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Abstract 

Typically, the transition zone of quaternary and tertiary volcanoes is a potential area for agricultural development but is prone to landslides. 

Landslide occurrences and the use of former landslide zones exhibit a distinct soil organic carbon (SOC) distribution, necessitating analysis 

to sustain agricultural output. Laboratory SOC measurements on landscape size are not expedient, necessitating the development of an 

estimating method for representation. This study aims to analyze the relationship between relief and SOC using LiDAR (Light Detection 

and Ranging) data. LiDAR acquisition was carried out to identify relief units as units of analysis. Soil sample measurements were carried 

out in the laboratory with the parameters analyzed including pH, Bulk Density, Moisture Content, Organic Carbon, Organic Matter, N-

total, CN Ratio and Cation Exchange Capacity. The results showed that SOC and relief had R2 = 0.89 in the upper layer (0 – 20 cm) and 

0.86 in the lower layer (20 - 40 cm). Relief has a high correlation with soil characteristics at the top and bottom of soil depths. It is because 

of relatively stable elevation and relatively dynamic land cover that SOC is spread out in a clustered way. This research can be used as a 

basis for agricultural land management, especially in areas prone to landslides. 
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1. Introduction 

Soil organic matter is important in maintaining eco-

system balance, contributing to carbon storage and 

soil fertility. Carbon stored in soil is the largest car-

bon reserve in almost all terrestrial biomes (Kutsch 

et al., 2010). SOC is one of the leading indicators in 

determining soil quality and productivity, especially 

in agricultural land. SOC is represented as the most 

important soil quality indicator that affects soil's 

physical, chemical, and biological properties (Gerke, 

2022; Paz Salazar et al., 2020). SOC significantly 

affects soil health, food security, greenhouse gas 

emissions, and climate change. Increasing SOC is 

considered beneficial for soil function and is associ-

ated with increased agricultural productivity (Kim et 

al., 2021; Liptzin et al., 2022). Therefore, monitoring 

SOC at the landscape scale is important in 

sustainable land use planning efforts. 

Conventional SOC monitoring using laboratory-

based methods has limitations, mainly when ap-

plied to large landscape scales. Sampling, analysis, 

and interpretation of results require a relatively long 

time and significant resources. This process is a 

challenge in supporting the need for fast and pre-

cise planning. Developing a more practical, fast, and 

accurate SOC estimation method is necessary to 

overcome these obstacles. SOC dispersion at the 

landscape scale should be represented by relief. 

Relief and other topographic metrics are primary 

factors affecting SOC distribution. They influence 

soil movement through water flow and tillage, 

leading to soil gain in lowland areas and loss in 

sloping areas (Kołodyńska-Gawrysiak, 2023). The 

relief approach is anticipated to offer pertinent in-

formation to aid in agricultural land management 

decision-making. 

Estimation of SOC distribution can be done quickly 

by utilizing remote sensing. A remote sensing tech-

nique that can be employed is relief interpretation 

with LiDAR images. LiDAR detects the distance be-
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tween the sensor and the target by emitting laser 

pulses and receiving reflections from objects on the 

ground surface. LiDAR has been widely used in var-

ious fields because of its ability to provide detailed 

and accurate spatial data. LiDAR can collect three-

dimensional topographic data quickly and accu-

rately, which is important for various applications 

such as mapping and modeling (Elaksher et al., 

2023). LiDAR can detect the ground surface even 

under dense vegetation to produce an accurate 

digital elevation model (DEM). Notably, the data 

produced in the form of a point cloud allows the 

creation of a detailed 3D relief model, visualizing 

topographic features such as slopes, valleys, or 

ridges (Huang et al., 2023). Topographic data (as-

pect, slope) from LiDAR proved to be an important 

variable, suggesting that LiDAR-captured micro-

topographic structures help improve the accuracy 

of SOC estimation with high spatial resolution (He 

et al., 2025).  

Kalijambe Village in Purworejo, Indonesia, has hilly 

topography dominated by steep slopes. Areas with 

steep slopes increase the risk of landslides, espe-

cially during the rainy season when rainfall intensity 

is high. Steep slopes not only threaten safety and 

infrastructure but also impact the environment. 

Landslides bring environmental consequences such 

as land degradation, loss of vegetative cover, and 

disruption of ecosystem equilibrium. Landslides al-

ter the topography of the earth's surface, leading to 

land degradation. This includes the removal of soil 

and rock, which can result in the loss of arable land 

and affect agricultural productivity (Turner, 2018). 

Landslides cause the loss of soil rich in organic car-

bon, reducing soil fertility due to the mixing of 

subsoil with topsoil. 

This study aimed to analyze the distribution of SOC 

in Kalijambe Village, Purworejo, using a LiDAR-

based relief approach. Model development with a 

LiDAR-based relief approach is expected to assist in 

rapid SOC monitoring. Finally, the model's cons-

truction will mirror the SOC distribution in land-

scape covering. More detailed SOC distribution 

information can help in planning sustainable agri-

cultural practices, such as more appropriate ferti-

lizer management and soil conservation tech-

niques. The more detailed SOC distribution infor-

mation can help in planning sustainable agricultural 

practices, such as more appropriate fertilizer 

management and soil conservation techniques. 

 
2. Methodology 
 

The study was conducted in Kalijambe, Purworejo, 

Central Java, Indonesia (7° 34′ 52″ S, 110° 3′ 56″ E). 

Kalijambe is located in the transition zone of the 

Kulon Progo Tertiary volcano and the Sumbing 

Quaternary volcano (Figure 1).  
 

 
 

Figure 1. Study site: a.) Indonesia; b.) Purworejo Regency; c.) Kalijambe Village. 
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Figure 2. Sampling Points. 

 
 

Material from the Menoreh volcano is found in the 

Kulon Progo Tertiary volcanic deposition zone. 

Menorah volcanic material is tuffaceous with auto 

classic, fluviatile, tuff, and tuff sandstone parent 

rocks (Priyono & Sartohadi, 2011). The volcanic 

parent material, mainly volcanic ash from Mount 

Sumbing, forms andisol soil. Andisol soil has andic 

properties caused by the weathering of tephra or 

other parent materials containing large amounts of 

volcanic glass. Amorphous minerals such as 

ferrihydrite, imogolite, allophane, and Al/Fe-humus 

complexes are the primary constituents of andisol 

soil. Mount Sumbing exhibits elevated levels of 

allophane and imogolite, with allophane diameters 

between 2.24 and 5.93 nm and imogolite lengths 

ranging from 24 to 187 nm (Fauziah et al., 2022). 
 

Soil Sampling 

This study used a quantitative approach and quali-

tative description to determine the effect of relief on 

SOC. Remarkably, the parameters measured in-

cluded organic carbon, organic matter, N-total, CEC 

(Cation Exchange Capacity), pH, Bulk Density (BD), 

and moisture content. The soil samples analyzed 

were 30 points at two different soil depths (0-20 cm 

and 20-40 cm). Sampling was carried out by con-

sidering five topography variations and land use 

variations (Figure 2). Stratified random sampling 

was used to ensure the representation of sample 

distribution. Data was analyzed using multiple linear 

regression to determine the effect of relief on SOC. 

Soil sample analysis was carried out in the la-

boratory to produce precise quantitative values. 

The spatial distribution of SOC was analyzed using 

the Fractal Analysis method to identify the spatial 

distribution pattern of SOC. 
 

Extract LiDAR to interpret the relief information 

The initial stage is converting LiDAR data into digital 

elevation model (DEM) data. LAS format raw data 

is transformed into raster data. For the conversion, 

the geographic information system (GIS) program-

ming tool "LAS Dataset to multi-point, followed by 

Point to Raster" is utilized. Following processing, the 

data from the DEM are utilized as the foundation 

for relief interpretation. Relief interpretation is con-

ducted through visual analysis and manual identifi-

cation. Field assessments are conducted to validate 

the interpretation outcomes. The land units result-

ing from the interpretation are 12 units. Soil sam-

pling was carried out on 12 selected land units with 

repetition in several units so that 30 soil samples 

were obtained. The carbon value of each soil sam-

ple was analyzed in the laboratory using the 

Walkey-Black approach. Organic matter content 

can be measured quantitatively volumetrically by ti-

tration of bichromate acid (H2K2Cr2O7) (Sartohadi 

et al., 2012). 
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SOC Calculation 

SOC calculation is carried out using the formula 

published by the SNI 7724 (2011): 

Ct = Kd x ρ x %C 
 

Where Ct (soil carbon content (grams/cm2)); Kd 

(depth of soil sample, expressed in centimeters, cm); 

ρ (bulk density, grams/cm3); %C organic (carbon 

content measured in the laboratory). Preparing the 

SOC estimation model is the initial step in displaying 

the SOC estimation value. The first stage is 

calculating the semivariance and fractal dimension 

(Milos & Bensa, 2016) and continuing with 

interpolation.  
 

Fractal Analysis 

Spatial distribution of SOC was analyzed using the 

Fractal Analysis method to identify the spatial 

distribution pattern of SOC. In fractal analysis, 

semivariance calculations can be used to measure 

the level of similarity between pairs of soil property 

points at a certain distance, with detailed formulas 

presented in the following equation. 
 

γ(h) = 
1

2 𝑁(ℎ)
 ∑ (𝑍𝑥+ℎ − 𝑍𝑥)2𝑁(ℎ)

𝑖=1  
 

Where γ(h) represents semivariance, h represents 

distance, N(h) represents the number of points 

used, Z(x) represents the SOC value at location x, 

and Z(x+h) represents the SOC value at location x 

summed at a certain distance (h). Semivariograms 

derived from semivariance data are needed for the 

data interpolation procedure. Interpolation is 

performed with a statistical-spatial methodology. 

Following data extraction, a quantitative method 

and qualitative description are used to read the 

data. Determining the value derived from 

laboratory measurement of soil characteristics and 

integrating relief to SOC is the quantitative 

approach.  

 
3. Results and discussion 
 

 

LiDAR extraction 
 

LiDAR data has an accuracy of ±3cm, while aerial 

photographs have a 5cm spatial resolution. Four 

Ground Control Points (GCPs) and Benchmarks 

(BMs) were used in the LiDAR acquisition process. 

Figure 3 shows the final results of the LiDAR data 

extraction process into DEM. To obtain information 

on land use in the Kalijambe area (Figure 4), 

orthophotos from LiDAR photography were 

manually digitized (Figure 4). Manual digitizing 

enables more detailed land use classification and 

mapping, including agroforestry, rice fields, and 

settlements. 

The findings show that the slope class at the study 

site is dominated by very steep (35%) and steep 

(26%) classes (Table 1). Interestingly, even with 

extreme slope conditions, the community still uses 

the land for agroforestry (Table 2). Using slopes as 

cultivation areas can increase land vulnerability to 

geomorphic processes such as erosion, subsidence, 

and landslides (Abebe et al., 2025). Nevertheless, it 

was discovered that numerous lands with steep 

gradients were utilized for agricultural purposes 

during this investigation. Steep land is often 

managed by people with low access to resources, 

resulting in low-moderate productivity. Agricultural 

expansion onto steep slopes in response to poverty 

and limited flat land (Zhang et al., 2023). Proper 

land management and flow regulation are needed 

to minimize the threat of erosion and landslides. 
 

Table 1 

Slope Gradient Variation  
 

Slope Class Area (ha) Percentage (%) 

Flat 28.05 16 

Undulating  16.93 10 

Moderately-Steep  22.60 13 

Steep 45.90 26 

Very-Steep 61.92 35 

Total 147.35 100 

 
Table 2 

Land use of Kalijambe 
 

Land Use Area  (ha) Percentage (%) 

Settlement 10.69 6% 

Agroforestry 116.86 67% 

PaddyField 47.86 27% 

Total 147.35 100 

 

Spatial distribution of SOC  

The analysis of 30 samples showed that the 

interaction between soil depth, topography, and 

land use influenced the average SOC value. 

Furthermore, the SOC value was also influenced by 

the land management practices applied. Rice fields 

at 0–20 cm and 20–40 cm depths displayed variable 

SOC patterns (Table 3). Specifically, variations in 

SOC values in rice fields were influenced by 

complex interactions between topography, erosion 

rates, land management practices, and organic 

matter accumulation. Organic matter accumulation 

tends to increase on sloping land because of less 

erosion. Steep slopes have organic matter that can 

be transported by erosion, although at some point, 

re-accumulation occurs at the foot of the slope. 

Accumulation is often influenced by sediment 

deposition carrying organic matter, which can be 

increased by the presence of vegetation (Satriawan 

et al., 2017; Wu et al., 2023).
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Figure 3. LiDAR extraction: DEM (A) and Hillshade (B). 

 

SOC values tend to fluctuate in agroforestry. 

However, SOC in agroforestry tends to be higher 

than in rice fields. This difference indicates that 

agroforestry has a better capacity to maintain and 

increase soil organic matter content. Agroforestry 

has higher SOC than rice fields due to its higher 

vegetation diversity. Trees in agroforestry also 

protect the soil from erosion, especially on steep 

slopes, so that organic matter can accumulate 

better. Intensive soil cultivation practices in rice 

fields can cause loss of organic carbon, especially in 

the top layer, through accelerated decomposition 

and release of carbon into the atmosphere. 
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Spatial modeling reveals a correlation between SOC 

values, land use, and environmental factors (Figure 

5). The red areas, reflecting low SOC values, are 

identified as rice fields and landslide areas. Low SOC 

in rice field areas and landslide areas can be caused 

by intensive land management activities in rice 

fields and minimal return of organic matter to the 

soil. Landslides can accelerate the loss of topsoil rich 

in organic matter, resulting in low SOC (Błońska et 

al., 2018). 

 

 
 

Figure 4. Orthophoto (A) and Land Use of Kalijambe (B). 
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Figure 5. Spatial Distribution Map of SOC at Depth 0 – 20 cm (A), Depth 20 – 40 cm (B). 

 

Notably, the relief approach provides important 

information regarding topographic factors as the 

central controller in the spatial distribution of SOC 

(Table 4). Steep areas tend to have a high potential 

for SOC loss compared to gentle areas. This finding 

can be utilized in land management, especially for 

implementing soil conservation practices and 

restoring organic carbon content. Topography plays 

a fundamental role in shaping soil properties and 

processes. Slope steepness is a key factor influenc-

ing the rate of soil erosion, where steeper slopes 

generally experience higher erosion, resulting in 

lower SOC levels (Jendoubi et al., 2019). Topography 

can determine the movement of water and sedi-

ment, thus influencing the accumulation or loss of 

SOC in different landscape positions (Hu et al., 

2023). 
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Table 3 

SOC data 
 

Slope 

(%) 
LU 

Sample Average 

Depth 1 Depth 2 
Depth 

1 

Depth 

2 

0 - 8 
R 32.03; 20.12 20.75; 17.21 26.08 18.98 

A 15.80; 60.18 12.10; 45.09 37.99 28.60 

8 – 15 
R 23.43; 21.72 23.00; 21.60 22.58 22.30 

A 20.87; 30.71 17.79; 26.32 25.79 22.06 

15 – 25 
R - - - - 

A 48.77; 25.65; 6.32 43.58; 25.52; 26.18 33.58 31.76 

25 - 45 
R 32.79; 21.27; 1.72 14.23; 20.08;1.71 18.59 18.67 

A 37.62; 21.13; 23.37;40.81; 27.58; 9.60 35.97; 20.14; 23.00; 40.15; 25.23; 31.28 26.69 29.30 

>45 

R 23.90; 21.77 23.86; 19.36 22.84 21.61 

A 
35.88; 23.15; 20.57; 37.42; 34.81; 7.68; 40.64; 

14.12 

20.77; 18.25; 18.31; 37.22; 33.61; 28.46; 28.13; 

26.69 
26.78 26.43 

Remark: LU=Land Use; R=Rice Field; A=Agroforestry; Depth 1=Soil Depth 0 – 20 cm; Depth 2= Soil Depth 20 – 40 cm. 
 

 

Remarkably, the integration of relief as the central 

controller of SOC spatial distribution produced a 

coefficient determination (R2) of 0.89 at a depth of 

0-20 cm. The coefficient value of 0.89 indicates that 

relief has an effect of 89% on the SOC of the topsoil, 

and other factors influence the rest. Furthermore, 

the R2 value at a 20-40 cm depth is 0.86. The 

coefficient value of 0.86 or 86% indicates that relief 

affects 86% of the SOC of the subsoil, and other 

factors influence the rest. The estimation model 

produced from the regression is y = 30.99-1.2 * 

Slope for the topsoil and y = 23.82 + 0.47 * Slope 

for the subsoil. 
 

Table 4 

Integration of relief with soil parameters 
 

Coefficient 

determination 
Value Model 

Soil Layer 

(cm) 

R square 0.89 
y = 30.99-1.2*Slope 

Above 

(0 – 20) Adjusted R2 0.85 

R square 0.86 
y = 23.82+0.47*Slope 

Below 

(20 – 40) Adjusted R2 0.82 

 

Relationship between relief and soil characteristics 

Multiple linear regression revealed a range of 0.11-

0.28 for integrating relief with soil properties at 0-

20 cm depth. The highest value is found in the 

parameters of organic carbon (0.28) and pH (0.24), 

while the lowest is in the parameters of CN Ratio 

(0.13) and CEC (0.11). This figure shows that relief is 

closely related to organic carbon and pH, while 

relief has a low influence on CN Ratio and CEC. 

Furthermore, at a depth of 20-40 cm, relief has a 

strong influence on BD (0.27) and organic carbon 

(0.27) and has a weak influence on CN Ratio (0.13). 

Specifically, the results of multiple linear regression 

are presented in Table 5. 

Specifically, the results obtained show that R2 for pH 

characteristics against relief has a value of 0.24 and 

0.16. Variations in relief can affect the accumulation 

of rainwater, where the interaction between water, 

CO2, and soil minerals can affect soil pH, especially 

in areas with varying relief. Rainwater flowing on the 

soil surface can carry organic matter and minerals 

that regulate soil pH (Belandina et al., 2025). Water 

can flow faster in areas with steeper slopes, 

reducing contact time with the soil and reducing the 

accumulation of organic matter that can lower pH 

(Setiawan et al., 2019). 

 

Table 5 

Relationship between relief and soil characteristics  
 

Coefficient 

Determination 
Soil Characteristics Value 

Soil Layer 

(cm) 

R2 

pH 0.24 

Above 

(0 – 20) 

BD (Bulk Density) 0.20 

Moisture Content 0.16 

Organic Carbon 0.28 

Organic Matter 0.19 

N-total 0.14 

CN Ratio 0.13 

CEC 0.11 

R2 

pH 0.16 

Below 

(20 – 40) 

BD (Bulk Density) 0.27 

Moisture Content 0.16 

Organic Carbon 0.27 

Organic Matter 0.24 

N-total 0.21 

CN Ratio 0.13 

CEC 0.16 

 

Overall, the effect of relief on BD shows R2 of 0.20 

(0-20 cm) and 0.27 (20-40 cm). BD is influenced by 

soil composition and structure, which can vary de-

pending on relief. Relief also plays a role in regulat-

ing drainage and water accumulation, affecting BD. 

Higher relief tends to have better drainage, which 

can reduce BD because it reduces the water content 

in the soil (Mulyani et al., 2023). In addition, the R2 

results for moisture content characteristics against 

relief are 0.16 in both soil layers. Areas with steeper 

slopes tend to have lower moisture content than flat 

areas because water flows faster from steep land 

surfaces. Increased surface water flow velocity min-

imizes soil moisture buildup and infiltration by low-

ering water contact time (Anggraeni et al., 2022).  
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In the top layer, the relationship between relief 

toward c-organic and organic matter results are 

0.28 and 0.19, whereas in the lower layer are 0.27 

and 0.24. Relief significantly influences soil organic 

matter by determining various environmental 

factors, such as temperature, humidity, and water 

flow patterns. Areas with higher elevations tend to 

have lower temperatures, so the activity of 

microorganisms in decomposing organic matter is 

slower. As a result, the accumulation of organic 

matter and organic C in soil at high elevations is 

usually greater than in lowland areas (Li et al., 2020).  

Relief influences the total N and CN ratio by 0.14 

and 0.13 in the upper layer and 0.21 and 0.13 in the 

lower layer. On steep slopes, erosion often causes 

the loss of topsoil rich in organic matter and 

nutrients, including nitrogen, so the soil's total N 

content tends to be lower. Conversely, nitrogen can 

accumulate in the foothills or plains due to deposits 

of erosion material. In areas with high elevations or 

areas with low temperatures, the decomposition of 

organic matter is slower. CN tends to be higher 

because carbon accumulates more than nitrogen. 

Conversely, in lowland areas or with high humidity, 

the decomposition process is faster, causing the 

C/N ratio to be lower (Qiao et al., 2020; Dong et al., 

2021).  

For the upper layer, the R2 value for the link between 

relief and soil CEC is 0.11, while for the lower layer, it 

is 0.16. Elevation variations in relief affect the 

weathering of soil minerals, which can determine 

the type and amount of clay minerals that play a 

significant role in CEC. Relief, directly and indirectly, 

affects the distribution and variation of soil CEC 

through its role in erosion, deposition, and 

accumulation of organic and mineral materials 

(Slessarev et al., 2021; Zhao et al., 2021). 

This research is in line with Rasel et al. (2017) who 

developed SOC prediction by utilizing remote 

sensing, especially LiDAR. In this research, a relief 

approach is used in the hope of producing a model 

to predict SOC in a fast time. SOC mapping and 

analysis can be done more systematically, which can 

help with more sustainable land use planning. 

However, the drawback in this research is the need 

for more sampling so that the resulting predictions 

are more accurate. 

 
4. Conclusions 
 

SOC plays an important role in influencing soil 

fertility through its influence on nutrient availability. 

LiDAR is closely associated with relief because it 

produces high-resolution spatial data. LiDAR can 

accurately provide detailed information related to 

the relief of an area. Furthermore, relief consistently 

affects the distribution of SOC. Specifically, relief 

strongly influences organic carbon, pH, and BD 

values. An interesting topic to be studied in the 

future is the development of relief-based SOC 

prediction models that can utilize machine learning 

by integrating additional data. Additional data such 

as rainfall, soil type, and microbial activity can be 

added to improve prediction accuracy.  
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