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Abstract 

In recent decades, global warming has triggered significant changes in the hydrological cycle, leading to various disasters, especially 

contrasting events such as droughts and floods. These occurrences have also been recorded in the Atacama Desert, resulting in 

considerable economic losses worldwide, in Latin America, in Peru, and within the study region. The primary objective of this study is to 

obtain fundamental morphometric parameters, including basic spatial, linear, shape, and landscape aspects through the integration of GIS 

tools and artificial intelligence, enabling the identification of flood-prone areas within micro-watersheds. The studied basin is located at 

the head of the Atacama Desert, in southern Peru, where various lithological and hydro-geomorphological structures influence its 

vulnerability to floods. To assess flood vulnerability in the Caplina River micro-watersheds, 16 morphometric parameters were precisely 

analyzed, identifying areas of high vulnerability that require basin management measures. The results show that the hydrological response 

of the Caplina Basin is strongly influenced by its morphometric characteristics, with micro-watersheds in the middle and lower sections 

exhibiting higher susceptibility to flash floods. These findings aim to support urban planning and watershed management, offering insights 

for policymakers to develop flood mitigation strategies and enhance infrastructure resilience. 
 

Keywords: Flash floods; Caplina Basin; Weighted Sum Analysis; Unsupervised Machine Learning; Atacama Desert. 
 

 

DOI: https://doi.org/10.17268/sci.agropecu.2025.020  
 
 

Cite this article: 

Pino-Vargas, E., Huayna, G., Tapia, A., Pocco, V., Espinoza-Molina, J., Cabrera-Olivera, F., Huanacuni-Lupaca, C., Acosta-Caipa, K., & 

Ramos-Fernández, L. (2025). Identification of vulnerable areas to flash floods using weighted sum analysis and unsupervised machine 

learning in arid regions of the northern Atacama Desert. Scientia Agropecuaria, 16(2), 249-261.  

 

1. Introduction 
 

The increase in Earth’s surface temperature globally 

over recent decades has created an energy imbal-

ance on our planet, leading to alterations in the hy-

drological cycle that cause droughts, floods, wild-

fires, and climate change (Adeyeri et al., 2024). Cli-

mate change projections indicate negative impacts 

on hydrological systems, with significant changes in 

precipitation and temperature worldwide (Pino-

Vargas & Chávarri-Velarde, 2022; Wei et al., 2021). 

Globally, floods pose natural hazards with adverse 

environmental and socioeconomic impacts 

(Kalogeropoulos et al., 2023). 

Over recent decades, extreme flood events and 

their intensities have increased in most regions, 

mainly driven by climate change (Fernández-Nóvoa 

et al., 2024). Natural disasters, including earth-

quakes, floods, cyclones, hurricanes, droughts, and 

wildfires, cause yearly damages of about $300 bil-

lion globally, with an annual growth trend of 5% to 

7% (Rentschler et al., 2022). Notably, 23% of the 

world’s population is exposed to flood risks 

(Rentschler et al., 2022). The detrimental effects of 

floods on agriculture are evident in the destruction 

or impairment of crops. 

Latin America and the Caribbean (LAC), like many 

other world regions, are prone to hydro-

meteorological disasters that threaten livelihoods 

and cause economic losses (Pinos & Quesada-

Román, 2021). In South America, increased extreme 
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rainfall has been associated with more frequent 

floods, although recent studies suggest that re-

duced soil moisture might have the opposite effect 

(Brêda et al., 2023). Multiple factors drive flood haz-

ards and risks, and there is considerable uncertainty 

in assessments, particularly in future projections 

(Kundzewicz et al., 2019). Floods are the most wide-

spread, environmentally diverse, and continually 

destructive natural hazard (Roldán et al., 2022). 

In Peru, due to its geomorphological and geological 

situation, it is highly exposed to various risks, includ-

ing floods caused by the El Niño phenomenon and 

earthquakes that severely affect the population 

(Porto de Albuquerque et al., 2023). Floods occur 

due to excessive rainfall, as well as infrastructure 

collapse, seasonal snowmelt, and volcanic eruption-

induced flooding. Other social factors, such as 

changes in land cover from human activities, waste 

dumping, inadequate land management, defor-

estation, urbanization, and improper river channel-

ing, also contribute to these phenomena (Porto de 

Albuquerque et al., 2023). 

The Atacama Desert located in northern Chile and 

southern Peru, is the oldest and driest non-polar 

temperate desert on Earth (Bull et al., 2018). In re-

cent years, extraordinary precipitation events have 

been recorded across various regions of the Ata-

cama Desert, forming small surface lakes in areas 

where it was previously believed that no rain fell 

(Roldán et al., 2022). In the northern region of the 

desert, extraordinary precipitation events have led 

to surface storage, vegetation growth, and debris 

flows in previously dry areas (Pino-Vargas & 

Chávarri-Velarde, 2022). In hyper-arid regions, 

meteorological threats can develop rapidly, leading 

to catastrophes (Roldán et al., 2022). 

The most used method to assess flood risks relies 

on predicting the magnitude and extent of 100- or 

200-year floods. However, this approach can be 

misleading, as areas outside these boundaries are 

assumed to be free from risk. In this context, a ge-

omorphological approach is especially useful 

(Thompson & Clayton, 2002). The flood risk distri-

bution in riverine areas is not uniform, so correla-

tions are established among various geomorpho-

logical variables to evaluate land vulnerability. River 

channel and terrain geomorphology play an essen-

tial role in river overflow and flooding (Aggarwal et 

al., 2024). When based on geomorphology, Early 

Warning Systems (EWS) are widely recognized as 

one of the best tools for risk prevention, mitigation, 

preparation, and response strategies (Piacentini et 

al., 2020). 

In many parts of the world, sediment transport and 

morphological changes in freshwater environ-

ments, such as rivers, are only marginally consid-

ered. This can lead to potentially erroneous esti-

mates of flood impacts. Sediment significantly in-

creases flood risk (Liu et al., 2022). It is essential to 

pay attention to sediment transport since these play 

a vital role in the morphological response of river 

channels during major floods (Vázquez-Tarrío et al., 

2024).  

In this way, various studies have analyzed the sus-

ceptibility of areas to flooding using Multi-Criteria 

Decision Analysis (MCDA) approaches 

(Abdelkareem & Mansour, 2023; Riaz & Mohiuddin, 

2025). This study aims to identify flash flood-

vulnerable areas in the Caplina Basin employing 

Geographic Information Systems (GIS) supported 

by Weighted Sum Analysis (WSA) and unsupervised 

Principal Component Analysis (PCA) as processing 

tools, to assess which method provides a more 

accurate and effective prioritization of vulnerable 

areas. 

 

2. Methodology 
 

2.1 Study Area 
 

The study area was in the Tacna region, at the head 

of the Atacama Desert. The region is characterized 

by an arid climate, with minimal annual precipita-

tion, characteristic of the driest deserts in the world 

(Machaca-Pillaca et al., 2022). The Caplina River ba-

sin is part of the Peruvian Pacific hydrological unit 

and extends between the geographical coordinates 

of 18°35′ to 17°56′ south latitude and 70°67′ to 

69°75′ west longitude (Figure 1). Within this basin, 

three sub-basins have been identified: Caplina, 

Uchusuma, and Los Molles, collectively covering an 

area of 2,224 km². The headwaters of the basin 

reach a maximum elevation of 5,685 meters above 

sea level in the western cordillera, and the rivers 

within these sub-basins exhibit an endorheic drain-

age pattern (Ovalle & Begazo, 2016). The study ob-

tained fundamental morphometric parameters, in-

cluding basic spatial aspects, linear aspects, shape 

aspects, and landscape aspects, using the QGIS en-

vironment. Derived or secondary parameters, which 

influence the drainage network, basin geometry, 

drainage texture, and relief of the selected basins, 

are detailed in Table 1, respectively, where fifteen 

micro-watersheds were delineated. The prioritiza-

tion of micro-watersheds employed two approa-

ches: principal component analysis (PCA), using 

Jupyter Notebooks and Python programming 

language, and weighted. The prioritization of 

micro-watersheds for assessing their vulnerability to 

flash flood events was conducted by comparing 

both approaches employed (Figure 2).  
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2.2 Data Source 

The digital elevation model (DEM) from the Shuttle 

Radar Topography Mission (SRTM) with a 1-arc-

second resolution (approximately 30 meters spatial 

resolution) was used (Farr et al., 2007). The digital 

elevation models were obtained through Google 

Earth Engine (GEE), a cloud-based platform 

providing access to an extensive catalog of public 

geospatial data, including satellite and aerial 

imagery and environmental, meteorological, 

climate, topographic, and land cover variables 

(Amani et al., 2020; Safanelli et al., 2020). 
 
 

2.3 Morphometric Parameters 

For the morphometric characterization of the basin 

geometry, the following measurements were taken: 

(i) linear aspect, (ii) shape aspect, and (iii) landscape 

aspect. The linear aspect includes drainage density 

(Dd), stream frequency (Fs), texture ratio (Tr), and 

flow length (Lg). The shape parameter incorporates 

elongation ratio (Er), form factor (Ff), circularity ratio 

(Cr), compactness coefficient (Cc), and shape index 

(Sf). The landscape parameter includes relative 

relief (Rh), relief and sub-basin slope (As), basin 

relief (R), and unit hypsometric curve (Hi) (Table 1). 
 

2.4 Weighted Sum Analysis (WSA) 

The WSA approach is widely accepted for tackling 

complex issues, offering a consistent method to 

compare surface processes of related entities, like 

drainage basins, making it effective for classifying 

and prioritizing critical sub-basins in water-scarce 

areas (Kadam et al., 2019; Kumar et al., 2022). Many 

researchers widely employ this method to support 

sustainable planning and management of sub-

basins, especially in areas with limited data (Altaf et 

al., 2014). 

WSA reflects decision-makers’ preferences through 

an additive linear function, with the best option 

being the one with the highest score after 

transforming all evaluation criteria into a single 

dimension. This is represented in the following 

equation 1. 

 
 

 
 

Figure 1. Location map of the study area. (a) Location in South America. (b) Adjacent basin system in the region, including the Sama, 

Mauri, Caplina, and Locumba basins. (c) Location of micro-watersheds MC: 1 to 15 within the Caplina basin. 
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Table 1 

Formulas adopted to determine the morphometric parameters and associated references 
 

Morphometric parameters Formula and Definition References 

Areal aspect   

Area (A) Area of watershed in (km2), GIS analysis  

Perimeter (P) Perimeter of watershed in (km), GIS analysis  

Basin length (Lb) 𝐿𝑏 = 1.312 ∗ 𝐴0.568 , A = area of the basin (km2) (Sreedevi et al., 2013) 

Stream order (U) Hierarchical rank, GIS analysis (Strahler, 1964) 

Stream length (Lu) Length of the stream (km) of order u (Horton, 1945) 

Linear aspect   

Drainage density (Dd) 
𝐷𝑑 =  𝐿𝑈/𝐴 

Where 𝐿𝑢= total stream length of all orders, A = area of the basin (km2) 
(Horton, 1932) 

Stream frequency (Fs) 
𝐹𝑆 =  𝑁𝑈/𝐴, 

Where 𝑁𝑢= total no. of streams of all orders, A = area of the basin (km2) 
(Horton, 1932) 

Length of overland flow (Lg) 
𝐿𝑔 =  1/(𝐷𝑑 ∗ 2) 

Where 𝐷𝑑= Drainage density 
(Horton, 1945) 

Ratio texture (Tr) 
𝑇𝑟 =  𝑁𝑖/𝑃 

Where 𝑁𝑖= total no. of first order streams, P = perimeter of the basin 
(Horton, 1945) 

Shape aspect   

Elongation ratio (Er) 
𝐸𝑟 =  2√(𝐴/𝜋) /𝐿𝑏 

Where 𝐴 = area of the basin (km2), 𝐿𝑏 = basin length, 𝜋 = 3.14 
(Schumm, 1956) 

From factor (Ff) 
𝐹𝑓 =  𝐴/𝐿𝑏

2 

Where 𝐴 = area of the basin (km2), 𝐿𝑏
2 = square of basin length 

(Horton, 1945) 

Circularity ratio (Cr) 
𝐶𝑟 =  4𝜋 ∗ 𝐴/𝑃2 

Where 𝐴 = area of the basin (km2), 𝑃2 = square of perimeter (km) 
(Miller, 1953) 

Compactness coefficient (Cc) 
𝐶𝐶 = 0.2841 ∗ (𝑃/𝐴)2 

Where P = perimeter of basin (km), 𝐴 = area of the basin (km2) 
(Gravelius et al., 1914) 

Shape factor (Sf) 
𝑆𝑓 =  𝐿𝑏

2/𝐴 

Where 𝐿𝑏
2 = square of basin length, 𝐴 = area of the basin (km2), 

(Horton, 1932) 

Relief aspect   

Relief ratio (Rh) 
𝑅ℎ =  𝐻/𝐿𝑏 

Where H=total relief (relative relief) of the basin in km, 𝐿𝑏=basin length 
(Schumm, 1956) 

Basin relief (R) Diference between maximum and minimum elevation of watershed (Schumm, 1956) 

Average slope (As) In degree, GIS analysis  

Hypsometric integral 𝐻𝑖 = (𝐸𝑚𝑒𝑎𝑛 − 𝐸𝑚𝑖𝑛)/(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) (Pike & Wilson, 1971) 
 

 
𝑊𝑆𝐴 = 𝑃𝑟𝑝1 ∗ 𝑊𝑝1 + 𝑃𝑟𝑝2 ∗ 𝑊𝑝2 + … + 𝑃𝑟𝑛 ∗ 𝑊𝑛  (1) 

 

Where WSA is the composite parameter for 

weighted sum analysis, Pr is the preliminary priority 

rank of each morphometric parameter (p1, p2, …, 

n), and W indicates the weight of the morphometric 

parameters obtained by cross-correlation analysis, 

expressed as follows: 
 

W =
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝐺𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
   (2) 

 

2.5 Principal Component Analysis (PCA) 

PCA is a popular dimensionality reduction 

technique used in statistics and machine learning to 

improve feature accuracy while reducing 

processing time and retaining essential information 

(Velliangiri et al., 2019). PCA has been widely used 

for handling high-dimensional datasets to 

condense information, maintaining most of its 

variability (Kumar et al., 2022; Sharma et al., 2023). 

PCA selects the most significant features by 

transforming the original variables into a set of 

uncorrelated variables, called principal components 

(PCs) (Wold et al., 1987). 

These components explain most of the variance in 

the parameters, with the first principal component 

(PC1) contributing most to the total variance, 

followed by the second (PC2), which maximizes its 

contribution to the residual difference and is 

uncorrelated with the first. Subsequent components 

are calculated similarly. This method’s primary 

criterion relies on a complete change of the initial 

parameters, with principal components obtained 

using a loading factor and rotation matrices. 
 

3. Results and discussion 
 

Morphometric basin analysis can effectively priori-

tize areas with high flash flood risk, assisting in wa-

tershed management planning. This study em-

ployed various morphometric parameters affecting 

a basin’s hydrological response to prioritize the 

Caplina River micro-watersheds based on flash 

flood vulnerability. 
 

3.1 Morphometric parameters 

Morphometric analysis was conducted for 15 micro-

watersheds, considering the drainage network of 

the entire study area as a fifth-order basin (Figure 

3a). This analysis included 18 parameters for each 

micro-watershed to determine their dimensions, 

shape, area, and drainage network characteristics. 

The results show that Micro-watershed 8 is the 

smallest, with an area of 39.43 km², while Micro-

watershed 1 is the largest, with an area of 325.49 

km² (Table 2).  
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Figure 2. Flowchart of the methodology for processing micro-watershed prioritization. 

 

Over a third of the sub-watersheds have areas 

larger than 150 km². The small size of micro-

watersheds in the study area directly influences their 

vulnerability to flash floods (Balica et al., 2009). 

Additionally, 722 channels were identified, with a 

total length of 1703.34 km. Dimensional measures, 

such as area, perimeter, basin length, average 

slope, and elevations, are detailed in Table 2. Basic 

drainage characteristics, including stream order, 

stream count, and stream length, are shown in 

Table S1 (see Supplementary Material). 

 

3.1.1 Linear parameters 

Drainage density (Dd) is defined as the total length 

of stream segments per unit area. It primarily 

depends on surface topography, drainage system, 

distance, fluid viscosity, gravitational acceleration, 

and scale factor. Weathering resistance, 

permeability, rock composition, landscape, and 

vegetation also influence drainage density (Zheng 

et al., 2021). Low Dd values are observed in 

permeable areas with dense vegetation and gentle 

topography, while high Dd values occur in weak 

and impermeable soils with sparse vegetation and 

mountainous terrain. Micro-watersheds 1, 2, 3, and 

4 have low Dd values, ranging from 0.516 to 0.610 

per km², categorized as very coarse Dd, while 

Micro-watersheds 13, 14, and 15 show high Dd, 

ranging from 1.007 to 1.162 km². Figure 3b illustrates 

Dd’s spatial distribution, indicating a high density in 

the southern part of the sub-basin. 

Stream frequency (Fs) is inversely related to 

permeability and directly related to basin 

roughness. Fs primarily depends on surface 

lithological and physiographic conditions, along 

with precipitation in the specific area (Hynek et al., 

2022). High stream frequency suggests superficial 

rock presence, complex lithological conditions, and 

low permeability, leading to higher erosion, while 

low frequency indicates higher permeability and 
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lower erosion. The Fs of the micro-watersheds 

varies from 0.21 to 0.53 per km², as shown in (Figure 

3c). Low Fs values are found in Hydrographic Basins 

3, 4, 5, 6, and 11, resulting in reduced surface runoff, 

while high Fs values are observed in Basins 1, 2, 7, 

8, 9, 10, 12, 13, 14, and 15 (Table 3). High Fs in these 

basins implies low water infiltration, thus increasing 

surface runoff and vegetation presence. 

 

 

 
Figure 3. Map of the studied basin: (a) Drainage order; (b) drainage density; (c) stream frequency; and (d) slope. 
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Table 2 

Detailed description of the territorial, linear and landscape characteristics of the micro-basins of the Caplina 
 

Name 
Area 

(km2) 

Perimeter 

(km) 

Total No. 

Streams 

Basin Length 

(km) 

Average Slope 

(degrees) 

Elevation (m) 

Max Min Mean 

MC-1 315.49 84.71 116 34.46 21.94 5685 2290 4205 

MC-2 215.78 92.21 66 27.77 22.93 4584 1236 2592 

MC-3 137.17 83.49 38 21.47 22.49 4814 1236 3060 

MC-4 238.41 108.74 50 29.39 20.77 4958 982 3209 

MC-5 158.98 93.72 42 23.35 18.91 4506 981 2837 

MC-6 273.81 179.39 78 31.80 14.88 4537 110 1980 

MC-7 51.16 55.86 18 12.26 10.75 1941 530 1196 

MC-8 39.43 47.98 21 10.58 8.79 1607 531 1027 

MC-9 74.39 74.94 31 15.17 9.83 2122 546 1170 

MC-10 174.78 152.66 53 24.64 8.12 2251 4 663 

MC-11 140.54 81.41 41 21.77 10.06 1724 250 703 

MC-12 93.12 97.50 41 17.23 6.10 928 0 350 

MC-13 161.13 96.46 59 23.53 3.88 694 0 140 

MC-14 79.55 77.03 37 15.76 6.13 667 8 196 

MC-15 71.21 49.59 31 14.80 6.08 268 0 80 

 
Table 3 

Morphometric parameters directly and inversely proportional to the flash flood risk 
 

Microbasin  

Code 

Directly Proportional  Inversely Proportional 

Dd Fs Cr Tr As R Rh  Er Ff Sf Cc Lg 

MC-1 0.588 0.368 0.553 0.366 21.941 3.395 0.099  0.582 0.266 3.765 1.345 0.850 

MC-2 0.610 0.306 0.319 0.380 22.928 3.348 0.121  0.597 0.280 3.575 1.771 0.820 

MC-3 0.516 0.277 0.247 0.240 22.486 3.578 0.167  0.616 0.297 3.361 2.011 0.969 

MC-4 0.578 0.210 0.253 0.276 20.773 3.976 0.135  0.593 0.276 3.624 1.987 0.866 

MC-5 0.722 0.264 0.227 0.235 18.912 3.525 0.151  0.609 0.292 3.430 2.097 0.692 

MC-6 0.722 0.285 0.107 0.240 14.884 4.427 0.139  0.587 0.271 3.693 3.058 0.693 

MC-7 0.938 0.352 0.206 0.179 10.753 1.411 0.115  0.658 0.340 2.940 2.203 0.533 

MC-8 0.972 0.533 0.215 0.250 8.793 1.076 0.102  0.670 0.352 2.837 2.156 0.514 

MC-9 0.900 0.417 0.166 0.254 9.833 1.576 0.104  0.642 0.323 3.093 2.451 0.555 

MC-10 1.020 0.303 0.094 0.242 8.120 2.247 0.091  0.606 0.288 3.474 3.258 0.490 

MC-11 0.829 0.292 0.267 0.270 10.056 1.474 0.068  0.615 0.297 3.373 1.937 0.603 

MC-12 0.799 0.440 0.123 0.287 6.099 0.928 0.054  0.632 0.314 3.189 2.850 0.626 

MC-13 1.162 0.366 0.218 0.425 3.884 0.694 0.029  0.609 0.291 3.436 2.144 0.430 

MC-14 1.055 0.465 0.168 0.338 6.134 0.659 0.042  0.639 0.320 3.121 2.436 0.474 

MC-15 1.007 0.435 0.364 0.423 6.078 0.268 0.018  0.644 0.325 3.075 1.658 0.496 

Note: Dd—drainage density; Fs—stream frequency; Cr—circulatory ratio; Tr—ratio texture; As—average slope in degrees; R—basin relief; Rh—

relative relief in meters; Er—elongation ratio; Ff—form factor; Sf—shape factor; Cc—compactness coefficient; Lg—length of overland flow. 

 

 

Flow length (Lg) is the distance water travels across 

the land surface before concentrating in specific 

channels, influencing the basin’s hydrological and 

geographical development (Horton, 1945). Lg val-

ues range from 0.43 to 0.96 (Table 3). Micro-water-

sheds 1 to 6, characterized by relatively high Lg val-

ues, have extended flow paths with reduced runoff, 

while Micro-watersheds 7 to 15, with lower Lg val-

ues, imply quick surface runoff entry into channels, 

making them highly vulnerable to floods due to 

reduced water percolation (Bush et al., 2020). 

Texture ratio (Tr) is the ratio of total stream 

segments to the basin’s perimeter (Horton, 1945), 

indicating the relative spacing of channels per unit 

basin area. The perimeter is highly significant in 

basin geomorphology. Texture ratio depends on 

the basin’s geomorphic development, underlying 

lithology, soil type, vegetation pattern, precipitation 

quantity, and basin relief (Smith, 1950). Generally, 

low Tr values indicate moderate to low texture, 

whereas high Tr values indicate high texture. 

 

3.1.2 Shape parameters 

Elongation ratio (Er) generally ranges from 0.6 to 1 

across different geological and climatic contexts 

(Strahler, 1964). In areas with steep slopes and high 

relief, Er varies between 0.6 and 0.8. The elongation 

ratio of the studied micro-watersheds ranges from 

0.58 to 0.67, indicating lower basin elongation, high 

gradient and elevation, and moderate structural 

influence (Sreelakshmy et al., 2023). 

Form factor (Ff) is the ratio between basin area and 

the square of its length, suggests that an elongated 

basin has a proportional form factor (Strahler, 1964). 

A basin with an Ff of 1 is circular, while one with an 

Ff of 0 is elongated. The studied micro-watersheds’ 

Ff values range from 0.26 to 0.35, indicating all 

micro-watersheds are elongated. 
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Circularity ratio (Cr) is the ratio between the basin 

area and the area of a circle with the same 

perimeter, which ranges from 0 to 1. Cr values per 

micro-watershed are detailed in Table 3. 

Compactness coefficient (Cc) is defined as the ratio 

between the basin perimeter and the circumference 

of a circle with the same area as the basin, 

represented in square kilometers (Horton, 1945). 

The highest compactness coefficient is observed in 

Micro-watershed 10, and the lowest in Micro-

watershed 1 (Table 3).  

Shape index (Sf) represents the inverse of stream 

frequency, reflects stream spacing within the river 

basin. A high value suggests wide stream 

distribution spacing (Yadav et al., 2020). The form 

factor for the micro-watershed is between 2.9 and 

3.7, indicating relatively high stream spacing. 
 

3.1.3 Landscape parameters 

Relative relief (Rh) is calculated by dividing the total 

basin relief by its length. This value helps assess the 

basin slope and estimate runoff generation and 

erosion intensity within the basin. Basin size and 

drainage area are inversely related to relief ratio, 

with Rh values of the micro-watersheds shown in 

Table 3. Basin relief (R) refers to the elevation 

difference between the highest and lowest points 

within the basin. R has a significant impact on flood 

characteristics and sediment or material transport 

potential. It is one of the key factors influencing 

stream gradient and can be used to analyze the 

basin’s denudation characteristics (Sreedevi et al., 

2013). Low R values indicate conditions conducive 

to runoff generation and debris movement within 

basins (Table 3). Slope (As) of the terrain is 

correlated with soil erosion capacity and negatively 

correlated with infiltration capacity (Mahala, 2020). 

Higher slope percentages result in increased ero-

sion within a basin, assuming other variables remain 

constant. Lower slopes promote higher infiltration 

compared to steeper slopes. The steepest slopes 

are found in the upper-middle basin areas (Figure 

3d). 
 

3.2 Hypsometric Curve 

The hypsometric curve allows for comparison of 

prior erosive environments among different basins 

that share similar climatic conditions and have 

approximately equivalent areas (Willgoose, 1994). 

Young landforms (in an unbalanced phase) exhibit 

convex-upward curves with a Hi greater than 0.6, 

while mature landforms (in equilibrium) show S-

shaped curves with a Hi between 0.3 and 0.6. 

Severely eroded ancient landforms have concave-

upward curves with a Hi below 0.3. Micro-

watershed 13 is in an ancient and eroded stage, 

micro-watersheds 1, 3, 4, 5, 7, and 8 are young, and 

micro-watersheds 2, 6, 9, 10, 11, 12, 14, and 15 have 

a mature relief (Figure 4). 
 

 
 

Figure 4. Family of hypsometric curves showing ideal stages of 

fluvial development in the Caplina River sub-watersheds. 

 

3.3 Assignment of preliminary priority classifications 

for sub-basins 

The morphometric parameters Dd, Fs, Cr, Tr, As, R, 

and Rh (Table 3) are directly related to flash flood 

vulnerability. Similarly, Er, Ff, Sf, Cc, and Lg (Table 3) 

show an inverse relationship with flash flood 

vulnerability. After this analysis, priorities were 

assigned from highest to lowest, with Rank 1 for the 

micro-watershed having the highest parameter 

value and Rank 15 for the micro-watershed with the 

lowest parameter value, as shown in Table S2 (see 

Supplementary Material). Using the obtained 

parameters, a correlation matrix of the 12 variables 

was generated to determine the interrelationships 

between the various morphometric parameters, see 

Table S3 (see Supplementary Material). The 

preliminary priority rankings were used for this 

estimation. The statistical correlation matrix shows 

that Dd has a positive correlation with Fs, Tr, Sf, and 

Lg, meaning higher values indicate greater flood 

vulnerability, and vice versa with Cr, As, R, Rh, Er, Ft, 

and Cc, where higher values correspond to lower 

flash flood vulnerability. 
 

3.4 Final Ranking Using Weighted Sum Analysis 

(WSA) 

The morphometric parameter values, calculated 

using Equation 1, were determined by their 

importance using the weighted sum model. This 

process utilized the preliminary priority values and 

the final weights of each morphometric parameter. 
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For example, the WSAcp value of Dd (MC1) was 

obtained by multiplying 13 × 0.12 = 1.56, similarly 

for all subsequent WSAcp values. Each parameter 

has a corresponding weight (w). The WSAcp values 

are shown in Table S4 (see Supplementary 

Material).  

Additionally, a model based on the composite 

weighted sum (WSAcp) values of various morpho-

metric parameters was developed to determine the 

final sub-basin priority rankings for flash flood 

vulnerability. The parameters were grouped into 

two categories: those with a direct and those with 

an indirect influence on flooding. Priority was 

calculated by subtracting the composite values of 

both groups, with the micro-watersheds with the 

lowest values receiving the highest priority rankings. 

The WSA model (Table 4) indicates that Micro-

watersheds 1, 6, and 10 have higher priorities with 

lower preliminary rankings, while Micro-watersheds 

7, 8, and 15 with lower priority values have higher 

rankings, respectively. The results suggest that the 

middle part of the sub-basin is highly vulnerable to 

flash floods. 
 

3.5 Final ranking using Principal Component Analysis 

(PCA) 

PCA identifies priority flood parameters, 

demonstrating the correlation between criteria. This 

study produces a PCA load matrix showing the 

intensity of the relationship or association between 

the factors, parameters, and associated variables 

(Jolliffe & Cadima, 2016). PCA analyzed the most 

significant components, reducing the 12 parameters 

to three principal components (PCs). PCA then 

generates, through orthogonal transformations, the 

load matrix of the first element and the rotated load 

matrix, extracting 12 morphometric parameters 

from the initial unrotated factor load matrix. Table 

S5 (see Supplementary Material) shows that around 

93.1% of the total variance of the variables 

comprises the first three components. In Table S6 

(see Supplementary Material), the first variable in 

PC1 is highly correlated (>0.90) with As and R, 

moderately correlated (>0.75) with Dd, Fs, As, Rh, 

Er, Ff, Sf, and Lg. PC2 is highly correlated with Cr, 

Tr, and partially associated with Cc, while PC3 has a 

low correlation (<0.53) with all other variables of the 

Caplina River Basin. 

Some factors are strongly correlated with other 

variables, while some show moderate or low 

correlations with others. However, it is challenging 

to define a substantially significant component at 

this point. Therefore, the load matrix of the first 

element is rotated for better interpretation to 

overcome the difficulty of identifying a significant 

variable signal. After multiplying the transformation 

matrix by the load matrix of the selected first factor 

component, the rotated factor load matrix is 

generated. The first component (>0.90) is highly 

correlated with Rh and moderately associated with 

Dd, Lg, and R, as shown in Table S6 (see 

Supplementary Material).  

The second component is strongly correlated with 

Ef and Sf and Sr, with a low correlation with all re-

maining variables. The third component has a high 

correlation (>0.90) with Cc and Cr, with insignificant 

correlations for the remaining variables. This third 

component can be considered an organizational 

process factor for the Caplina River Basin. As shown 

in Table S6 (see Supplementary Material), three 

relevant parameters—Rh, Ff, and Cc—were finally 

used for sub-basin prioritization because they are 

not interrelated (Figure 5). 

In this context, principal component analysis applies 

to all morphometric variables to derive principal 

components and determine the most effective 

prioritization (Meshram & Sharma, 2017). 

 

Table 4 

Final ranking and micro-basin priority areas 
 

Microbasin Code WSAcp (+) WSAcp (-) Priory Final Priority Ranks Priory Type 

MC-1 0.29 -3.89 4.18 13 Very low 

MC-2 0.33 -1.34 1.67 7 Medium 

MC-3 2.63 2.22 0.41 5 High 

MC-4 1.41 -1.57 2.98 11 Low 

MC-5 4.33 1.94 2.39 10 Low 

MC-6 6.02 0.98 5.04 15 Very low 

MC-7 7.17 7.57 -0.39 3 Very high 

MC-8 6.96 7.98 -1.02 1 Very high 

MC-9 6.79 6.86 -0.07 4 High 

MC-10 8.68 4.07 4.60 14 Low 

MC-11 3.63 1.86 1.77 9 Medium 

MC-12 7.44 5.72 1.72 8 Medium 

MC-13 6.09 2.75 3.34 12 Low 

MC-14 7.53 6.56 0.96 6 High 

MC-15 4.23 4.74 -0.51 2 Very high 
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Table 5 reveals that Micro-watersheds 12 and 14 

maintain a low general Cp rating of 4.33 ranking 

(1,2) with very high priority, while Micro-watershed 

1 receives a maximum Cp of 12.33 ranking (15) and, 

therefore, the lowest priority. The difference 

between flood vulnerability and potential 

interventions is of utmost importance. The priority 

map of the Caplina River micro-watershed in Figure 

6 indicates that protection measures for debris 

flows in Micro-watersheds 7 and 8 could extend to 

9, 10, and other sub-watersheds according to the 

priority classification.  

 

 

 
 

Figure 5. Inter-correlation between morphometric parameters used for prioritization based on the PCA method. 

 
 

Table 5 

Results and final prioritization ranking of sub-watersheds using PCA 
 

Watershed code Rh Ff Cc Compound parameter Final Priority Ranks Priory Type 

MC-1 7 15 15 12.33 15 Very low 

MC-2 11 12 13 12.00 13 Very low 

MC-3 15 7 10 10.67 11 Low 

MC-4 12 13 11 12.00 14 Very low 

MC-5 14 9 9 10.67 12 Low 

MC-6 13 14 2 9.67 10 Low 

MC-7 10 2 6 6 5 High 

MC-8 8 1 7 5.33 3 Very high 

MC-9 9 4 4 5.67 4 High 

MC-10 6 11 1 6.00 6 High 

MC-11 5 8 12 8.33 9 Medium 

MC-12 4 6 3 4.33 1 Very high 

MC-13 2 10 8 6.67 8 Medium 

MC-14 3 5 5 4.33 2 Very high 

MC-15 1 3 14 6 7 Medium 
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Figure 6. Prioritization of micro-watersheds map (a) WSA method; and (b) PCA method. 

 

 

4. Conclusions 
 

This study prioritized fifteen micro-watersheds and 

identified areas vulnerable to flash floods during 

extreme events based on linear, aerial, and 

landscape morphometric parameters derived from 

a digital elevation model (DEM). The efficiency of 

advanced quantitative and geospatial techniques 

using a GIS was demonstrated, enhancing the 

study’s reliability in micro-watersheds lacking 

hydrological data. 

The studied basin was in southern Peru, where 

various lithological and hydro-geomorphological 

structures influence its flood vulnerability. To 

estimate flash flood vulnerability across all Caplina 

River micro-watersheds, 16 morphometric 

parameters were precisely analyzed, identifying 

areas of high vulnerability requiring watershed 

management measures. 

To increase study reliability, a comparative analysis 

was conducted using PCA and WSA, finding that 

both techniques yielded similar results, although 

with some variations across micro-watersheds. In 

terms of model performance comparison, PCA is 

considered the more effective method for selecting 

the most effective parameters in micro-watershed 

prioritization evaluation, while WSA is time-

consuming and less effective at identifying the most 

impactful factors regarding flash floods in micro-

watersheds. 

Results indicate that several micro-watersheds in 

the middle and lower sections of the basin exhibit 

high susceptibility to floods and soil erosion, leading 

to destructive impacts in the Caplina Basin. These 

findings underscore the necessity for targeted 

watershed management strategies, particularly in 

these high-risk areas, to mitigate flood impacts on 

agricultural land, infrastructure, and human 

settlements. 

Finally, it can be stated that a basin’s hydrological 

response, particularly the risk of flash floods and 

extreme events, is closely linked to its morphometric 

characteristics. Therefore, this methodology is 

proposed as a viable option for decision-makers 

implementing appropriate watershed management 

techniques, with a focus on soil and water 

conservation, enabling protection of the study area 

and mitigation of its degradation. 
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