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Abstract 

Phytophthora infestans causes one of the most devastating diseases of the potato crop, also known as late blight. Since early identification 

of this pathogen is crucial for the effective control of the disease, this study aimed to propose an automated methodology for the 

identification of its lesions in potato leaflets, using convolutional neural networks called “Mask R-CNN”. The evaluations were carried out 

during the rainy season, in crops conducted by farmers in the locality of Huasahuasi, in the central Andes of Peru. One hundred 

photographs (5472 × 3078 pixels) were taken with a Phantom 4 Pro unmanned aerial vehicle (UAV) at an altitude of 3 m in crops with a 

late blight incidence between 2 and 3. The images were divided into four parts and then passed thorough quality control, resulting in 200 

photos (1825 × 1369 pixels). Of the total, 75% was used for model training and 25% for model validation. The models were evaluated 

under real conditions, using metrics such as accuracy and recall. It was determined that the Mask R-CNN neural network, based on the 

ResNet 101 deep neural network architecture, offers acceptable accuracy and effectiveness (73.5%) in the identification of late blight lesions 

at the leaflet level. This methodology constitutes a significant contribution to precision agriculture in the Andes, validating a non-invasive 

tool capable of overcoming the topographical limitations of the area. Its practical application would optimize the use of fungicides through 

targeted detection, thereby promoting more sustainable and profitable potato production systems for local farmers. 
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Resumen 

Phytophthora infestans causa una de las enfermedades más devastadoras del cultivo de papa, también conocida como tizón tardío. Dado 

que la identificación temprana de este patógeno es crucial para el control efectivo de la enfermedad, este estudio tuvo como objetivo 

proponer una metodología automatizada para la identificación de sus lesiones en foliolos de papa, utilizando redes neuronales 

convolucionales llamadas "Mask R-CNN". Las evaluaciones se llevaron a cabo durante la temporada de lluvias, en cultivos realizados por 

agricultores en la localidad de Huasahuasi, en los Andes centrales del Perú. Se tomaron cien fotografías (5472 × 3078 píxeles) con un 

vehículo aéreo no tripulado (UAV) Phantom 4 Pro a una altitud de 3 m en cultivos con una incidencia de tizón tardío entre 2 y 3. Las 

imágenes se dividieron en cuatro partes y luego pasaron un riguroso control de calidad, dando como resultado 200 fotos (1825 × 1369 

píxeles). Del total, el 75% se utilizó para el entrenamiento del modelo y el 25% para su validación. Los modelos se evaluaron en condiciones 

reales, utilizando métricas como la precisión y la recuperación. Se determinó que la red neuronal Mask R-CNN, basada en la arquitectura 

de red neuronal profunda ResNet 101, ofrece una precisión y efectividad aceptables (73,5%) en la identificación de lesiones de tizón tardío 

a nivel de foliolo. Esta metodología constituye una contribución significativa a la agricultura de precisión en los Andes, al validar una 

herramienta no invasiva capaz de superar las limitaciones topográficas de la zona. Su aplicación práctica optimizaría el uso de fungicidas 

mediante la detección dirigida, promoviendo así sistemas de producción de papa más sostenibles y rentables para los agricultores locales. 
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1. Introducción 

Phytophthora infestans causa la enfermedad co-

múnmente llamada tizón tardío o rancha, es 

considerada la enfermedad más destructiva a nivel 

mundial del cultivo de papa (Ivanov et al., 2021). En 

el Perú, es la principal limitación en la producción 

de este tubérculo, ya que reduce drásticamente su 

rendimiento. Esta enfermedad es más prevalente y 
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dañina entre los 2800 y 3500 m s. n. m. (Zevallos et 

al., 2021). Su manejo resulta particularmente 

desafiante debido a las condiciones climáticas y 

otros factores (Perez et al., 2022). Dado que la papa 

es un alimento básico y una de las principales fuen-

tes de ingresos para los agricultores en las zonas 

altoandinas (Devaux et al., 2020), es necesario 

desarrollar estrategias eficaces para controlar esta 

enfermedad. 

Los síntomas iniciales se manifiestan en los folíolos 

en forma de pequeñas manchas irregulares 

(Berhan, 2021). En condiciones ambientales propi-

cias adquiere un color que va desde castaño a ma-

rrón oscuro. Estas lesiones se delimitan claramente 

de las áreas sanas (Duarte-Carvajalino et al., 2018). 

Las lesiones pueden extenderse por toda la super-

ficie foliar y avanzar a través del peciolo hacia el 

tallo. En algunos cultivares se observa un halo verde 

claro alrededor del tejido necrótico. Asimismo, 

pueden manifestarse en hojas y tallos pocas horas 

después de la infección, dependiendo de las condi-

ciones ambientales y la susceptibilidad del 

hospedante (Majeed et al., 2017).  

La evaluación tradicional de esta enfermedad se 

basa en la medición de la incidencia y la severidad 

en el campo. Este método directo presenta varias 

desventajas: es invasivo y puede contribuir a la di-

seminación de la enfermedad, requiere personal 

técnico especializado, se limita a muestrear áreas 

reducidas del cultivo, lo que compromete su efica-

cia y representatividad. En las zonas altoandinas del 

Perú, como en Huasahuasi, donde las condiciones 

agroclimáticas y edáficas son ideales para el cultivo 

de papa y también para el desarrollo del hongo P. 

infestans. La evaluación tradicional resulta poco 

práctica debido a lo agreste de la zona y sus altas 

pendientes. Por lo tanto, es esencial buscar 

métodos de evaluación menos invasivos y más 

eficaces que puedan adaptarse a las condiciones 

particulares de estas regiones. 

Recientemente, se han propuesto técnicas novedo-

sas para la identificación de enfermedades en 

diversos cultivos. Entre estas innovaciones destaca 

la visión por computadora, una técnica basada en 

algoritmos de aprendizaje profundo (DL, Deep 

Learning) (Matsuo et al., 2022) que forman parte de 

las redes neuronales artificiales (ANN, por sus siglas 

en inglés). Estas redes simulan la estructura y el pro-

ceso neuronal humano con el objetivo de recono-

cer patrones (Baba, 2024; Bai et al., 2021). La 

literatura más actual de 2025 evidencia un avance 

significativo hacia modelos más robustos y ligeros 

capaces de operar en entornos complejos. Por 

ejemplo, Alanazi (2025) demostraron la eficacia de 

la arquitectura YOLOv10 en la agricultura de preci-

sión, logrando detecciones en tiempo real con alta 

fidelidad para enfermedades foliares. Asimismo, MK 

& Matharasi (2025) presentaron mejoras significati-

vas en la predicción de enfermedades de la papa 

utilizando técnicas avanzadas de Deep Learning. En 

el caso específico de la papa, estudios recientes han 

comenzado a integrar modelos híbridos (como Ef-

ficientNet combinado con Vision Transformers) que 

superan en precisión a las redes convencionales 

(Sinamenye et al., 2025).  

Por ejemplo, Yu et al. (2022) usaron DL para el re-

conocimiento automático de enfermedades en ho-

jas de soja, logrando resultados muy satisfactorios. 

Este algoritmo también fue usado por 

Kunduracioglu & Pacal (2024) en el diagnóstico de 

enfermedades de la uva. Ganesh et al. (2019) y Yu 

et al. (2019) lo usaron en la caracterización de la ca-

lidad y madurez de los frutales. También se han 

mejorado las técnicas de monitoreo en el campo 

mediante el uso de diversos equipos como las cá-

maras fotográficas convencionales, cámaras hiper-

espectrales, el uso de drones o satelitales (Abbas et 

al., 2023; Jadhav et al., 2023; Wang et al., 2021). 

En este contexto, el presente estudio tuvo como 

objetivo proponer una nueva metodología auto-

matizada para la identificación de síntomas del P. 

infestans en folíolos de papa en condiciones de cul-

tivos de agricultores de la localidad de Huasahuasi, 

basada en el uso de DRON para el muestreo y la 

aplicación de técnicas de DL para la detección de 

las lesiones. Esta técnica tiene el potencial de su-

perar las limitaciones de los métodos tradicionales 

al ofrecer una evaluación no invasiva, eficiente y a 

gran escala, adaptada a las condiciones específicas 

de la topografía agreste y las particularidades agro-

climáticas de la zona de estudio. 

 

2. Metodología 
 

 

2.1. Área de estudio 
 

El presente estudio se realizó en campos de agri-

cultores del agroecosistema de Huasahuasi, situado 

en la provincia de Tarma, en la región de Junín 

(Figura 1). Geográficamente, se ubica en los Andes 

centrales del Perú, en el flanco oriental, entre las la-

titudes sur de 11°15'14.44" y 11°15'24.16", con las lon-

gitudes oeste 75°41'11.60" y 75°41'20.68", a una al-

titud de 3480 m s. n. m. Esta zona presenta un clima 

templado semiseco con alta humedad durante 

todo el año. La temperatura media anual oscila en-

tre 6 y 9 °C, con temperaturas máximas anuales que 

varían entre 14 y 18 °C. Los meses más cálidos van 

de octubre a marzo.  
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Las lluvias acontecen durante todo el año, con un 

período de abundancia en los meses de diciembre 

a marzo (80-93 mm mensuales) y un período seco 

de junio a agosto. Estas condiciones climáticas son 

propias de las "yungas" o regiones de bosque nu-

boso y son ideales para el cultivo de papa, así como 

también para el desarrollo de P. infestans. El área 

de estudio presenta una pendiente pronunciada 

(~40%); de acuerdo con Ditzler et al. (2017) estas 

tierras se clasifican como muy escarpadas. En este 

agroecosistema, las áreas de siembra son peque-

ñas, con campos de cultivo que tienen una exten-

sión promedio de 2,7 mil m². 
 

2.2. Detección del tizón tardío en folíolos de papa 

Para cumplir con el objetivo propuesto, el presente 

estudio sigue tres fases (Figura 2), las cuales se pa-

san a describir a continuación.  
 

A. Procesamiento de datos  
 

 

 

 

A1. Selección de áreas de evaluación 

El cultivo de la papa se siembra en la localidad de 

Huasahuasi desde septiembre hasta noviembre. Sin 

embargo, el día de siembra de cada parcela se rea-

liza según el criterio de cada agricultor. Por lo tanto, 

durante los meses de evaluación se encontraron 

cultivos de papa en distintas fases fenológicas y con 

diferentes niveles de incidencia de P. infestans. En 

estas condiciones seleccionamos las parcelas con 

cultivos que presentaban síntomas claramente 

visibles del tizón tardío en los folíolos. Correspon-

diendo a una incidencia de la enfermedad entre el 

2 y 3, en la escala del 1 al 9 propuesta por Henfling 

(1987). Para garantizar que las lesiones evaluadas 

fueran causadas exclusivamente por P. infestans, la 

identificación visual fue validada al momento del 

etiquetado por expertos fitopatólogos, quienes 

confirmaron la presencia de signos característicos 

(como la esporulación blanquecina en el envés de 

las hojas húmedas) y descartaron síntomas similares 

provocados por otros patógenos como Alternaria 

solani. 
 

A2. Toma de fotografías con el dron 
 

Las evaluaciones se llevaron a cabo entre los meses 

de enero y marzo. Durante este periodo de evalua-

ciones se registraron temperaturas mínimas de 7,9 

ºC y máximas de 22,2 ºC, con una humedad relativa 

promedio del 83,15% y una acumulación de lluvias 

de 289 mm. Estas condiciones agroclimáticas con-

tribuyeron de manera significativa al desarrollo de 

la rancha en el área de estudio (Ortiz et al., 2004). 

Para las evaluaciones de campo se utilizó un dron 

del tipo Phantom 4 Pro, provisto con un sensor 

CMOS de 1" con una resolución efectiva de 

5472×3078 (20 megapíxeles).  
 

 
 

Figura 1. Ubicación de las áreas de estudio. 
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Figura 2. Flujograma para la detección del tizón tardío en folíolos de papa. A) Procesamiento de imágenes obtenidos con dron. B) 

Segmentación de instancias de lesiones de tizón tardío (Phytophthora infestans) en folíolos de papa utilizando Mask R-CNN con 

backbone ResNet-50 y ResNet-101 y C) aplicación de la red neuronal Mask R-CNN entrenada. 
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Los vuelos se realizaron a una altura de tres metros 

sobre el dosel del cultivo, manteniendo la cámara 

perpendicular al follaje. Para optimizar la calidad de 

las imágenes, las operaciones de vuelo se realiza-

ron los días con menor presencia de niebla y pre-

ferentemente en ausencia de viento, típicamente 

entre las 11:00 a.m. y las 12:30 p.m. En total, se 

tomaron 100 fotografías durante todo el periodo de 

recolección de datos en campo. 
 

A3. Procesamiento de imágenes  

Las fotografías se dividieron en cuatro partes, con 

el objetivo de optimizar el proceso de entrena-

miento y validación de la ANN Mask R-CNN. Las 

400 imágenes resultantes de este proceso se some-

tieron a un riguroso control de calidad mediante 

inspección visual, con la finalidad de eliminar las 

que presentaban espacios sin cultivos de papa, con 

exceso de maleza, mal enfocadas, fotos pixeladas, 

con textura granulada o presencia de halo. Así, se 

obtuvieron 200 imágenes RGB de calidad con di-

mensiones de 1369×1825 píxeles. De este conjunto 

de imágenes, 150 se destinaron al entrenamiento 

del modelo y los 50 restantes al proceso de 

validación. 
 

 

B. Entrenamiento y evaluación del modelo 
 

B1. Entrenamiento del modelo 

Con la finalidad de identificar las lesiones ocasiona-

das por P. infestans en las imágenes, se implementó 

la red neuronal convolucional del tipo Mask R-CNN 

(Rosebrock, 2017). Esta combina las estructuras de 

detección de objetos de última generación Faster 

R-CNN propuesta por Ren et al. (2015) y la red neu-

ronal convolucional FCN que segmenta imágenes 

(Shelhamer et al., 2017). Faster R-CNN proporciona 

dos resultados para cada objeto identificado; un re-

cuadro delimitador y una etiqueta de clase, mien-

tras que FCN indica los píxeles correspondientes a 

la lesión identificada. 

El entrenamiento y la validación de la red neuronal 

se realizaron en un ordenador equipado con una 

tarjeta gráfica Nvidia Quadro P1000 y con un pro-

cesador Intel Core i9-9900K de novena generación. 

Se creó un entorno virtual denominado “Mask R-

CNN” desarrollado en Python 3.6. Además, se utili-

zaron las librerías de código abierto TensorFlow-

gpu V1.5 y Keras V2.1, ambas especializadas en téc-

nicas de aprendizaje profundo. En la ejecución de 

Mask R-CNN se usaron dos arquitecturas de redes 

neuronales profundas; ResNet-50 y ResNet-101. El 

algoritmo se implementó utilizando el repositorio 

de Matterport Inc., con licencia MIT. Además, para 

optimizar el proceso de entrenamiento se utilizó el 

modelo preentrenado MS COCO (Abdulla, 2021). 
 

B2. Evaluación del modelo 

Para determinar la precisión de los cuadros delimi-

tadores predichos por el modelo Mask R-CNN con 

relación a la posición correcta de una lesión ocasio-

nada por P. Infestans en la foto, el modelo asigna 

una clase binaria a cada cuadro delimitador: (1) pro-

babilidad de que el cuadro delimitador enmarque 

una lesión; y (2) probabilidad de que el cuadro 

delimitador enmarque un área sin lesión. La 

disyunción entre ambas posibilidades se estableció 

mediante el umbral IoU (Intersection over Union). En 

el presente trabajo este valor se definió en 0,7 

(Ecuación 1). Yan et al. (2019) concluyeron que el 

rendimiento de Mask R-CNN es sensible al IoU, es-

pecialmente cuando se trata de objetos pequeños 

como en nuestro caso. El uso de un umbral de IoU 

más alto (p. ej., > 0,8) podría mejorar la precisión, 

pero también podría hacer que el modelo pase por 

alto algunos casos reales. Por el contrario, elegir un 

umbral de IoU más bajo (p. ej., 0,6) podría aumen-

tar la cantidad de falsos positivos. En este contexto, 

la elección del valor del umbral de IoU en el pre-

sente trabajo se justifica debido a la naturaleza irre-

gular y a las dimensiones de las lesiones causadas 

por P. infestans. El objetivo es garantizar que las 

predicciones del modelo no solo detecten adecua-

damente los daño, sino que también reflejen con 

precisión la extensión real de las lesiones. 
 

IoU =
A∩B

A∪B
{
> 0,7 → Con P. infestans.

< 0,3 →  Sin P. infestans.
  (1) 

 

La relación A ∩ B en la Ecuación 1 está determinada 

por el área en común entre el cuadro delimitador 

predicho por Mask R-CNN y el recuadro que en-

marca un área dañada por el tizón tardío. Por su 

parte, la relación A ∪ B está determinada por la 

unión de ambos recuadros. El IoU permite estable-

cer los siguientes criterios de identificación: si el IoU 

es igual o superior a 0,7, el modelo considera que 

el cuadro delimitador predicho por Mask R-CNN ha 

ubicado un área con tizón tardío y lo clasifica como 

un verdadero positivo. Por otro lado, si la IoU es 

menor de 0,3, el modelo considera que la detección 

es incorrecta y lo clasifica como falso positivo. Final-

mente, en el caso de no cumplir ninguna de las 

condiciones anteriores (0,3 < IoU < 0,7), el modelo 

considera la detección neutra. Además, se definie-

ron las métricas de evaluación del rendimiento. La 

métrica de precisión indica la capacidad de la ANN 

para detectar con precisión solo los casos relevan-

tes y se calcula como la relación entre los verdade-

ros positivos y el total de lesiones identificadas. La 

métrica de recuperación, también llamada tasa de 

verdaderos positivos, evalúa la aptitud de la ANN 

para detectar la mayoría de los casos relevantes; se 
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calcula como la relación entre el número de verda-

deros positivos detectados y el total de los casos 

positivos (Padilla et al., 2020). 
 

C. Aplicación del modelo 

Una vez entrenada y validada la red neuronal, se 

procedió a la fase de inferencia o aplicación del 

modelo en nuevas imágenes no vistas por el 

sistema, simulando el escenario de operación real 

en campo para la detección automatizada de P. 

infestans. Inicialmente, las nuevas imágenes 

capturadas por el dron (imágenes de prueba) se 

sometieron al mismo preprocesamiento que las de 

entrenamiento, incluyendo la normalización de di-

mensiones y ajustes de contraste, garantizando así 

que la entrada fuera consistente con los tensores 

esperados por la arquitectura ResNet-101. 

A continuación, la imagen procesada se introdujo 

en la red Mask R-CNN, donde la red troncal 

(ResNet-101) extrajo los mapas de características y 

la Red de Propuesta de Regiones (RPN) sugirió 

áreas candidatas. Posteriormente, las cabeceras de 

la red predijeron simultáneamente la caja delimita-

dora (bounding box), la clase del objeto (tizón tar-

dío) y la máscara de segmentación a nivel de píxel. 

Seguidamente, para evitar detecciones redundan-

tes sobre una misma lesión, se aplicó el algoritmo 

de Supresión de No Máximos (Non-Maximum 

Suppression), conservando únicamente aquellas 

detecciones cuyo índice de confianza superaba el 

umbral preestablecido de 0,7 (70%). De este modo, 

se descartaron predicciones de baja certeza o falsos 

positivos generados por ruido de fondo, tal como 

sugieren implementaciones estándar en agricultura 

de precisión (Bondre & Patil, 2024; Ren et al., 2017). 

Por último, el sistema superpuso las máscaras ge-

neradas y las cajas delimitadoras sobre la imagen 

original, etiquetando cada lesión con su porcentaje 

de probabilidad (ej. "Rancha 0,992"). Esto permitió 

cuantificar visualmente la severidad y distribución 

espacial de la enfermedad en el folíolo, validando 

la utilidad del modelo para el monitoreo fitosanita-

rio (Feng et al., 2023). 

 

3. Resultados y discusión 
 

 

3.1. Etiquetado de imágenes 

Las lesiones etiquetadas abarcaron en promedio 

600 píxeles, lo que representa el 0,02% del total de 

una imagen procesada. Como era de esperar, las 

formas de las lesiones encontradas en las imágenes 

fueron ovoides, redondas y algunas amorfas. Estas 

se enmarcaron con un polígono siguiendo el con-

torno de la lesión (Figura 3).  
 

 
 

Figura 3. Etiquetado de folíolos con tizón tardío en el programa VIA ejecutado en Google. 
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Este procedimiento se realizó en el programa VIA 

de libre disponibilidad, ejecutado en la plataforma 

de Google. El número de lesiones etiquetadas en 

cada imagen para el entrenamiento fluctuó entre 

20 y 30. En consecuencia, al final del proceso de 

etiquetado de las 150 imágenes se obtuvieron alre-

dedor de 3,7 mil lesiones identificadas. Con el pro-

pósito de evitar la disminución de la precisión o el 

aumento de los falsos positivos y negativos, se ha 

tenido cuidado de enmarcar los píxeles correspon-

dientes a la enfermedad, tratando de que ningún 

píxel quedara fuera del polígono delimitador y 

evitando enmarcar píxeles de áreas sanas. 
 

3.2. Identificación de lesiones  
 

La red neuronal Mask R-CNN permite identificar las 

lesiones ocasionadas por P. infestans mediante un 

conjunto de cuadros delimitadores de diferentes 

tamaños que pasan por cada píxel de la imagen, 

efectuando un barrido completo. La Figura 4a 

muestra una imagen con quince cuadros delimita-

dores para un solo píxel. Los rectángulos con una 

tonalidad de color similar ostentan tres relaciones 

diferentes entre su ancho y su altura (1:1, 1:2 y 2:1). 

Existen cinco grupos con diferentes tonalidades y 

dimensiones (322, 642, 1282, 2562 y 5122 píxeles). 

Estas relaciones y dimensiones de los cuadros deli-

mitadores confieren la capacidad de capturar las 

formas descritas del tizón tardío en los folíolos de 

la papa (Zand et al., 2022).  

Posteriormente, el algoritmo propone regiones de 

interés en función de los cuadros delimitadores. La 

red neuronal convolucional clasifica y refina estas 

regiones, permitiendo la detección precisa de las 

áreas con rancha, generando máscaras de segmen-

tación precisas para cada lesión identificada. Por 

ejemplo, en la parte central de la Figura 4b se 

observa un folíolo con una lesión causada por P. 

Infestans. La red neuronal Mask R-CNN lo identifica 

con una probabilidad mayor del 80%, asignándole 

la etiqueta de rancha. Este procedimiento facilita la 

detección de la rancha y permite la delimitación 

eficaz de las áreas dañadas dentro de la imagen, 

incluso cuando las lesiones podrían ser difícilmente 

perceptibles en una inspección visual.  

Se usaron los modelos Mask R-CNN con las arqui-

tecturas ResNet-50 y ResNet-101 en cultivos de 

papa conducidos por agricultores de la localidad de 

Huasahuasi. Para ello, se tomaron fotografías con 

el dron siguiendo el mismo protocolo establecido 

en la toma de fotos para el proceso de entrena-

miento y validación de las ANN. La diferencia es 

que se escogieron áreas con cultivos que mostra-

ron una incidencia de la enfermedad de uno, que 

corresponde a la etapa temprana del desarrollo de 

P. infestans. 

La fotografía utilizada para describir la aplicación 

del modelo Mask R-CNN presentaba 15 lesiones 

con un tamaño medio de 300 píxeles que no supe-

raban la mitad de un folíolo.  
 

 

 
 

Figura 4. Proceso de detección de lesiones ocasionadas por P. infestans. a) Cuadros delimitadores definidos para un píxel. b) Folíolo con 

lesión. c) Resultado de la identificación de una lesión ocasionada por P. infestans. 
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Figura 5. Resultado de la aplicación del modelo Mask R-CNN con arquitectura ResNet-50. 
 

Por tratarse de un área minúscula, no es fácil ob-

servarlas a simple vista; por lo que no podrían de-

tectarse en una evaluación de campo. Comparati-

vamente, en estudios como el de Lin et al. (2022) se 

ha logrado una alta precisión en la detección de 

frutas y flores en el cultivo de fresa en condiciones 

complejas, en las que el tamaño del objetivo es muy 

pequeño en comparación con la foto analizada. 

Este reporte refuerza aún más la metodología. 

Al aplicar Mask R-CNN con arquitectura ResNet 50 

se encontraron tres falsos positivos y trece fueron 

verdaderos positivos, además de tres FN en la ima-

gen seleccionada (Figura 5). Este resultado 

concuerda con la curva de precisión y la tasa de 

verdaderos positivos determinados en la etapa de 

validación del modelo, lo que indica que, al detec-

tar un gran número de lesiones, el número de falsos 

positivos también aumenta. En este sentido, pode-

mos resaltar que uno de los verdadero positivo es 

una hoja seca de eucalipto (Eucalyptus globulus) del 

tipo falciforme, a pesar del tamaño de su área y 

forma, que difiere notablemente de una lesión 

producida por el tizón tardío. En consecuencia, este 

modelo no tiene una buena performance en la de-

tección de lesiones ocasionadas por P. infestans en 

hojas del cultivo de papa. 

La Figura 6 muestra la misma imagen, ahora con las 

lesiones identificadas aplicando el modelo Mask R-

CNN con arquitectura ResNet 101. Este modelo de-

tectó once lesiones ocasionadas por P. infestans, en 

las que no existe ningún falso positivo y todos son 

verdadero positivo. Además, se observó 4 FN. De-

bido a su notable precisión al momento de identi-

ficar las lesiones ocasionadas por P. infestans en la 

imagen de evaluación, con un reducido número de 

falsos positivos y falsos negativos, demostrando un 

elevado nivel de recuperación, consideramos que 

el modelo Mask R-CNN con arquitectura ResNet 

101 es superior al modelo con arquitectura ResNet 

50. 

Al comparar las redes neuronales Mask R-CNN con 

las arquitecturas ResNet 50 y ResNet 101, se eviden-

ció que ANN basada en ResNet 101 tuvo un mejor 

performance que la basada en ResNet 50 al ofrecer 
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un mejor rendimiento a la hora de identificar las le-

siones ocasionadas por P. infestans. Esta superiori-

dad se debe a que ResNet 101 logra mejor entrena-

miento en comparación con la ResNet 50. Esta di-

ferencia también se observa en la alta precisión que 

logra a medida que aumenta la tasa de verdaderos 

positivos. Esta capacidad de capturar una amplia 

gama de formas y tamaños de lesiones es crucial 

para la detección precisa del tizón tardío, dadas las 

características irregulares y variadas de las lesiones.  

El resultado de un mejor entrenamiento se refleja 

en la performance de la red neuronal para detectar 

la mayoría de las lesiones, al tiempo que se reducen 

los falsos positivos y los falsos negativos. Esto se co-

rrobora con la diferencia en la métrica de precisión 

alcanzada en las arquitecturas Resnet 101 (73,5%) y 

Resnet 50 (64,5%). Nuestros resultados concuerdan 

con los reportados por Hindarto (2023), quien 

prueba estas arquitecturas para la detección de en-

fermedades de las hojas del maíz. Adicionalmente, 

hay que considerar que ResNet-50 suele ofrecer un 

mejor rendimiento en aplicaciones prácticas, espe-

cialmente cuando el conjunto de datos no es tan 

grande o diverso como para beneficiarse de la ma-

yor complejidad, por lo que es ideal comparar am-

bas arquitecturas. Por ejemplo, Phan et al. (2023) 

reportaron que ResNet-50 produjo una precisión 

del 98% en la clasificación de tomates en compara-

ción con el 97% de ResNet-101. 

Recientemente, se han publicado trabajos, como 

los de Bondre & Patil (2024) y Feng et al. (2023), 

que confirman nuestros resultados y proporcionan 

un soporte adicional a nuestros hallazgos, lo que 

nos permite proponer la red neuronal Mask R-CNN 

con arquitectura ResNet 101 como un método fiable 

para la detección de lesiones ocasionadas por P. 

Infestans en el cultivo de papa. Sin embargo, a di-

ferencia de estos estudios nuestro planteamiento 

de usar drones para la evaluación en campo mues-

tra la innovación de nuestro método para superar 

las complejidades inherentes de la zona de estudio 

con terrenos irregulares y vegetación densa que a 

menudo obstaculizan los métodos de evaluación 

tradicionales. Para ello, aprovechamos el poder de 

las tecnologías emergentes de agricultura de preci-

sión.   
 

 
 

Figura 6. Resultado de la aplicación del modelo Mask R-CNN con arquitectura ResNet-101. 



Scientia Agropecuaria 17(2): 293-303 (2026)                     Cairampoma et al. 

-302- 
 

El uso de imágenes capturadas con drones nos 

permitió superar los límites de lo que es posible 

para la detección de enfermedades de manera au-

tomatizada y escalable. Por tanto, los desafíos que 

imponen estos agroecosistemas con alta incidencia 

de P. infestans y de difícil acceso requieren el desa-

rrollo de enfoques innovadores para el monitoreo 

y manejo del tizón tardío. De acuerdo con Grados 

et al. (2020), existe una oportunidad significativa 

para mejorar los rendimientos del cultivo de papa 

en zonas altoandinas mediante un uso más racional 

de insumos y mejores prácticas agrícolas. Teniendo 

en cuenta que el cultivo de papa debe abordar las 

cargas ambientales dentro de las limitaciones so-

cioeconómicas locales. Al proponer una herra-

mienta automatizada y precisa para la detección 

temprana del tizón tardío, nuestra propuesta puede 

contribuir a mejorar la productividad del cultivo de 

papa, al tiempo que facilita prácticas de manejo 

más racionales y sostenibles, como la aplicación 

controlada de pesticidas, de acuerdo con las reco-

mendaciones de Babli et al. (2022). Esta integración 

de innovaciones tecnológicas y enfoques de inten-

sificación sostenible es crucial para potenciar el 

desarrollo del sector papero en estos entornos 

desafiantes de las zonas altoandinas. 

 
4. Conclusiones 
 

El uso del dron Phantom 4 Pro, combinado con re-

des neuronales profundas como Mask R-CNN, ha 

demostrado ser una técnica promisoria en la eva-

luación de la incidencia del tizón tardío en los folío-

los de papa en campos de agricultores de Hua-

sahuasi (3480 m s. n. m.). El modelo basado en la 

arquitectura ResNet 101 alcanzó una precisión del 

73,5% con un IoU del 70%, lo que le permitió iden-

tificar lesiones de aproximadamente 400 píxeles en 

imágenes RGB de 2,4 megapíxeles. 

Al comparar las arquitecturas ResNet50 y Res-

Net101, se concluye que ResNet101 generalmente 

ofrece una precisión ligeramente superior para la 

identificación del tizón tardío en cultivos de papa. 

Aunque requiere más recursos computacionales y 

tiempo de procesamiento en comparación con las 

50 capas de ResNet50, el incremento marginal en 

el rendimiento justifica su aplicación, especialmente 

si el tamaño del conjunto de datos es el adecuado.  

En general, la aplicación de técnicas avanzadas de 

visión por computadora se ha convertido en un en-

foque prometedor para la detección y el segui-

miento de enfermedades en el cultivo de papa. 

Aquí hemos resaltado la ventaja que ofrece esta 

metodología sobre los métodos tradicionales de 

evaluación y diagnóstico. En particular, el uso del 

dron para la recopilación de imágenes representa 

una ventaja clave de nuestro método. Esta pro-

puesta de captura de datos permite superar las li-

mitaciones inherentes a los entornos agrestes y de 

alta pendiente, donde los métodos de inspección 

manual a menudo son ineficientes e impracticables. 

La capacidad de identificar lesiones es particular-

mente notable, ya que proporciona información 

detallada sobre el alcance y la distribución de los 

síntomas de la enfermedad, lo cual es crucial para 

implementar intervenciones oportunas y 

específicas. 

Finalmente, como proyecciones futuras, se reco-

mienda la implementación de estos algoritmos en 

plataformas de edge computing integradas a los 

drones para permitir la toma de decisiones en 

tiempo real. Asimismo, sería valioso expandir el en-

trenamiento del modelo incorporando diversas va-

riedades de papa nativa y condiciones de ilumina-

ción variables, así como explorar la fusión de imá-

genes RGB con sensores multiespectrales. Esto no 

solo refinaría la precisión diagnóstica, sino que sen-

taría las bases para sistemas de aplicación automa-

tizada de agroquímicos (drones pulverizadores), 

optimizando recursos y reduciendo el impacto am-

biental en los Andes. 
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