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Abstract 

The key factor in durian fruit trading is ripeness. Several studies have been conducted on non-destructive durian maturity classification 

using near-infrared (NIR) spectroscopy. However, most of these studies manually determined the most accurate measurement position, 

which was the durian's main fertile lobe center. This research aims to automate the stage of detecting this position of the durian by using 

UNet segmentation method, which leverages differences in rind texture between the center of the main fertile lobe and other areas (lobe 

grooves and stems), prior to conducting NIR measurements. The rough and non-uniform surface of the durian rind presents a significant 

challenge for segmentation. However, the large size of the durian spines in the main fertile lobe serves as an identification characteristic 

for the segmentation model. This study uses the Ri-6 durian in Vietnam as the samples for the experiment. The model was developed 

using three architectures: Unet, Attention-Unet and Attention-Residual Unet. According to the analysis results on test set, Unet, Attention-

Unet and Attention-Residual Unet algorithms achieved %accuracy of 78.22%, 81.34%, 82.89% and %intersection over union of 79.49%, 

80.47%, 80.72%, respectively. After that, the model was further enhanced using the test time augmentation algorithm, improving the 

%accuracy to 85.24%, 85.68%, 86.85% and %IoU to 81.65%, 82.03% and 83.12%. Among the three architectures, the Attention-Residual-

Unet model demonstrated the highest efficiency in detecting the center of the durian’s main fertile lobe for non-destructive durian maturity 

classification. This method can be applied to the development of an automatic durian’s maturity classification machine, which would save 

time and improve economic efficiency. 
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1. Introduction 

The durian tree is a highly valuable fruit crop that 

plays a significant role in the agricultural economy 

of countries with climatic conditions suitable for its 

cultivation, particularly those in the ASEAN region. 

In Vietnam, the total area dedicated to durian culti-

vation reached 30,000 hectares (Ngoc et al., 2024), 

contributing to the country's global agricultural ex-

ports, which amounted to 21.82 billion US dollars 

(Likhitpichitchai et al., 2023), and this is estimated to 

increase rapidly in the future. Therefore, the de-

mand for higher quality and productivity is 

expected to increase as well.  

One method to increase the value of the durian 

market is to accurately classify durians according to 

their ripeness. Various approaches have been ex-

plored in this field, with non-destructive techniques 

using NIR spectroscopy, such as the study by 

Ditcharoen et al. (2023), demonstrating a high effi-

ciency. Although NIR spectroscopy has proven to 

be effective, the measurement position is still se-

lected manually. Although this approach is feasible 

for a small number of durians, it becomes impracti-

cal for large-scale applications due to its slow pro-

cessing speed.  

The NIR method has been applied to multiple indi-

vidual positions on durian fruit, with the middle po-

sition of fertile locules and stems yielding the most 

accurate results among the single measurement 

locations (Puttipipatkajorn et al., 2023). However, 

some fruits lost their stems before classification. 

Therefore, the fertile locule center (FLC) is the most 

suitable location for classification. During the durian 

development process, the shape of the fruit is 
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divided into two main parts (excluding the stem): 

fertile lobe and lobe groove (Figure 1). In this re-

search, the special shape of the durian fertile lobe 

is used as the main factor to detect its center. A fer-

tile lobe refers to a durian locule that appears visibly 

full and completely developed along the entire 

length of the fruit (Glinpratum, 2003). Between each 

pair of locules, a suture extends from the stem to 

the stylar end. This suture represents the dehis-

cence zone, where the ovary walls of individual car-

pels fuse during early flower development to form 

the locules. Ultimately, this is the region where the 

fruit naturally splits or dehisces (Siriphanich, 2011). 

As the fruit matures, the spines along the suture at 

the groove turn brown or even black (Siriphanich, 

2011). In the fertile lobes, the grooves among the 

spine bases expand and also be darker (Pascua & 

Cantila., 1992). 

 

 
 

Figure 1. The shape of durian. 

 

Based on the lobe morphological characteristics 

above, the segmentation algorithm is a potential 

method to determine the FLC point. The Unet 

model has been proven effective in various studies 

on image segmentation, with applications in fields 

such as healthcare, agriculture, and industrial prod-

ucts, among others. Specifically, in agriculture, this 

model has been studied and found to be well-

suited for fruit image segmentation when usually 

achieve the accuracy over 90% (Mane et al., 2023). 

Moreover, The Unet model is notably fast and effi-

cient to train, as it is less susceptible to overfitting 

compared to most other segmentation models. Ad-

ditionally, it supports contextual learning, further 

enhancing its performance (Rehman & Rehman, 

2022). 

According to the literature review, Unet model and 

its variations have the potential to be applied to 

segment the center zone, which is used to measure 

the durian maturity. The variations in shape and 

color of the durian rind will undergo an image pre-

processing stage before being fed into the model 

to enhance the Unet models feature extraction ca-

pability. This step is particularly important due to 

the rough texture of the durian rind, which poses 

challenges for segmentation. Although Unet is a 

promising model, it also has several shortcomings. 

The direct skip connections in Unet create a signifi-

cant semantic disparity between the inputs of the 

two convolutional layers. Furthermore, these skip 

connections link feature maps at the same scale 

without accounting for the relationships between 

feature maps across different stages. As a result, the 

feature representations may lack consistency (Qurri 

& Almekkawy, 2023). Attention (Att) and Attention-

Residual (Att-Res) mechanisms are utilized to en-

hance accuracy and address the limitations of the 

original Unet model. The Att model enhances criti-

cal features while suppressing less relevant ones 

through the use of channel attention and spatial at-

tention modules (Li et al., 2025). In the research of 

Li et al. (2025) for sugar beet and weed segmenta-

tion, the intersection over union (IoU) ratio of 

Attention-Unet (Att-Unet) model is 98.76%, 89.69% 

and 60.63% compared to 98.64%, 89.47%, 55.49% 

of original Unet, respectively. The mean intersection 

over union (mIoU) index of Att-Unet (83.03%) is also 

higher than that of Unet model (81.20%). Addition-

ally, the residual architecture, when integrated with 

the U-Net network, demonstrates an improved 

ability to enhance segmentation accuracy com-

pared to the standalone U-Net model. When using 

Residual-Unet (ResUnet), the residual unit simplifies 

network training and the skip connections within a 

residual unit, as well as those linking low and high 

levels of the network, facilitate information propa-

gation without degradation. This enables the design 

of a neural network with significantly fewer param-

eters while achieving comparable or even superior 

performance in semantic segmentation (Zhang et 

al., 2018). The ResUnet show the greater breakeven 

point than Unet model (0.9187 compared to 0.9053) 

so it has a better performance in precision and re-

call (Zhang et al., 2018). Due to Rehman et al. 

(2023), the segmentation experiment can achieve 

the best IoU index (81.16%) when using Att-ResUnet 

(between Unet, Att-Unet and Att-ResUnet). Alt-

hough Att-Unet and Att-ResUnet demonstrate sev-

eral advantages, they also introduce increased 

computational complexity and a higher risk of over-

fitting, which can result in lower accuracy compared 

to the traditional UNet model in certain cases. This 

was observed in the segmentation models for Co-

lonoscopy, Liver, and Heart MRI datasets in the 

study by Weng et al. (2023), where the traditional 

UNet outperformed its variants, including Att-Unet, 

in terms of both accuracy and performance. There-
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fore, these variants were evaluated with different 

loss functions to ensure the selection of the model 

that achieves the highest possible accuracy. After 

training the model, to enhance accuracy, test time 

augmentation (TTA) method is applied before the 

model makes a segmentation decision by averag-

ing the outputs of multiple images to produce the 

most precise prediction. Finally, the center determi-

nation algorithm is used to detect the FLC point. 

In the following sections, this study will explore the 

architectures of the models used, the sample col-

lection methods for the dataset, and finally, an eval-

uation of the models' performance after training. 

This analysis will help assess the feasibility of identi-

fying FLC using U-Net and its variations. 

 

2. Model architecture 

The working principle of the model follows Figure 

2. The input of the model is the folder of durian 

images and the respective masks. The output is the 

coordinates of the FLC location. The training stage 

is experimented with three architectures: Unet, 

Attention-Unet and Attention-Residual Unet. 
 

 
 

Figure 2. Model architecture. 

 
 

2.1 Data preprocessing 

In this stage, the collected images will undergo a 

preprocessing algorithm in JPEG format to enhance 

the model's learning capability and improve 

accuracy. Subsequently, background removal is 

performed by extracting contours from the input 

image and preserving only the largest contour, 

which represents the durian fruit. All of the input 

data are scaled into 256×256 size. After that, all of 

the photos are moved to the contrast limited 

adaptive histogram equalization (CLAHE) stage. 

CLAHE applies a lower threshold when modifying 

the histogram, enhancing image quality by 

improving contrast while preventing noise over-

enhancement and minimizing edge shadowing 

(Saifullah & Drezewski, 2023). The limit value is 

determined using the clip limit derived from the 

equation (1) below. 
 

𝛽 =
𝑀

𝑛
(1 +

𝑎

100
(𝑠𝑚𝑎𝑥 − 1))                  (1) 

 

Where M denotes the region's area size, n 

represents the 8-bit grayscale value (0–255) and α 

defines the clip factor threshold applied to the 

histogram (0–100). After that, the dataset is divided 

into two main parts: 10% for the testing set and 90% 

for training and validation. Of this 90%, 90% is 

allocated for training set, while the remaining 10% 

is used for validation. 

 

2.2 Unet  

The network exhibits a symmetrical design, 

consisting of an Encoder that extracts spatial 

information from the input image and a Decoder 

that reconstructs the segmentation map from the 

encoded features (Figure 3). The Encoder adopts a 

conventional convolutional neural network 

structure, with two 3 × 3 convolutional layers 

followed by 2 × 2 max pooling with stride 2. This 

pattern repeats four times, doubling the number of 

filters at each stage. Two final 3 × 3 convolutional 

layers then serve as a bridge to the Decoder 

(Ibtehaz & Rahman, 2019). 

Conversely, The Decoder reconstructs the output 

image using Encoder features. Each block mirrors 

the Encoder’s structure but replaces max pooling 

with a 2 × 2 transposed convolutions to upsample 

and halve the feature channels. 

In detail, 3×3 filters enable the network to learn 

essential features from the input image. They 

enhance feature extraction, preserve image details, 

reduce the number of parameters compared to 

5×5 and 7×7 filters, improve non-linearity, and 

facilitate effective connections between the 

Encoder and Decoder. Furthermore, for capturing 

the features non-linearity, Relu activation function is 

almost all blocks in the network (Enshaei et al., 

2020) except the output layer at the end of the 

model, where a sigmoid activation function is 
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utilized to assign a smooth weight to each channel 

and produce the corresponding weight value as 

output (Men et al., 2021). The formula of Relu and 

Sigmoid are presented by functions (2) and (3): 
 

𝑅𝑒𝑙𝑢: 𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

              (2) 
 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 𝑓(𝑥) =
1

1+𝑒−𝑥
                  (3) 

 

Besides, Max pooling in the encoder reduces spatial 

dimensions while preserving key features, improv-

ing efficiency. Transposed convolution in the de-

coder restores resolution by interpolating missing 

details for accurate segmentation. U-Net also uses 

concatenation to combine decoder context with 

encoder features, enhancing segmentation perfor-

mance (Sulaiman et al., 2024). 

Finally, each block incorporates a dropout function 

to prevent overfitting. The dropout rate is set at a 

low range of 0.2 to 0.3 to preserve essential 

features, considering the limited quantity and high 

complexity of the input data. 
 

2.3 Attention-Unet  

Expanding on the original Unet framework, the 

Attention-Unet architecture improves performance 

by integrating Attention Gate (AG) layers (Figure 4). 

It includes four encoder and four decoder blocks, 

with attention gates before each decoder block to 

emphasize relevant encoder features and suppress 

irrelevant ones. Although this refinement enhances 

segmentation accuracy, it also necessitates a careful 

balance between computational cost and the 

potential risk of overfitting (Sulaiman et al., 2024). 

The Attention Gate (AG) uses coarse-scale infor-

mation to suppress irrelevant signals and noise in 

skip connections before concatenation, retaining 

only meaningful activations. It also refines neural 

responses during training by downweighting 

gradients from background regions, focusing 

updates on task-relevant areas (Oktay et al., 2018). 
 

2.4 Attention-Residual Unet 

The Att-Unet architecture shows great potential in 

extracting complex features from datasets. How-

ever, the durian shell presents a significant chal-

lenge due to its rough and irregular surface, making 

feature extraction less stable and consistent. Alt-

hough increasing network depth can enhance the 

performance of a deep neural network, it may hin-

der training and lead to degradation issues (Zhang 

et al., 2018). He et al. (2016) proposed the residual 

neural network to facilitate training and address the 

degradation problem.  

The residual network consists of a series of stacked 

residual units. Each unit includes a convolutional 

block (Fx1) and an identity mapping (X1) running in 

parallel, which are combined at the block’s output 

(Figure 5a, 5b). Aside from the similarities in the 

convolutional blocks compared to Unet and Att-

Unet, Batch Normalization in the Att-ResUnet 

architecture (Figure 6) plays a crucial role in 

stabilizing training, accelerating convergence, 

mitigating internal covariate shift, reducing the 

vanishing gradient problem, and minimizing 

overfitting, ultimately enhancing the model’s overall 

performance. 
 

 

 
 

 

Figure 3. Unet architecture. 
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Figure 4. Attention-Unet architecture. 

 

 

 
 

Figure 5. a) Encoder Residual Block, b) Decoder Residual Block. 

 
2.5 Test Time Augmentation and Center Detection 

After the training process, the output results still 

have noise. It can have negative affect to the pre-

diction. Therefore, the test time augmentation (TTA) 

algorithm is applied to denoise for the final output. 

TTA includes four procedures: augmentation, pre-

diction, dis-augmentation and merging (Moshkov 

et al., 2020). During the augmentation phase, the 

input images are transformed into multiple orienta-

tions (four times in this study). The augmented im-
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ages are fed into the trained model for prediction. 

Afterward, a de-augmentation process restores 

them to their original orientations, and the results 

are merged to generate the final output.  

In U-Net, the merging is straightforward since indi-

vidual instances are not distinguished. De-aug-

mented probability maps are averaged, yielding a 

floating-point image that is then converted into a 

binary mask (Moshkov et al., 2020). Applying 

element-wise thresholding at 0.47 effectively 

transforms the soft masks into binary masks 

After the TTA stage, OpenCV is employed as a 

detection algorithm to extract the contour of the 

fertile lobe and determine its center coordinate, 

which represents the FLC position. 
 

2.6 Loss Functions 

Another crucial component of a neural network is 

the loss function. In the study of Neyestanak, et al., 

(2022), Binary Cross Entropy (BCE) and Binary Focal 

Loss (BFL) demonstrated high performance, 

consistently achieving an accuracy of over 98% for 

image segmentation. Meanwhile, in the 

segmentation research of Montazerolghaem, et al. 

(2023), Dice Loss (DL) proved to be more effective 

than BCE and BFL. In this study, all three loss 

functions are evaluated to identify the one that 

achieves the highest accuracy for FLC identification. 

Their general formulas are presented below, with 

specific parameters detailed separately: 

𝑔𝑖 , 𝑔𝑖 : voxels i in ground truth and segmentation 

output, respectively. 

𝐶: the number of classes. 

𝑐: notation for an individual class. If class c is the 

correct classification for voxel 𝑖, 𝑔𝑖
𝑐 is equal to 1 and 

𝑠𝑖
𝑐 is the corresponding predicted probability.  

𝑁: the total number of samples. 
 

Initially, BCE loss is a widely used metric in deep 

learning, measuring the dissimilarity between 

probability distributions based on cross-entropy 

and the training data characteristics 

(Montazerolghaem et al., 2023). The mathematical 

formulation of the BCE loss function is: 
 

𝐵𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑔𝑖

𝑐 log(𝑠𝑖
𝑐)𝐶

𝑐
𝑁
𝑖=1                   (4) 

 

Secondly, BFL function addresses class imbalance 

by down-weighting well-classified samples and 

emphasizing harder examples through a scaling 

mechanism. 
 

𝐵𝐹𝐿 = −
1

𝑁
∑ ∑ (1 − 𝑠𝑖)𝛾𝑔𝑖

𝑐 log(𝑠𝑖
𝑐)𝐶

𝑐
𝑁
𝑖=1       (5) 

 

where hyperparameter γ is a focusing parameter. 

The last loss function is DL. It is formulated to 

maximize the Dice coefficient directly. Models 

employing Dice loss have exhibited superior 

effectiveness in binary segmentation. 
 

𝐷𝑖𝑐𝑒 = −
2 ∑ 𝑠𝑖𝑔𝑖

𝑁
𝑖=1

∑ 𝑠𝑖
2𝑁

𝑖=1 +∑ 𝑔𝑖
2𝑁

𝑖=1 +𝜀
                         (6) 

 

where ε is a small number to avoid division by zero. 

Those are all the necessary algorithms before 

proceeding to the experimentation phase. 

 

 
 

 

Figure 6. Attention-Residual architecture. 
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3. Methodology 
 

3.1 Sample collection 

The durian fruit sample for the experiment is the Ri-

6 variety, which come from Tam Binh Commune, 

Cai Lay District, Tien Giang Province, Vietnam. Total 

of 80 fruit samples were collected from many 

different age periods (80 to 130 days), which were 

classified by the orchard’s host, to ensure that the 

final model is suitable to all of these age periods 

(unripe and ripe). The samples were placed in the 

room temperature at 27 ± 2 °C for 1 day to ensure 

that all fruits are in the same condition before 

conducting the collection of image samples. After 

that, the fruits were moved to the sampling 

chamber for the experiment process. 
 

3.2 Experiment 

After 1 day, the durian samples will be put into the 

sampling box. The sampling chamber is a 

50×50×50cm cube box which has rough white wall. 

The four upper corners of the box are arranged with 

the 50W halogen lights. The bulls are arranged at 

45° angle from the vertical and pointing down 

toward the center of the chamber (Figure 7a, 7b).  

The camera used in this research is a Samsung cam-

era with 64MP resolution, and set to 1:1 zoom 

mode. The durian is placed at the center of the 

box’s bottom, and the camera is positioned at the 

center of the box’s top. During the sampling pro-

cess, 80 durian fruits were photographed from 

various angles to enhance the training dataset for 

the model. 

After the image sampling process, a set of images 

(Figure 8) was obtained for use as the training da-

taset for the deep learning model. The selected 

images meet the standard of sharpness, ensuring 

that the details on the durian’s surface are clearly 

visible. 

Based on the characteristics of fertile lobes in du-

rian, as mentioned in the introduction, the collected 

image dataset will be annotated and masked using 

the LabelMe software tool (Figure 9). The generated 

masks will cover the most prominent and central 

part of the fertile lobe, including the largest, well-

developed spikes that protrude higher than the rest 

of the fruit. These masks will then be added to the 

dataset along with the original images for training 

the model.  
 

 
 

Figure 7. a) The sampling box, b) The sampling box (inside) 

during the sampling process. 
 

 
 

Figure 8. Raw durian dataset. 
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Figure 9. Making mask with LabelMe software. 
 

Then, the collected image dataset is divided into 

pairs of original images and corresponding masks 

before being fed into the neural network. This 

ensures alignment between the masks and the 

original images, preventing significant errors during 

the training process. After completing the above 

steps, the dataset is imported into the model for 

training. The original durian images are provided to 

the model as uint8 color images type with three 

channels, while the mask set is supplied as binary 

black-and-white images in Boolean format. This ap-

proach reduces computational resource consump-

tion and enhances processing speed. 

In the first stage of the model, the original data im-

age set above will be taken through the prepro-

cessing step. The contrast and color highlights of 

the durian spine and rind will clarify. In Figure 10, 

the spines of fertile lobe (yellow bounds) are large 

so this area reflects light better. The grooves at the 

base of the spines are clearly visible. 

Next in the training process, three algorithms are 

Unet, Att-Unet and Att-ResUnet will be combined 

with the loss functions such as Binary Cross Entropy, 

Dice Loss, and Binary Focal Loss to determine which 

model yields the highest effectiveness. Additionally, 

techniques such as Dropout, Early Stopping (after 4 

consecutive unchanged epochs) are employed to 

minimize errors and reduce overfitting in the 

model. 

The training results are then evaluated and com-

pared to identify the model that delivers the highest 

performance and accuracy. The final prediction will 

be finish by the center detection stage and get the 

coordinates of the FLC (Figure 11). 

 
 

Figure 10. The contrast and color highlights of the durian spine 

and rind. 
 

3.3 Evaluation metrics 

The trained model will be evaluated and compared 

based on multiple criteria to ensure that the se-

lected model achieves high accuracy and a short 

prediction time. The evaluation criteria include: re-

call (%), precision (%), accuracy (%), intersection 

over union (IoU%) and prediction time (seconds). 

The first three criteria are used to evaluate the mod-

el's performance on the validation set after training. 

Meanwhile, accuracy and IoU are specifically used 

to assess the model's effectiveness on the test set 

before and after applying TTA. 
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Figure 11. The coordinates of the FLC. 
 

According to the aforementioned criteria, this study 

will delve deeper into the formulas and mechanisms 

of each parameter to gain a better understanding 

of the evaluation results. Figure 12 provides a more 

intuitive view of how the following formulas work. 

Following to Figure 12, True Positive (TP) represents 

the overlapping region of the fertile lobe between 

the actual mask and the predicted result. Similarly, 

True Negative (TN) corresponds to the surrounding 

background. False Positive (FP) and False Negative 

(FN) refer to the non-overlapping regions of the 

fertile lobe in the actual mask and the predicted 

result, respectively. 
 

 
 

Figure 12. Distribution areas of actual and prediction. 

 

From all of the area in Figure 12, the metric param-

eters are calculated by the equations. Firstly, recall 

is the ratio of the number of correctly classified 

pixels and the number of the actual target feature 

pixels. The formula of recall is: 

%𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100              (7) 

 

Secondly, precision is the ratio of the number of 

correctly classified pixels to the number of mask 

pixels: 

%𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100         (8) 

 

Thirdly, accuracy is a fundamental criterion in clas-

sification, providing a direct measure of how well a 

model performs its intended task. It represents the 

ratio of correctly predicted instances to the total 

number of instances in the dataset. It is the propor-

tion of correctly classified instances, including both 

positive and negative cases. Mathematically, it is 

defined as: 
 

%𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100           (9) 

 

Finally, IoU is a metric computed as the ratio of the 

overlapping area between the ground truth and the 

predicted segmentation to the combined area. It is 

mathematically defined as: 
 

%𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100                        (10) 

 

4. Results and discussion 
 

Based on the above criteria, the model will be eval-

uated for effectiveness. The model's performance 

on the validation set after training is evaluated 

based on the Table 1. It shows the percentages of 

recall, precision and accuracy of three algorithms, 

which are combined with three types of loss func-

tions. From the data in Table 1, it is evident that the 

segmentation models are feasible for determining 

the location of fertile lobes, as most parameters 

exceed 80%. When monitoring the parameters 

between the loss function, it can be seen that the 

efficiency nearly increases in the order BCE, DL and 

BFL. However, BFL shows superior accuracy while 

BCE and DL do not seem to be too different from 

each other although DL mostly shows better 

performance than BCE (7 out of 9 cases). 

From the results in Table 1, the fact that BFL is often 

2% - 4% higher than the other two types can be 

explained by the significant variation in the shape 

and color of durian shells within the dataset, which 

leads to data imbalance. BFL demonstrates better 

adaptability in handling data imbalance by focusing 

more on hard-to-classify samples compared to BCE 

and DL. This has also been studied by Neyestanak, 

M. S. et al. (2022) (Neyestanak et al., 2022). 

As for the algorithms, model Att-ResUnet achieves 

higher ratio of recall, precision and accuracy than 

the other two model, Unet and Att-Unet. Once 

again, the complexity of the durian shell is a great 

challenge for the segmentation model. Therefore, 

attention gates with focusing on important features 

contributes to improving the ability to recognize 

and set points for the model. This is also supported 

by the image preprocessing process which helps 

highlight the color points of the rind. Therefore, Re-

sidual Learning is responsible for helping to transfer 

information better through deep layers, minimizing 

the problem of disappearing gradients, thereby 

helping the model converge faster and more stably. 
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Table 1 

Overall comparison the efficiency for validation set of different method 
 

Classification algorithm Loss Function %Recall %Precision %Accuracy 

Unet 

Binary Cross Entropy 84.46 75.33 90.16 

Dice Loss 85.18 76.75 91.14 

Binary Focal Loss 91.77 80.24 92.57 

Attention-Unet 

Binary Cross Entropy 90.93 79.26 91.36 

Dice Loss 92.24 79.34 93.23 

Binary Focal Loss 93.05 82.80 94.31 

Attention-Residual Unet 

Binary Cross Entropy 92.56 80.67 94.25 

Dice Loss 94.06 83.43 94.80 

Binary Focal Loss 95.11 86.72 96.68 

 

 

In Table 1, Attention-Residual Unet shows the most 

promising results in identifying fertile lobes based 

on the morphological characteristics of durian 

spines and peels, especially when combined with 

BFL loss function. This combination shows a rapid 

increase in efficiency during the first half of the 

training process, which gradually decreases but 

maintains an increasing trend in the second half of 

the process (Figure.13). It can be seen that there is 

a slight decrease in the period between epoch 40 

and epoch 50, but this does not greatly affect the 

improvement of the model. 

 
 

 
 

Figure 13. Training efficiency on the validation set of Att-ResUnet 

model. 

 
 

After being evaluated on the validation set, each of 

the most effective models from the Unet, Att-Unet 

and Att-ResUnet architectures is continued to be 

tested on the test set. At this step, a test set 

accounting for 10% of the original dataset is used to 

test the accuracy of the prediction model. The 

metric used for testing will be %IoU and %accuracy, 

which can provide the objective evaluations. Table 

2 shows the results of three models on the test set 

(one example is used for visualization). It can be 

easily seen that the predicted fertile lobe area has 

almost the same shape and position as the mask. 

This shows that the algorithm has effectively ex-

tracted the points of the durian peel. However, 

there are still noisy locations (red boxes) that the 

model did not recognize. %Accuracy and %IoU in-

crease in the order Unet, Att-Unet and Att-ResUnet 

(78.26%, 81.34% and 82.89% for accuracy and 

79.49%, 80.47% and 80.94% for IoU). 

In the data from Table 2, noise artifacts appear at 

the edges of the FLC region due to reflection and 

diffusion on the rough surface, creating uneven 

bright spots. This can lead to confusion in the 

model's predictions. Model Attention-Residual Unet 

combined with binary focal loss method continues 

to outperform the rest by consistently outperform-

ing them all. Although relatively good accuracy has 

been achieved for a complex classification task, 

noisy locations still need to be eliminated to avoid 

misidentifying the FLC location.  

To achieve this, another technique that has been 

used to decrease noise levels is test time augmen-

tation. The results after application on test set are 

presented again in Table. After the application of 

TTA, the neatness of the prediction compared to 

the true mask is significantly improved in Table 3. 

The noise area (yellow boxes) has disappeared so 

that the shape of the prediction matches the mask 

much better (Table 3). The two evaluation criteria 

accuracy and IoU improved by 3-5% compared to 

before combined with TTA. The %accuracy 

achieved the highest percentage with 86.85% and 

%IoU with 83.12%. From the above results, again in 

this study, the model with the combination of Att-

ResUnet and test time augmentation algorithm 

achieved the best performance in determining the 

FL region achieved the best performance in deter-

mining the FL region. The four augmented predic-

tions in the TTA algorithm eliminated unnecessary 

regions in the final result (Figure 14). 
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Table 2 

Comparison of %IoU and %Accuracy on the test set before applying TTA with different methods 
 

Classifi- 

cation 

Algorithm 

Loss  

Func- 

tion 

Original Image 

(one example) 

True Mask 

(one example) 

Prediction 

(one example) 

% 

IoU 

% 

Accuracy 

Unet 

Binary 

Focal 

Loss 

   

79.49 78.26 

Attention-

Unet 

Binary 

Focal 

Loss 

   

80.47 81.34 

Attention-

Residual 

Unet 

Binary 

Focal 

Loss 

   

80.94 82.89 

 
Table 3 

Comparison of %IoU and %Accuracy on the test set after applying TTA with different method 
 

Classifi- 

cation 

Algorithm 

Loss 

Function 
Original Image (one example) 

True Mask 

(one example) 

Prediction 

(one example) 

% 

IoU 

% 

Accuracy 

Unet 
Binary 

Focal Loss 

   

81.65 85.24 

Attention-

Unet 

Binary 

Focal Loss 

   

82.03 85.68 

Attention-

Residual 

Unet 

Binary 

Focal Loss 

   

83.12 86.85 
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Figure 14. Result after TTA. 

 

The results in Table 4, with 86.85% accuracy, 

demonstrate the high effectiveness of utilizing du-

rian shell characteristics for classification or seg-

mentation. This task is significantly more challeng-

ing compared to other fruits due to the irregularity 

and complexity of the shell and spikes. In Lim & 

Chuah’s (2018) (Lim & Chuah, 2018) study, a CNN 

model was applied to images of durian surfaces, 

achieving high accuracy during training. However, 

when tested on the test set, accuracy dropped sig-

nificantly to 82.5%. Similarly, in Hashim, et al.’s 

(2022) (Hashim et al., 2022) CNN-based durian 

classification model, accuracy reached 80%. Addi-

tionally, in the research of Mustaffa, et al. (2018), 

which employed Linear Discriminant Analysis (LDA) 

for durian recognition based on external features, 

the test dataset yielded significantly lower accuracy 

than the validation set, achieving only 72.38%.  

 
Table 4 

Comparison of different models in utilizing durian shell characte-

ristics for classification or segmentation 
 

Model architecture %Accuracy 

CNN (Lim & Chuah, 2018) 82.5 

CNN (Hashim et al., 2022) 80 

LDA (Mustaffa et al., 2018) 72.38 

Att-ResUnet (this research ) 86.85 

Table 4 illustrates that the Att-ResUNet model in 

this study outperforms models CNN (Lim & Chuah, 

2018), CNN (Hashim et al., 2022), and LDA (Mustaffa 

et al., 2018) in terms of accuracy. 

 

5 Conclusions 
 

From the results of the training and evaluation pro-

cess in this study, it is evident that the combination 

of Attention-Residual Unet architecture and test 

time augmentation algorithm achieves the highest 

effectiveness in recognizing the characteristics of 

fertile lobes and determining their locations.  

Additionally, when evaluating the model’s perfor-

mance on the test set using %IoU and %accuracy, 

the results are highly encouraging, reaching 83.12% 

and 86.85%.  

There are several factors affecting the quality of the 

final results, such as the lighting angle in certain 

cases failing to create a clear distinction in the 

durian spines, surface damage on the shell, and so 

on. However, in the future, these limitations can be 

addressed by optimizing the illumination angle for 

the light source and applying more rigorous data 

selection before training. 

These figures demonstrate the high feasibility of the 

proposed model for practical applications, aiming 

to improve the efficiency of FLC identification in du-

rians. This research also contributes to the develop-

ment of a durian ripeness classification system using 

the NIR method, previously studied by Ditcharoen 

et al. (2023). In addition, the model's ability to ex-

tract characteristics of durian peels can be a prem-

ise for improving durian variety classification 

models in the future. 
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