cities, 

urban forests store between 214 and 267 MgC/ha 

(Jevon et al. 2024). These differences can be 

attributed to variations in tree density, species 

diversity, and specific habitat characteristics. 

The native habitat (NF) exhibited the lowest carbon 

stock (39.64 ± 0.41 MgC/ha) among the habitats in 

the Sucre municipality. This value reflects the 

characteristics of the Andean ecosystem, with native 

tree species of smaller height and diameter 

compared to other ecosystems, such as the 

Tucuman-Bolivian Forest. In Cochabamba, Bolivia, 

an analysis of 122 plots of natural urban habitats 
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reported an average storage of 35.34 MgC/ha over 

approximately 20 years (Maldonado et al., 2023), a 

value close to the lower limit (35.3 MgC/ha) of the 

present study. Conversely, the dry Chiquitano 

forests of Bolivia exhibited variations from 209 to 

213 MgC/ha (Paz-Roca & Mostacedo, 2020), 

differences explained by the average tree height (15 

– 19 m) compared to that of the present study 

habitat (4 – 11 m). Additionally, other native forests 

show high carbon storage values. The Yungas in 

Argentina retain 162 tC/ha (Manrique et al., 2011), 

while natural urban forests in the United States store 

between 214 and 267 MgC/ha (Jevon et al., 2024). 

These variations reflect the influence of forest 

structure, where larger and more mature trees 

significantly contribute to total biomass (de Paula et 

al., 2011). This analysis highlights the importance of 

sustainable management of native forests to 

maximize their carbon storage capacity and 

mitigate the effects of climate change. 
 

3.2. Taxonomic diversity 

A total of 558 tree individuals belonging to 31 

species were recorded in all habitats (Table 1). UF 

had the highest species TD (16 ± 0.3956), followed 

by NF (15 ± 0.3760) and EF (2 ± 0.1421) (Figure 3a). 

Species TD was significantly related to habitat type 

(F(2,33) = 10.825, p < 0.001). Tukey means tests bet-

ween habitat pairs and species diversity showed 

significant differences, particularly between NF-EF 

(p < 0.0008), UF-EF (p < 1e-04), and no significant 

differences UF-NF (p = 0.7494) (Table S8, Supple-

mentary Material). There was a low significant 

positive relationship between species richness and 

temperature (F(1,34) = 6.911, p < 0.012), a non-signi-

ficant negative relationship between species rich-

ness and precipitation (F(1,34) = 1.9699, p < 0.1695), 

and a significant negative direct relationship bet-

ween species richness and altitude gradient (F(1,34) = 

7.7353, p < 0.008) (Table S9, Supplementary Material). 

The taxonomic diversity (TD) of 31 tree species 

presents in the three habitats studied in the Sucre 

municipality spans a forested area of 14 842 ha, 

distributed among urban forests (UF), rural forests 

(NF), and exotic forests (EF). Over the past four 

decades, the management of tree species in this 

urban-rural ecosystem has reflected a taxonomic 

contribution of 51.6% in UF, 48.3% in NF, and 6.5% 

in EF, with only two species shared between habitats 

(UF-EF and UF-NF). In contrast, the vascular plant 

diversity recorded in Chuquisaca between 1999 and 

2009 includes 3 279 species (Serrano & Vildozo, 

2015), many of which belong to ecosystems such as 

the Tucuman-Bolivian Forest and the Inter-Andean 

Valleys, where the 16 native species identified in this 

study are found. However, the species richness in 

other urban ecosystems in Bolivia, such as 

Cochabamba (9 native species; Maldonado et al., 

2023) and La Paz (18 native and exotic species; 

Pacheco, 2020), differs from the results of the 

present study. Internationally, cities such as Berlin 

(Germany) report 68 tree species (Richter et al., 

2020), while Beijing (China) registers 26 species (Sun 

et al., 2019). These differences in TD can be 

attributed to factors such as sampling effort, species 

composition, and habitat delineation. In the present 

study, the influence of temperature and altitudinal 

gradients conditions TD across habitats, where NF 

species are predominantly native, while EF species 

are exotic. Moreover, at higher altitudinal gradients, 

no native tree species were recorded. In this 

context, greater species diversity in urban environ-

ments enhances soil carbon stocks by stimulating 

subterranean organism activity (Schittko et al., 

2022), whereas in rural ecosystems, species richness 

positively correlates with carbon sequestration 

(Richards & Méndez, 2014; Ali & Yan, 2017). 
 

3.3. Phylogenetic diversity 

Phylogenetic diversity was related to habitat type 

(F(2,33) = 8.7496, p < 0.0008939), with the highest PD 

index (in millions of years) in UF (2385.4506 ± 

60.76), followed by NF (1484.5453 ± 29.33) (Table 

S3; Figure 3b), and the lowest PD in EF (725.8377 ± 

46.2). Pairwise mean ”t” tests between habitat types 

and PD showed significant differences between UF-

NF (p < 0.00018), UF-EF (p < 1e-04), and no 

significant differences between NF-EF (p < 0.9585) 

(Table S10, Supplementary Material). PD had a 

significant correlation with species richness (SR) (r = 

0.650, p < 0.001) (Figure S3). Phylogenetic species 

richness (PSR) showed a high correlation with PD (r 

= 0.956, p < 0.001) (Figure S3). Precipitation was 

positively and significantly related to PSR (F(1:29) = 

19.138, p < 0.001), as was the altitude gradient with 

PSR (F(1,29) = 11.509, p < 0.002) (Tables S11, S12: 

Supplementary Material). Phylogenetic endemism 

(PE) had a high correlation with species richness 

(SR) (r = 0.909, p < 0.001) and with PD (r = 0.642, p 

< 0.008) (Figure S3). Altitude gradient showed a 

significant negative relationship with PE (F(1,34) = 

4.9032, p < 0.033) (Table S13, Supplementary 

Material). Species evolutionary distinctiveness (ED) 

highlighted Hesperocyparis macrocarpa (400.788 

Mya) and Pinus pseudostrobus (362.919 Mya) as the 

most evolutionarily distinct species, while Senegalia 

praecox and Senegalia gilliesii (37.743 Mya) were 

among the least distinct. 
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Figure 2. Contribution of habitat types to carbon reserves and their bioclimatic and geographic influence: (a) Carbon reserves in habitats: 

urban forest (UF), native forest (NF), and exotic forest (EF). Different letters indicate significance at p ≤ 0.05, and the bars represent the 

standard error (±SE). (b) Effect of mean annual temperature on carbon reserves. Colored points represent the distribution of carbon stock 

for each sampling site (n = 36) in relation to the temperature range (12-19 ºC), with values corresponding to the regression model (R² = 

coefficient of determination; p = significance). (c) Influence of mean annual precipitation on carbon reserves. Colored points indicate the 

distribution of carbon reserves (n = 36) in relation to the precipitation range (536-708 mm). (d) Effect of elevation on carbon reserves 

along the altitudinal gradient. Colored points illustrate the distribution of carbon reserves (n=36) in relation to the elevation range (1923-

3323 m.a.s.l.). 

 
The phylogenetic diversity (PD) in the present study 

is directly related to TD. The UF habitat exhibits a 

higher evolutionary rate (2 385.45 ± 60.76) compa-

red to NF and EF. This result may be influenced by 

the coexistence of native and exotic species, tree 

age, municipal conservation policies, and phylo-

genetic criteria assigned to taxa (Faith, 1992). Lower 

PD values observed in NF (~62.23%) and EF 

(~30.42%) reflect both the specific composition of 

the habitats and the conservation status of TD. The 

phylogenetic tree topology of the 31 analyzed 

species indicates a high evolutionary rate in species 

such as Hesperocyparis macrocarpa (400 Mya) and 

Pinus pseudostrobus (362 Mya), in contrast to 

Senegalia gilliesii and Senegalia praecox (37.743 

Mya). Conversely, the presence of 233 native and 

exotic species along an urbanization gradient in 

Minneapolis-Saint Paul (USA) shows a PD variation 

between habitats (563.73 – 610.78 Mya; Knapp et 

al., 2012), values lower than those obtained in the 

present analysis. These differences likely arise from 

species composition rather than TD. Although PD 

plays a complementary role in rural ecosystems, it 

does not always capture the functional mechanisms 

driving carbon storage in urban environments 

(Lososová et al., 2016; Mensah et al., 2024). 

 

3.4. Functional diversity 

Functional diversity (Figure 3c) was found to be 

significantly related to habitat types (F(2,33) = 13.626, 

p < 0.001), with UF showing the highest expression 

of functional traits (0.866 ± 0.061), followed by NF 

(0.7297 ± 0.073) and EF (0.449 ± 0.028) (Table S14 

Supplementary Material; Figure 3c). Pairwise mean 

“t” tests indicated significant differences between 

NF-EF (p < 0.001), UF-EF (p < 0.001), and no 

significant differences between UF-NF (p = 0.213) 

(Table S15, Supplementary Material). FD had a high 

correlation with species richness (SR) (r = 0.939, p < 

0.001), functional richness (FRIC) (r = 0.749, p < 

0.001), and functional dispersion (FDIS) (r = 685, p 

< 0.001). Additionally, FD had a significant positive 

relationship with temperature (F(1,34) = 4.931, p < 

0.033), while the altitude gradient had a significant 
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negative relationship with FD (F(1,34) = 5.534, p < 

0.024) (Table S14). 
 

Functional diversity (FD), in turn, is closely linked to 

TD. In the present study, UF habitat exhibits the 

highest expression of functional traits (0.866 ± 

0.061) compared to NF and EF. This result may be 

influenced by factors such as tree structure, climate, 

conservation efforts, and species' morphological 

and physiological traits. Collective functional traits 

of plant communities are key determinants of car-

bon accumulation in terrestrial ecosystems (Conti & 

Díaz, 2013). Characteristics such as height, density, 

and leaf type are fundamental in carbon fixation 

(Díaz et al., 2016). In the present analysis, functional 

traits of NF (84.26%) and EF (51.84%) are lower 

compared to UF (100%), a difference associated 

with TD, PD, and habitat-specific composition. 

Additionally, FD provides critical insights into the 

distribution range, abundance, ecological guilds, 

and productive characteristics of ecosystems 

(Morelli et al., 2018). Thus, functional traits of 

arboreal diversity in specific habitats are essential 

indicators of carbon fixation and ecosystem 

functioning in urban and rural settings. In urban 

areas, these traits enhance soil multifunctionality, 

while in rural areas, traits such as plant height and 

wood density are key predictors of carbon storage 

(Conti & Díaz, 2013; Mensah et al., 2024). 
 

3.5. Tree species composition 

In the overall composition of tree species (Figure 

3d), a significant difference was observed among 

habitat types, as evidenced by ANOSIM analysis (R 

= 0.715, p = 0.0001) (Figure 3d). Pairwise compari-

sons revealed significant differences between all 

habitat pairs (all p = 0.0001). The species dominance 

in the habitats included a total of 31 species (Table 

S16, Supplementary Material). In the EF habitat, the 

abundance proportion and species range high-

lighted Pinus pseudostrobus (proportion = 74.1%, 

range = 1) and Eucalyptus globulus (proportion = 

25.9%, range = 2). In contrast, the NF habitat pre-

sented 15 species, with Senegalia gilliesii (proportion 

= 34.5%, range = 1) and Senegalia praecox (pro-

portion = 15.1%, range = 2) as the dominant spe-

cies. In the UF habitat, comprising 16 species, 

Hesperocyparis macrocarpa (proportion = 51.9%, 

range = 1) was found to be the species with the 

tallest and largest individuals, while Ligustrum 

lucidum (proportion = 16%, range = 2) emerged as 

the most abundant species. 
 

 
 

Figure 3. Effects of habitat type on tree diversity and species composition: (a) Taxonomic diversity (TD; i.e., species richness) among urban 

forest (UF), native forest (NF), and exotic forest (EF). Different letters indicate significance at p ≤ 0.05, and the bars represent the standard 

error (±SE). (b) Phylogenetic diversity (PD) in millions of years among habitat types. (c) Functional diversity (FD) among habitat types. (d) 

Non-metric multidimensional scaling (NMDS) ordination of community structure (NMDS axis 1; NMDS axis 2) among urban forest (UF), 

native forest (NF), and exotic forest (EF). 



Scientia Agropecuaria 17(1): 91-101 (2026)                        Serrano et al. 

-99- 
 

The carbon storage capacity, determined by vege-

tation, tree density, and species composition (Lwasa 

et al., 2022), highlights the potential of the forest 

habitats in the municipality of Sucre to mitigate cli-

mate change and promote environmental sustain-

ability. This municipality, with an urban-rural eco-

system covering 172 169.17 ha, comprising 4.6% 

urban area, 95.18% rural area, and 0.21% forest area 

and a population density of 152 inhabitants/km² 

(GAMS, 2020), has strengthened this potential 

through approximately 40 years of afforestation 

and conservation strategies implemented by the 

former Regional Development Corporation of Chu-

quisaca and the Autonomous Municipal Govern-

ment of Sucre. These efforts have optimized the 

taxonomic, phylogenetic, and functional diversity of 

trees in response to bioclimatic and geographic 

factors, solidifying their contribution to sustainable 

urban management and ecosystem health. 

 

4. Conclusions 

The research evidences the contribution of trees in 

urban-rural ecosystems in the municipality of Sucre, 

Bolivia, which play a decisive role in carbon reten-

tion and taxonomic, phylogenetic, and functional 

diversity, modulated by bioclimatic (temperature 

and precipitation) and geographical (altitude) fac-

tors. Urban forests have the greatest carbon cap-

ture capacity, resulting from the coexistence of na-

tive and exotic trees species, their longevity, and the 

management strategies implemented in the urban-

rural ecosystem. Tree diversity, conditioned by en-

vironmental gradients, is a key factor in maximizing 

carbon sequestration and maintaining ecosystem 

functionality. These findings highlight the need to 

integrate tree diversity conservation with sustaina-

ble urban-rural planning, strengthening ecological 

resilience and ecosystem services in urban-rural 

environments. 
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