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Abstract

Phytophthora infestans causes one of the most devastating diseases of the potato crop, also known as late blight. Since early identification
of this pathogen is crucial for the effective control of the disease, this study aimed to propose an automated methodology for the
identification of its lesions in potato leaflets, using convolutional neural networks called "Mask R-CNN". The evaluations were carried out
during the rainy season, in crops conducted by farmers in the locality of Huasahuasi, in the central Andes of Peru. One hundred
photographs (5472 x 3078 pixels) were taken with a Phantom 4 Pro unmanned aerial vehicle (UAV) at an altitude of 3 m in crops with a
late blight incidence between 2 and 3. The images were divided into four parts and then passed thorough quality control, resulting in 200
photos (1825 x 1369 pixels). Of the total, 75% was used for model training and 25% for model validation. The models were evaluated
under real conditions, using metrics such as accuracy and recall. It was determined that the Mask R-CNN neural network, based on the
ResNet 101 deep neural network architecture, offers acceptable accuracy and effectiveness (73.5%) in the identification of late blight lesions
at the leaflet level. This methodology constitutes a significant contribution to precision agriculture in the Andes, validating a non-invasive
tool capable of overcoming the topographical limitations of the area. Its practical application would optimize the use of fungicides through
targeted detection, thereby promoting more sustainable and profitable potato production systems for local farmers.
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Resumen

Phytophthora infestans causa una de las enfermedades més devastadoras del cultivo de papa, también conocida como tizén tardio. Dado
que la identificacion temprana de este patdgeno es crucial para el control efectivo de la enfermedad, este estudio tuvo como objetivo
proponer una metodologia automatizada para la identificacion de sus lesiones en foliolos de papa, utilizando redes neuronales
convolucionales llamadas "Mask R-CNN". Las evaluaciones se llevaron a cabo durante la temporada de lluvias, en cultivos realizados por
agricultores en la localidad de Huasahuasi, en los Andes centrales del Perd. Se tomaron cien fotograffas (5472 x 3078 pixeles) con un
vehiculo aéreo no tripulado (UAV) Phantom 4 Pro a una altitud de 3 m en cultivos con una incidencia de tizon tardio entre 2 y 3. Las
imégenes se dividieron en cuatro partes y luego pasaron un riguroso control de calidad, dando como resultado 200 fotos (1825 x 1369
pixeles). Del total, el 75% se utilizé para el entrenamiento del modelo y el 25% para su validacién. Los modelos se evaluaron en condiciones
reales, utilizando métricas como la precision y la recuperacion. Se determind que la red neuronal Mask R-CNN, basada en la arquitectura
de red neuronal profunda ResNet 101, ofrece una precision y efectividad aceptables (73,5%) en la identificacion de lesiones de tizén tardio
a nivel de foliolo. Esta metodologia constituye una contribucién significativa a la agricultura de precision en los Andes, al validar una
herramienta no invasiva capaz de superar las limitaciones topogréficas de la zona. Su aplicacién préactica optimizarfa el uso de fungicidas
mediante la deteccion dirigida, promoviendo asi sistemas de produccién de papa mas sostenibles y rentables para los agricultores locales.

Palabras clave: Deteccién del tizon tardio; Dron; Red neuronal convolucional; Mask R-CNN; Foliolos de papa.
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1. Introduccion mundial del cultivo de papa (Ivanov et al., 2021). En
Phytophthora infestans causa la enfermedad co- el Pery, es la principal limitacion en la produccion
munmente llamada tizon tardio o rancha, es de este tubérculo, ya que reduce drasticamente su
considerada la enfermedad més destructiva a nivel rendimiento. Esta enfermedad es mas prevalente y
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dafiina entre los 2800 y 3500 m s. n. m. (Zevallos et
al, 2021). Su manejo resulta particularmente
desafiante debido a las condiciones climaticas y
otros factores (Perez et al., 2022). Dado que la papa
es un alimento béasico y una de las principales fuen-
tes de ingresos para los agricultores en las zonas
altoandinas (Devaux et al, 2020), es necesario
desarrollar estrategias eficaces para controlar esta
enfermedad.

Los sintomas iniciales se manifiestan en los foliolos
en forma de pequefias manchas irregulares
(Berhan, 2021). En condiciones ambientales propi-
cias adquiere un color que va desde castafio a ma-
rrén oscuro. Estas lesiones se delimitan claramente
de las &reas sanas (Duarte-Carvajalino et al., 2018).
Las lesiones pueden extenderse por toda la super-
ficie foliar y avanzar a través del peciolo hacia el
tallo. En algunos cultivares se observa un halo verde
claro alrededor del tejido necrético. Asimismo,
pueden manifestarse en hojas y tallos pocas horas
después de la infeccion, dependiendo de las condi-
ciones ambientales y la susceptibilidad del
hospedante (Majeed et al., 2017).

La evaluacion tradicional de esta enfermedad se
basa en la medicion de la incidencia y la severidad
en el campo. Este método directo presenta varias
desventajas: es invasivo y puede contribuir a la di-
seminacion de la enfermedad, requiere personal
técnico especializado, se limita a muestrear areas
reducidas del cultivo, lo que compromete su efica-
ciay representatividad. En las zonas altoandinas del
Perd, como en Huasahuasi, donde las condiciones
agroclimaticas y edéficas son ideales para el cultivo
de papa y también para el desarrollo del hongo P.
infestans. La evaluacién tradicional resulta poco
practica debido a lo agreste de la zona y sus altas
pendientes. Por lo tanto, es esencial buscar
métodos de evaluacion menos invasivos y mas
eficaces que puedan adaptarse a las condiciones
particulares de estas regiones.

Recientemente, se han propuesto técnicas novedo-
sas para la identificacién de enfermedades en
diversos cultivos. Entre estas innovaciones destaca
la visién por computadora, una técnica basada en
algoritmos de aprendizaje profundo (DL, Deep
Learning) (Matsuo et al., 2022) que forman parte de
las redes neuronales artificiales (ANN, por sus siglas
eninglés). Estas redes simulan la estructura y el pro-
ceso neuronal humano con el objetivo de recono-
cer patrones (Baba, 2024; Bai et al, 2021). La
literatura mas actual de 2025 evidencia un avance
significativo hacia modelos més robustos vy ligeros
capaces de operar en entornos complejos. Por
ejemplo, Alanazi (2025) demostraron la eficacia de
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la arquitectura YOLOV10 en la agricultura de preci-
sion, logrando detecciones en tiempo real con alta
fidelidad para enfermedades foliares. Asimismo, MK
& Matharasi (2025) presentaron mejoras significati-
vas en la prediccién de enfermedades de la papa
utilizando técnicas avanzadas de Deep Learning. En
el caso especifico de la papa, estudios recientes han
comenzado a integrar modelos hibridos (como Ef-
ficientNet combinado con Vision Transformers) que
superan en precision a las redes convencionales
(Sinamenye et al., 2025).

Por ejemplo, Yu et al. (2022) usaron DL para el re-
conocimiento automatico de enfermedades en ho-
jas de soja, logrando resultados muy satisfactorios.
Este algoritmo  también fue usado  por
Kunduracioglu & Pacal (2024) en el diagndstico de
enfermedades de la uva. Ganesh et al. (2019) y Yu
et al. (2019) lo usaron en la caracterizacion de la ca-
lidad y madurez de los frutales. También se han
mejorado las técnicas de monitoreo en el campo
mediante el uso de diversos equipos como las ca-
maras fotograficas convencionales, camaras hiper-
espectrales, el uso de drones o satelitales (Abbas et
al., 2023; Jadhav et al.,, 2023; Wang et al., 2021).

En este contexto, el presente estudio tuvo como
objetivo proponer una nueva metodologia auto-
matizada para la identificacion de sintomas del P.
infestans en foliolos de papa en condiciones de cul-
tivos de agricultores de la localidad de Huasahuasi,
basada en el uso de DRON para el muestreo y la
aplicacion de técnicas de DL para la deteccion de
las lesiones. Esta técnica tiene el potencial de su-
perar las limitaciones de los métodos tradicionales
al ofrecer una evaluacién no invasiva, eficiente y a
gran escala, adaptada a las condiciones especificas
de la topografia agreste v las particularidades agro-
climéaticas de la zona de estudio.

2. Metodologia

2.1. Area de estudio

El presente estudio se realizd en campos de agri-
cultores del agroecosistema de Huasahuasi, situado
en la provincia de Tarma, en la region de Junin
(Figura 1). Geogréficamente, se ubica en los Andes
centrales del Perd, en el flanco oriental, entre las la-
titudes sur de 11°15'14.44" y 11°15'24.16", con las lon-
gitudes oeste 75°41'11.60" y 75°41'20.68", a una al-
titud de 3480 m s. n. m. Esta zona presenta un clima
templado semiseco con alta humedad durante
todo el afio. La temperatura media anual oscila en-
tre 6y 9 °C, con temperaturas maximas anuales que
varfan entre 14y 18 °C. Los meses mas calidos van
de octubre a marzo.
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Las lluvias acontecen durante todo el afio, con un
periodo de abundancia en los meses de diciembre
a marzo (80-93 mm mensuales) y un periodo seco
de junio a agosto. Estas condiciones climaticas son
propias de las "yungas" o regiones de bosque nu-
boso y son ideales para el cultivo de papa, asi como
también para el desarrollo de P. infestans. El &rea
de estudio presenta una pendiente pronunciada
(~40%); de acuerdo con Ditzler et al. (2017) estas
tierras se clasifican como muy escarpadas. En este
agroecosistema, las areas de siembra son peque-
fias, con campos de cultivo que tienen una exten-
sion promedio de 2,7 mil m?.

2.2. Deteccién del tizén tardio en foliolos de papa
Para cumplir con el objetivo propuesto, el presente
estudio sigue tres fases (Figura 2), las cuales se pa-
san a describir a continuacion.

A. Procesamiento de datos

Al. Seleccién de éreas de evaluacion

El cultivo de la papa se siembra en la localidad de
Huasahuasi desde septiembre hasta noviembre. Sin
embargo, el dia de siembra de cada parcela se rea-
liza seguin el criterio de cada agricultor. Por lo tanto,
durante los meses de evaluacién se encontraron
cultivos de papa en distintas fases fenoldgicas y con
diferentes niveles de incidencia de P. infestans. En
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estas condiciones seleccionamos las parcelas con
cultivos que presentaban sintomas claramente
visibles del tizén tardio en los foliolos. Correspon-
diendo a una incidencia de la enfermedad entre el
2y 3, en laescala del Tal 9 propuesta por Henfling
(1987). Para garantizar que las lesiones evaluadas
fueran causadas exclusivamente por P. infestans, la
identificacién visual fue validada al momento del
etiquetado por expertos fitopatélogos, quienes
confirmaron la presencia de signos caracteristicos
(como la esporulacion blanguecina en el envés de
las hojas himedas) y descartaron sintomas similares
provocados por otros patdbgenos como Alternaria
solani.

A2. Toma de fotografias con el dron

Las evaluaciones se llevaron a cabo entre los meses
de enero y marzo. Durante este periodo de evalua-
ciones se registraron temperaturas minimas de 7,9
°Cy maximas de 22,2 °C, con una humedad relativa
promedio del 83,15% y una acumulacion de lluvias
de 289 mm. Estas condiciones agroclimaticas con-
tribuyeron de manera significativa al desarrollo de
la rancha en el &rea de estudio (Ortiz et al., 2004).
Para las evaluaciones de campo se utiliz6 un dron
del tipo Phantom 4 Pro, provisto con un sensor
CMOS de 1" con una resolucion efectiva de
5472x3078 (20 megapixeles).

11°1514.44" S
75°41'20.68" O _

\

11°15'24.16" S
75°41'11.60" O

Distrito: Huasahuasi
Privincia: Tarma
(WGS 84 / GEO zona 18S)

Figura 1. Ubicacion de las éreas de estudio.
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Figura 2. Flujograma para la deteccion del tizén tardio en foliolos de papa. A) Procesamiento de imégenes obtenidos con dron. B)
Segmentacion de instancias de lesiones de tizén tardio (Phytophthora infestans) en foliolos de papa utilizando Mask R-CNN con



Scientia Agropecuaria 17(2): 293-303 (2026)

Los vuelos se realizaron a una altura de tres metros
sobre el dosel del cultivo, manteniendo la camara
perpendicular al follaje. Para optimizar la calidad de
las imagenes, las operaciones de vuelo se realiza-
ron los dias con menor presencia de niebla y pre-
ferentemente en ausencia de viento, tipicamente
entre las 11:00 a.m. y las 12:30 p.m. En total, se
tomaron 100 fotografias durante todo el periodo de
recoleccion de datos en campo.

A3. Procesamiento de iméagenes

Las fotograffas se dividieron en cuatro partes, con
el objetivo de optimizar el proceso de entrena-
miento y validacion de la ANN Mask R-CNN. Las
400 imagenes resultantes de este proceso se some-
tieron a un riguroso control de calidad mediante
inspeccion visual, con la finalidad de eliminar las
que presentaban espacios sin cultivos de papa, con
exceso de maleza, mal enfocadas, fotos pixeladas,
con textura granulada o presencia de halo. Asf, se
obtuvieron 200 imégenes RGB de calidad con di-
mensiones de 1369x1825 pixeles. De este conjunto
de imagenes, 150 se destinaron al entrenamiento
del modelo y los 50 restantes al proceso de
validacion.

B. Entrenamiento y evaluacion del modelo

B1. Entrenamiento del modelo

Con la finalidad de identificar las lesiones ocasiona-
das por P. infestans en las imagenes, se implemento
la red neuronal convolucional del tipo Mask R-CNN
(Rosebrock, 2017). Esta combina las estructuras de
deteccién de objetos de Ultima generacion Faster
R-CNN propuesta por Ren et al. (2015) y la red neu-
ronal convolucional FCN que segmenta imagenes
(Shelhamer et al.,, 2017). Faster R-CNN proporciona
dos resultados para cada objeto identificado; un re-
cuadro delimitador y una etiqueta de clase, mien-
tras que FCN indica los pixeles correspondientes a
la lesion identificada.

El entrenamiento y la validacion de la red neuronal
se realizaron en un ordenador equipado con una
tarjeta gréfica Nvidia Quadro P1000 y con un pro-
cesador Intel Core i9-9900K de novena generacion.
Se cred un entorno virtual denominado “Mask R-
CNN" desarrollado en Python 3.6. Ademés, se utili-
zaron las librerias de codigo abierto TensorFlow-
gpu V1.5 y Keras V2.1, ambas especializadas en téc-
nicas de aprendizaje profundo. En la ejecucion de
Mask R-CNN se usaron dos arquitecturas de redes
neuronales profundas; ResNet-50 y ResNet-101. El
algoritmo se implemento utilizando el repositorio
de Matterport Inc., con licencia MIT. Ademas, para
optimizar el proceso de entrenamiento se utilizo el
modelo preentrenado MS COCO (Abdulla, 2021).

Cairampoma et al.

B2. Evaluacién del modelo

Para determinar la precision de los cuadros delimi-
tadores predichos por el modelo Mask R-CNN con
relacion a la posicion correcta de una lesion ocasio-
nada por P. Infestans en la foto, el modelo asigna
una clase binaria a cada cuadro delimitador: (1) pro-
babilidad de que el cuadro delimitador enmarque
una lesion; y (2) probabilidad de que el cuadro
delimitador enmarque un area sin lesion. La
disyuncién entre ambas posibilidades se establecio
mediante el umbral loU (Intersection over Union). En
el presente trabajo este valor se definid en 0,7
(Ecuacion 1). Yan et al. (2019) concluyeron que el
rendimiento de Mask R-CNN es sensible al loU, es-
pecialmente cuando se trata de objetos pequefios
como en nuestro caso. El uso de un umbral de loU
més alto (p. ej., > 0,8) podria mejorar la precision,
pero también podria hacer que el modelo pase por
alto algunos casos reales. Por el contrario, elegir un
umbral de loU més bajo (p. €j., 0,6) podria aumen-
tar la cantidad de falsos positivos. En este contexto,
la eleccion del valor del umbral de loU en el pre-
sente trabajo se justifica debido a la naturaleza irre-
gular y a las dimensiones de las lesiones causadas
por P. infestans. El objetivo es garantizar que las
predicciones del modelo no solo detecten adecua-
damente los dafio, sino que también reflejen con
precision la extension real de las lesiones.

loU =

ANB {> 0,7 = Con P. infestans. 0

auvBl< 0,3 > SinP. infestans.
La relacion A n B en la Ecuacion 1esta determinada
por el area en comun entre el cuadro delimitador
predicho por Mask R-CNN vy el recuadro que en-
marca un area dafiada por el tizon tardio. Por su
parte, la relacion AU B esta determinada por la
unién de ambos recuadros. El loU permite estable-
cer los siguientes criterios de identificacion: si el loU
es igual o superior a 0,7, el modelo considera que
el cuadro delimitador predicho por Mask R-CNN ha
ubicado un &rea con tizén tardio y lo clasifica como
un verdadero positivo. Por otro lado, si la loU es
menor de 0,3, el modelo considera que la deteccion
esincorrectay lo clasifica como falso positivo. Final-
mente, en el caso de no cumplir ninguna de las
condiciones anteriores (0,3 < loU < 0,7), el modelo
considera la deteccion neutra. Ademas, se definie-
ron las métricas de evaluacion del rendimiento. La
métrica de precision indica la capacidad de la ANN
para detectar con precision solo los casos relevan-
tes y se calcula como la relacion entre los verdade-
ros positivos y el total de lesiones identificadas. La
métrica de recuperacion, también llamada tasa de
verdaderos positivos, evalla la aptitud de la ANN
para detectar la mayoria de los casos relevantes; se
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calcula como la relacion entre el nimero de verda-
deros positivos detectados y el total de los casos
positivos (Padilla et al., 2020).

C. Aplicacion del modelo

Una vez entrenada y validada la red neuronal, se
procedié a la fase de inferencia o aplicacion del
modelo en nuevas iméagenes no vistas por el
sistema, simulando el escenario de operacion real
en campo para la deteccién automatizada de P.
infestans. Inicialmente, las nuevas iméagenes
capturadas por el dron (imagenes de prueba) se
sometieron al mismo preprocesamiento que las de
entrenamiento, incluyendo la normalizacion de di-
mensiones y ajustes de contraste, garantizando asi
que la entrada fuera consistente con los tensores
esperados por la arquitectura ResNet-101.

A continuacioén, la imagen procesada se introdujo
en la red Mask R-CNN, donde la red troncal
(ResNet-101) extrajo los mapas de caracteristicas y
la Red de Propuesta de Regiones (RPN) sugirié
dreas candidatas. Posteriormente, las cabeceras de
la red predijeron simultaneamente la caja delimita-
dora (bounding box), la clase del objeto (tizon tar-
dio) y la mascara de segmentacién a nivel de pixel.
Seguidamente, para evitar detecciones redundan-
tes sobre una misma lesion, se aplicé el algoritmo

B VGG Image Annotator x  +

(o C A No es seguro | robots.ox.ac.uk,

Home Image ~ Annotation ~ View

20 O =
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Loaded Images =
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[3]1(3)jrg
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de Supresion de No Maximos (Non-Maximum
Suppression), conservando Unicamente aquellas
detecciones cuyo indice de confianza superaba el
umbral preestablecido de 0,7 (70%). De este modo,
se descartaron predicciones de baja certeza o falsos
positivos generados por ruido de fondo, tal como
sugieren implementaciones estandar en agricultura
de precision (Bondre & Patil, 2024; Ren et al., 2017).
Por ultimo, el sistema superpuso las méscaras ge-
neradas y las cajas delimitadoras sobre la imagen
original, etiquetando cada lesién con su porcentaje
de probabilidad (ej. "Rancha 0,992"). Esto permitid
cuantificar visualmente la severidad y distribucion
espacial de la enfermedad en el foliolo, validando
la utilidad del modelo para el monitoreo fitosanita-
rio (Feng et al., 2023).

3. Resultados y discusion

3.1. Etiquetado de imagenes

Las lesiones etiquetadas abarcaron en promedio
600 pixeles, lo que representa el 0,02% del total de
una imagen procesada. Como era de esperar, las
formas de las lesiones encontradas en las imégenes
fueron ovoides, redondas y algunas amorfas. Estas
se enmarcaron con un poligono siguiendo el con-
torno de la lesion (Figura 3).

Figura 3. Etiquetado de foliolos con tizén tardio en el programa VIA ejecutado en Google.
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Este procedimiento se realizd en el programa VIA
de libre disponibilidad, ejecutado en la plataforma
de Google. El nimero de lesiones etiquetadas en
cada imagen para el entrenamiento fluctué entre
20 y 30. En consecuencia, al final del proceso de
etiquetado de las 150 imagenes se obtuvieron alre-
dedor de 3,7 mil lesiones identificadas. Con el pro-
posito de evitar la disminucion de la precision o el
aumento de los falsos positivos y negativos, se ha
tenido cuidado de enmarcar los pixeles correspon-
dientes a la enfermedad, tratando de que ningun
pixel quedara fuera del poligono delimitador vy
evitando enmarcar pixeles de areas sanas.

3.2. Identificaciéon de lesiones

La red neuronal Mask R-CNN permite identificar las
lesiones ocasionadas por P. infestans mediante un
conjunto de cuadros delimitadores de diferentes
tamafios que pasan por cada pixel de la imagen,
efectuando un barrido completo. La Figura 4a
muestra una imagen con quince cuadros delimita-
dores para un solo pixel. Los rectangulos con una
tonalidad de color similar ostentan tres relaciones
diferentes entre su ancho y su altura (1:1, 1:2 'y 2:7).
Existen cinco grupos con diferentes tonalidades y
dimensiones (322, 642, 1282, 2562 y 5122 pixeles).
Estas relaciones y dimensiones de los cuadros deli-
mitadores confieren la capacidad de capturar las
formas descritas del tizén tardio en los foliclos de
la papa (Zand et al., 2022).
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Posteriormente, el algoritmo propone regiones de
interés en funcion de los cuadros delimitadores. La
red neuronal convolucional clasifica y refina estas
regiones, permitiendo la deteccion precisa de las
areas con rancha, generando mascaras de segmen-
tacion precisas para cada lesion identificada. Por
ejemplo, en la parte central de la Figura 4b se
observa un foliolo con una lesién causada por P.
Infestans. La red neuronal Mask R-CNN lo identifica
con una probabilidad mayor del 80%, asignandole
la etiqueta de rancha. Este procedimiento facilita la
deteccién de la rancha y permite la delimitacion
eficaz de las areas dafiadas dentro de la imagen,
incluso cuando las lesiones podrian ser dificilmente
perceptibles en una inspeccion visual.

Se usaron los modelos Mask R-CNN con las arqui-
tecturas ResNet-50 y ResNet-101 en cultivos de
papa conducidos por agricultores de la localidad de
Huasahuasi. Para ello, se tomaron fotograffas con
el dron siguiendo el mismo protocolo establecido
en la toma de fotos para el proceso de entrena-
miento y validacion de las ANN. La diferencia es
que se escogieron areas con cultivos que mostra-
ron una incidencia de la enfermedad de uno, que
corresponde a la etapa temprana del desarrollo de
P. infestans.

La fotografia utilizada para describir la aplicacion
del modelo Mask R-CNN presentaba 15 lesiones
con un tamafio medio de 300 pixeles que no supe-
raban la mitad de un foliolo.

Figura 4. Proceso de deteccién de lesiones ocasionadas por P. infestans. a) Cuadros delimitadores definidos para un pixel. b) Foliolo con
lesion. ) Resultado de la identificacion de una lesion ocasionada por P. infestans.
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Figura 5. Resultado de la aplicacién del modelo Mask R-CNN con arquitectura ResNet-50.

Por tratarse de un area minuscula, no es facil ob-
servarlas a simple vista; por lo que no podrian de-
tectarse en una evaluacién de campo. Comparati-
vamente, en estudios como el de Lin et al. (2022) se
ha logrado una alta precision en la detecciéon de
frutas y flores en el cultivo de fresa en condiciones
complejas, en las que el tamafio del objetivo es muy
pequefio en comparacion con la foto analizada.
Este reporte refuerza alin mas la metodologfa.

Al aplicar Mask R-CNN con arquitectura ResNet 50
se encontraron tres falsos positivos y trece fueron
verdaderos positivos, ademas de tres FN en la ima-
gen seleccionada (Figura 5). Este resultado
concuerda con la curva de precision y la tasa de
verdaderos positivos determinados en la etapa de
validacion del modelo, lo que indica que, al detec-
tar un gran nimero de lesiones, el nimero de falsos
positivos también aumenta. En este sentido, pode-
mos resaltar que uno de los verdadero positivo es
una hoja seca de eucalipto (Eucalyptus globulus) del
tipo falciforme, a pesar del tamafio de su area y
forma, que difiere notablemente de una lesion

producida por el tizon tardio. En consecuencia, este
modelo no tiene una buena performance en la de-
teccion de lesiones ocasionadas por P. infestans en
hojas del cultivo de papa.

La Figura 6 muestra la misma imagen, ahora con las
lesiones identificadas aplicando el modelo Mask R-
CNN con arquitectura ResNet 101. Este modelo de-
tectd once lesiones ocasionadas por P. infestans, en
las que no existe ningun falso positivo y todos son
verdadero positivo. Ademés, se observd 4 FN. De-
bido a su notable precision al momento de identi-
ficar las lesiones ocasionadas por P. infestans en la
imagen de evaluacion, con un reducido nimero de
falsos positivos y falsos negativos, demostrando un
elevado nivel de recuperacion, consideramos que
el modelo Mask R-CNN con arquitectura ResNet
101 es superior al modelo con arquitectura ResNet
50.

Al comparar las redes neuronales Mask R-CNN con
las arquitecturas ResNet 50 y ResNet 107, se eviden-
ci6 que ANN basada en ResNet 101 tuvo un mejor
performance que la basada en ResNet 50 al ofrecer
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un mejor rendimiento a la hora de identificar las le-
siones ocasionadas por P. infestans. Esta superiori-
dad se debe a que ResNet 101 logra mejor entrena-
miento en comparacion con la ResNet 50. Esta di-
ferencia también se observa en la alta precision que
logra a medida que aumenta la tasa de verdaderos
positivos. Esta capacidad de capturar una amplia
gama de formas y tamafios de lesiones es crucial
para la deteccion precisa del tizon tardio, dadas las
caracteristicas irregulares y variadas de las lesiones.
El resultado de un mejor entrenamiento se refleja
en la performance de la red neuronal para detectar
la mayoria de las lesiones, al tiempo que se reducen
los falsos positivos y los falsos negativos. Esto se co-
rrobora con la diferencia en la métrica de precision
alcanzada en las arquitecturas Resnet 101 (73,5%) vy
Resnet 50 (64,5%). Nuestros resultados concuerdan
con los reportados por Hindarto (2023), quien
prueba estas arquitecturas para la detecciéon de en-
fermedades de las hojas del mafz. Adicionalmente,
hay que considerar que ResNet-50 suele ofrecer un
mejor rendimiento en aplicaciones préacticas, espe-
cialmente cuando el conjunto de datos no es tan
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grande o diverso como para beneficiarse de la ma-
yor complejidad, por lo que es ideal comparar am-
bas arquitecturas. Por ejemplo, Phan et al. (2023)
reportaron que ResNet-50 produjo una precision
del 98% en la clasificacion de tomates en compara-
cion con el 97% de ResNet-1071.

Recientemente, se han publicado trabajos, como
los de Bondre & Patil (2024) y Feng et al. (2023),
gue confirman nuestros resultados y proporcionan
un soporte adicional a nuestros hallazgos, lo que
nos permite proponer la red neuronal Mask R-CNN
con arquitectura ResNet 101 como un método fiable
para la deteccién de lesiones ocasionadas por P.
Infestans en el cultivo de papa. Sin embargo, a di-
ferencia de estos estudios nuestro planteamiento
de usar drones para la evaluacién en campo mues-
tra la innovacion de nuestro método para superar
las complejidades inherentes de la zona de estudio
con terrenos irregulares y vegetacion densa que a
menudo obstaculizan los métodos de evaluacion
tradicionales. Para ello, aprovechamos el poder de
las tecnologias emergentes de agricultura de preci-
sion.

Figura 6. Resultado de la aplicacion del modelo Mask R-CNN con arquitectura ResNet-101.
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El uso de iméagenes capturadas con drones nos
permitid superar los Iimites de lo que es posible
para la deteccién de enfermedades de manera au-
tomatizada y escalable. Por tanto, los desafios que
imponen estos agroecosistemas con alta incidencia
de P. infestans y de dificil acceso requieren el desa-
rrollo de enfoques innovadores para el monitoreo
y manejo del tizén tardio. De acuerdo con Grados
et al. (2020), existe una oportunidad significativa
para mejorar los rendimientos del cultivo de papa
en zonas altoandinas mediante un uso més racional
de insumos y mejores practicas agricolas. Teniendo
en cuenta que el cultivo de papa debe abordar las
cargas ambientales dentro de las limitaciones so-
cioeconémicas locales. Al proponer una herra-
mienta automatizada y precisa para la deteccion
temprana del tizon tardio, nuestra propuesta puede
contribuir a mejorar la productividad del cultivo de
papa, al tiempo que facilita practicas de manejo
mas racionales y sostenibles, como la aplicaciéon
controlada de pesticidas, de acuerdo con las reco-
mendaciones de Babli et al. (2022). Esta integracion
de innovaciones tecnoldgicas y enfoques de inten-
sificacion sostenible es crucial para potenciar el
desarrollo del sector papero en estos entornos
desafiantes de las zonas altoandinas.

4. Conclusiones

El uso del dron Phantom 4 Pro, combinado con re-
des neuronales profundas como Mask R-CNN, ha
demostrado ser una técnica promisoria en la eva-
luacion de la incidencia del tizon tardio en los folio-
los de papa en campos de agricultores de Hua-
sahuasi (3480 m s. n. m.). El modelo basado en la
arquitectura ResNet 101 alcanzd una precision del
73,5% con un loU del 70%, lo que le permitié iden-
tificar lesiones de aproximadamente 400 pixeles en
imagenes RGB de 2,4 megapixeles.

Al comparar las arquitecturas ResNet50 y Res-
Net107, se concluye que ResNet101 generalmente
ofrece una precision ligeramente superior para la
identificacion del tizon tardio en cultivos de papa.
Aungue requiere mas recursos computacionales y
tiempo de procesamiento en comparacion con las
50 capas de ResNet50, el incremento marginal en
el rendimiento justifica su aplicacién, especialmente
si el tamafio del conjunto de datos es el adecuado.
En general, la aplicacién de técnicas avanzadas de
vision por computadora se ha convertido en un en-
foque prometedor para la deteccion y el segui-
miento de enfermedades en el cultivo de papa.
Aqui hemos resaltado la ventaja que ofrece esta
metodologia sobre los métodos tradicionales de
evaluacion y diagnostico. En particular, el uso del

Cairampoma et al.

dron para la recopilacion de imagenes representa
una ventaja clave de nuestro método. Esta pro-
puesta de captura de datos permite superar las li-
mitaciones inherentes a los entornos agrestes y de
alta pendiente, donde los métodos de inspeccion
manual a menudo son ineficientes e impracticables.
La capacidad de identificar lesiones es particular-
mente notable, ya que proporciona informacion
detallada sobre el alcance y la distribucién de los
sintomas de la enfermedad, lo cual es crucial para
implementar intervenciones oportunas y
especfficas.

Finalmente, como proyecciones futuras, se reco-
mienda la implementacion de estos algoritmos en
plataformas de edge computing integradas a los
drones para permitir la toma de decisiones en
tiempo real. Asimismo, seria valioso expandir el en-
trenamiento del modelo incorporando diversas va-
riedades de papa nativa y condiciones de ilumina-
cién variables, asf como explorar la fusién de iméa-
genes RGB con sensores multiespectrales. Esto no
solo refinarfa la precision diagndstica, sino que sen-
taria las bases para sistemas de aplicacion automa-
tizada de agroquimicos (drones pulverizadores),
optimizando recursos y reduciendo el impacto am-
biental en los Andes.
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