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Abstract 

The objective of this research was to predict the live weight of Corriedale lambs using morphological measurements and machine learning 

algorithms. A total of 291 five-month-old lambs from the Corpacancha Production Unit of SAIS PACHACÚTEC SAC were used. These 

animals represented a homogeneous group in terms of age, sex, and genetics, as they belonged to the Corriedale breed and were 

offspring of "Category A" ewes. Morphological measurements recorded included Body Length (BL), Withers Height (WH), Thoracic Girth 

(TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD), and Live Weight (LW). The models 

evaluated were Multiple Linear Regression, Ridge Regression, Decision Trees, Random Forest, and XGBoost. The comparative analysis of 

the machine learning models identified ModG and Ridge as the most accurate and stable options, standing out for their low Mean Squared 

Error (MSE = 0.083) and Root Mean Squared Error (RMSE ≈ 0.287 – 0.288). Additionally, they exhibited the highest coefficients of 

determination (R2 = 0.89, RAdj
2 = 0.88), indicating excellent predictive capability and data fit. Their low coefficient of variation (CV%) confirms 

their stability, establishing them as the best choices for applications where precision is paramount, such as predicting critical values in 

production processes and high-demand scientific studies. While XGBoost proved to be a robust alternative with an MSE of 0.119, an RMSE 

of 0.345, and a relative error of 2.22%. These findings confirm that prioritizing models that balance accuracy, interpretability, and stability 

enable faster, data-driven decision-making in Corriedale sheep production. Such an approach optimizes feed allocation, classifies lambs 

by market weight, and promptly detects growth deviations, thereby improving overall flock profitability. 
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1. Introduction 

Across the Andean highlands of South America, sheep 

husbandry remains a cornerstone of rural livelihoods, 

and ovine meat is increasingly preferred over other 

animal proteins by local consumers (Ninahuanca 

Carhuas et al., 2025). The regional sheep sector 

nevertheless faces persistent challenges: economic 

losses linked to fluctuating wool prices and declining 

competitiveness in the global textile market have 

eroded profitability (Bailey et al., 2021). These pressures 

have driven producers to rethink their strategies and 

diversify revenue sources, as noted by Ozen et al. 

(2024). Within this regional context, Peruvian 

enterprises, cooperatives and smallholders are now 

prioritizing the finishing and sale of Corriedale lambs, 

whose carcasses secure favorable prices and exhibit 

relatively low market variability (Carhuas et al., 2024). 

This strategic shift creates opportunities to enhance 

profitability while demanding management practices 

that maximize growth performance and preserve 

carcass quality.  

In this new approach, the accurate estimation of live 

weight in sheep has become a central aspect of 

decision-making related to feeding, health manage-

ment, and determining the optimal time for slaughter 

(Contreras et al., 2024). However, traditional methods, 
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such as the use of scales, present multiple limitations 

in large-scale production systems (Martins et al., 2020; 

Dang et al., 2022). These include the costs associated 

with equipment, the logistical challenges of weighing 

large numbers of animals, and the stress caused by 

handling, which can negatively affect both animal 

welfare and productivity (Jurkovich et al., 2024). These 

challenges underscore the need to explore alternative 

methods that enable rapid, accurate, and non-invasive 

estimation of live weight. A promising solution lies in 

the use of morphological measurements, such as body 

length, withers height, and thoracic circumference, 

which are closely related to the live weight of sheep 

(Gomes et al., 2016; Wang et al., 2021; Contreras et al., 

2024). These variables can be easily collected in the 

field and represent an accessible option for 

overcoming the limitations of traditional methods. 

However, the relationship between morphological 

measurements and live weight is neither linear nor 

uniform, complicating the application of conventional 

predictive models based on simple regressions or 

descriptive analyses (García-Medina & Aguayo-

Moreno, 2024).  

Machine learning algorithms, a term coined by Samuel 

(2000), who categorized them into three types of 

learning (reinforcement learning, supervised learning, 

and unsupervised learning) have emerged as 

innovative mathematical tools with the potential to 

revolutionize live weight prediction in sheep (Vlaicu et 

al., 2024). Among these, supervised learning 

algorithms stand out for their ability to learn from 

labeled datasets to approximate the mapping function 

between inputs (features) and outputs (target values) 

(Dang et al., 2022). Their capacity to analyze large 

datasets, capture non-linear relationships and 

generate accurate predictions in dynamic scenarios 

has been widely documented, establishing them as 

high-impact methods in leading indexed journals 

(García-Medina & Aguayo-Moreno, 2024). In animal 

production, supervised learning enables flock-specific 

predictive models that enhance efficiency and 

sustainability (Peña-Avelino et al., 2021), and its 

application already extends beyond weight estimation 

to areas such as genetic selection and performance 

evaluation (Qin et al., 2024). Empirical studies illustrate 

this promise: Ozen et al. (2024) applied shrinkage 

regressions and tree-based ensembles to 100 six-

month-old Akkaraman lambs, identifying Random 

Forest as the best performer, while Kozaklı et al. (2024) 

compared nine machine-learning algorithms with 

multiple linear regression in 25 316 post-weaning 

Akkaraman lambs and likewise concluded that 

ensemble models outperformed linear approaches. 

Although these investigations confirm the utility of 

machine learning, they are confined to low-altitude 

Turkish flocks, overlook Corriedale genetics and focus 

mainly on raw accuracy-leaving interpretability, nume-

rical stability and practical management implications 

largely unaddressed.  

The objective of this study was to evaluate the most 

accurate machine learning model for predicting live 

weight in sheep. 

 
2. Methodology 
 

Animals and distribution 

The study used 291 five-month-old male Corriedale 

lambs raised at the Corpacancha Production Unit (11° 

21′ 46″ S, 76° 13′ 11″ W) in the Marcapomacocha 

district, Yauli Province, Junín Region, central Andes of 

Peru. This single location ensured a homogeneous 

cohort in age, sex and genetics, as all lambs were 

offspring of “Category A” ewes. The flock grazed 

exclusively on natural pastures at 4 149 m above sea 

level, where mean air temperatures range from –0.6 

°C to 11 °C and annual precipitation averages of 700 

mm. Animals were maintained under controlled 

sanitary conditions and routinely dewormed against 

taeniasis and fascioliasis. The production unit was 

selected for its well-documented management 

practices and reliable zootechnical records, 

guaranteeing high-quality morphometric and live-

weight data for predictive analysis.  

 

Data collection 

At 6:00 a.m., measurements (cm) were recorded prior 

to the animal’s feed intake. For weight (kg), a livestock 

scale with a capacity of 150 kg (OMEGA TP model, 

sensitivity ± 0.01 g) was used. The animals were 

positioned on a flat surface, standing in a relaxed 

manner, with their feet firmly placed on the ground 

(natural body position), following the recom-

mendations of Lee et al. (2022). Body Length (BL) was 

measured as the distance in centimeters between the 

base of the tail and the base of the neck (Karna et al., 

2024). Withers Height (WH) was measured as the 

distance (cm) from the ground to the highest point of 

the back (withers) (Cam et al., 2010). Thoracic Girth 

(TG) was measured as the distance (cm) around the 

chest, just behind the forelimbs (Contreras et al., 2024). 

Rump Width (RW) was measured as the width (cm) of 

the animal's rear section (Gonçalves et al., 2025). 

Abdominal Girth (AG) was measured as the distance 

(cm) around the animal's abdomen (Lee et al., 2022). 

Cannon Bone Length (CBL) was measured as the 

length (cm) from the knee joint to the hoof (Mahmud 

et al., 2014). Chest Depth (CD) was measured as the 

distance (cm) from the top of the back to the bottom 

of the chest (Karna et al., 2005). The details are shown 

in Figure 1. 
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Figure 1. Lamb body measurements. 

 

Predictive machine learning models 

Five main models were employed to predict live 

weight in sheep: Multiple Linear Regression (MLR), 

Ridge Regression, Decision Trees (DT), Random 

Forest (RF), and XGBoost. Multiple Linear Regres-

sion (MLR) served as the baseline model, enabling 

the establishment of linear relationships between 

morphological variables and live weight (Choque, 

2024). To address potential multicollinearity issues 

and improve model stability, Ridge Regression was 

used, a regularization method that penalizes pre-

dictor variable coefficients to reduce bias and vari-

ance (Lipovetsky, 2021). Decision Trees were se-

lected for their ability to split data into homogene-

ous subsets through hierarchical rules based on the 

most relevant variables, offering interpretability and 

ease of use (Lee et al., 2022). The Random Forest 

model, which combines multiple decision trees us-

ing a bagging approach, improved model accuracy 

by reducing overfitting and capturing complex non-

linear interactions (Hu & Szymczak, 2023). Finally, 

XGBoost, a boosting-based algorithm, was imple-

mented to iteratively adjust decision trees, optimiz-

ing error minimization and enhancing efficiency in 

large datasets (Kumar et al., 2023). Model perfor-

mance was evaluated using accuracy metrics: 
 

a. Coefficient of Determination (R²) 

𝑅2 = [1 −  
∑ (𝑌𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

] 𝑥 100 

b. Adjusted Coefficient of Determination (Adjusted 

R²) 

𝑅𝑎𝑑𝑗
2 = [1 −  

1
𝑛 − 𝑘 − 1

∑ (𝑌𝑖 − �̂�𝑖)2𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

] 𝑥 100 

 

c. Standard Deviation Ratio (SDR) 

𝑆𝐷𝑅𝐴𝑇𝐼𝑂 =  √

1
𝑛 − 1

∑ (𝜀𝑖 − 𝜀)̅2𝑛
𝑖=1

1
𝑛 − 1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

 

 

d. Relative Approximation Error (RAE) 

𝑅𝐴𝐸 =  √
∑ (𝑌𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖)2𝑛
𝑖=1

 

 

e. Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 

 

f. Mean Squared Error (MSE) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)2

𝑛

𝑖=1
 

 

g. Coefficient of Variation (CV) 

𝐶𝑉(%) =  √
1

𝑛 − 1
∑ (𝜀𝑖 − 𝜀)̅2𝑛

𝑖=1

�̅�
𝑥 100 

 

Where Yi is the observed live weight (kg) of the 

sheep; �̂�𝑖 is the predicted live weight of the iii-th 

sheep; �̅� is the mean of the actual live weight values 

of the sheep; 𝜀𝑖 is the residual value of the iii-th 

sheep; 𝑘 is the number of significant independent 

variables in the model; 𝑛 is the total number of 

observations. The residual value for each sheep is 

expressed as 𝜀𝑖 = 𝑌𝑖 − �̂�𝑖 . 
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3. Results and discussion 
 

Biometric measurements 

The results obtained (Table 1) highlight the rele-

vance of the biometric characteristics analyzed in 

the population of 5-month-old male lambs. The live 

weight, with an average of 12.44 kg and a coeffi-

cient of variation (CV) of 7.04%, shows low disper-

sion, suggesting homogeneous management in 

terms of feeding, health, and environmental condi-

tions. This aligns with previous studies emphasizing 

the importance of uniform management during 

early stages of sheep development to ensure opti-

mal and consistent growth (Stewart et al., 2005). On 

the other hand, body dimensions such as body 

length (39.99 cm, CV 7.36%) and thoracic girth 

(39.70 cm, CV 7.08%) exhibit low relative variability, 

reflecting the uniformity of the population. These 

variables have been previously identified as key in-

dicators of growth and body condition in sheep, di-

rectly influencing productivity (Contreras et al., 

2024). Similarly, withers height (35.19 cm, CV 8.60%) 

and chest depth (17.48 cm, CV 8.28%) show slightly 

higher variability, potentially associated with genetic 

differences or environmental factors affecting struc-

tural development. In contrast, traits such as rump 

width (12.52 cm, CV 11.87%) and cannon bone 

length (12.50 cm, CV 11.39%) exhibit higher coeffi-

cients of variation, suggesting significant heteroge-

neity among individuals. This finding is consistent 

with research linking these measurements to genet-

ics and productive potential, particularly in exten-

sive management systems where environmental 

factors have a greater impact on muscular and skel-

etal development (Peña-Avelino et al., 2021). Ab-

dominal girth (47.50 cm, CV 9.44%) also shows 

moderate variability, which could be influenced by 

differences in body condition and nutritional man-

agement. This parameter is of particular interest in 

evaluating digestive capacity and overall condition 

in sheep, as it is associated with animal welfare and 

productive efficiency. The results suggest that the 

studied population presents an adequate level of 

homogeneity to establish predictive relationships 

between biometric variables and live weight. 

Correlations 

The correlation matrix shows the relationship 

between live weight and the biometric variables 

measured in the male lambs (Figure 2). Specifically, 

the following correlations with live weight are 

observed. Abdominal Girth (AG): This variable 

exhibits the strongest positive correlation with 

weight, with a value of 0.71, indicating a strong 

relationship. This suggests that as abdominal girth 

increases, weight also tends to rise. This result aligns 

with the idea that abdominal girth largely reflects 

body condition and mass accumulation. Thoracic 

Girth (TG): It shows a moderate correlation with 

weight, with a value of 0.45. This implies that 

thoracic girth is also a good indicator of live weight, 

likely related to muscle development in the thoracic 

region. Body Length (BL): It has a moderate 

correlation with weight, with a value of 0.36. This 

suggests that body length can be an indirect 

indicator of weight, although its relationship is not 

as strong as that of abdominal or thoracic girth. 

Withers Height (WH): This variable shows a low 

correlation with weight, with a value of 0.30, 

indicating that while there is some relationship 

between withers height and weight, it is not as 

significant compared to other variables. Chest 

Depth (CD): It has a low correlation with weight, at 

0.26. This suggests that chest depth has a limited 

impact on live weight in this population of lambs. 

Rump Width (RW): This variable has the weakest 

correlation with weight, with a value of 0.18, 

indicating a weak relationship with live weight in the 

evaluated lambs. Cannon Bone Length (CBL): It 

shows a very low correlation with weight, with a 

value of 0.06, suggesting that this variable is not a 

significant indicator of live weight. 

From Table 2, abdominal girth (AG) and thoracic 

girth (TG) emerge as the most influential variables 

with the greatest statistical significance in relation to 

weight. On the other hand, cannon bone length 

(CBL) does not show a significant correlation, 

indicating that its inclusion in predictive models may 

be unnecessary. These observations help prioritize 

key variables for subsequent analyses. 

 

Table 1 

Descriptive analysis of the variables studied 
 

Variable n Mean ± sd CV (%) Min Max 

Weight (kg) 

Body Length (cm) 

Withers Height (cm) 

Thoracic Girth (cm) 

Rump Width (cm) 

Abdominal Girth (cm) 

Cannon Bone Length (cm) 

Chest Depth (cm) 

291 

291 

291 

291 

291 

291 

291 

291 

12.44 ± 0.88 

39.99 ± 2.94 

35.19 ± 3.03 

39.70 ± 2.80 

12.52 ± 1.49 

47.50 ± 4.48 

12.50 ± 1.42 

17.48 ± 1.45 

7.04 

7.36 

8.60 

7.08 

11.87 

9.44 

11.39 

8.28 

10 

35.10 

30.10 

35.00 

10.10 

40.10 

10.00 

15.00 

15 

44.90 

40.00 

45.00 

15.00 

55.00 

15.00 

20.00 
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Figure 2. Correlation Matrix of the Variable. 0 indicates no relationship and 1 indicates a very strong relationship. Body Length (BL), Withers 

Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest Depth (CD). 

 

Table 2 

Correlation of variables with weight, most influential variables 
 

 PA PT LC AC PP AG LCA 

Peso 0.71 0.45 0.36 0.30 0.26 0.18 0.06 

p-value 9.45e-47 3.93e-16 2.12e-10 1.90e-07 0.000005 0.001671 0.30 

p-value < 0.05 implies a significant correlation at a confidence level of 59%. 

p-value > 0.05 there is insufficient evidence to conclude that the correlation is significant 

Body Length (BL), Withers Height (WH), Thoracic Girth (TG), Rump Width (RW), Abdominal Girth (AG), Cannon Bone Length (CBL), Chest 

Depth (CD). 

 

Multiple Linear Regression 

In the evaluation of different multiple linear regres-

sion models for predicting the live weight of lambs, 

six simplified configurations of the general model 

(ModG) were compared by progressively removing 

independent variables. The regression models 

started with the general model, systematically elim-

inating the least correlated variables with weight to 

assess which model is ideal, as shown in Table 3. 

The results obtained from evaluating different mul-

tiple linear regression models to predict the live 

weight of lambs highlight the importance of con-

sidering multiple variables to capture the inherent 

complexity of the phenomenon. The general model 

(ModG), which includes all independent variables 

(BL, WH, TG, RW, AG, CBL, CD), emerges as the 

most robust, with an R2 of 0.987, an AIC of 78.20, 

and the lowest relative error (1.844%). This suggests 

that all included variables contribute significantly to 

explaining the variability in live weight, consistent 

with previous research emphasizing the importance 

of integrating multiple morphometric measure-

ments to improve the accuracy of predictive models 

(Courtenay et al., 2019; Arabameri et al., 2020). 

When analyzing the simplified models, it is ob-

served that the exclusion of CBL (Model 1) does not 

significantly affect predictive performance, as it 

maintains an R2 of 0.986 and an AIC of 81.81. This 

aligns with studies reporting that cannon bone 

length has a moderate correlation with live weight 

in young animals, making it less relevant compared 

to other measures such as thoracic or abdominal 
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girth (Salamanca-Carreño et al., 2024). However, 

when additional variables such as CD and RW are 

removed (Models 2 and 3), a progressive loss in 

model fit is observed, with decreases in R2 to 0.968 

and 0.936, respectively. This underscores the rele-

vance of these variables in predicting live weight, as 

they are associated with key body parameters re-

lated to the metabolic and structural capacity of 

animals (Frizzarin et al., 2021). In the most reduced 

models, such as Mod5 and Mod6, where only TG 

(Thoracic Girth) and AG (Abdominal Girth) are 

included, a significant decrease in predictive 

capacity is observed (R2 of 0.655 and 0.428, 

respectively). However, these models highlight the 

importance of TG and AG as the most influential 

variables, aligning with studies identifying these 

measurements as the best predictors of live weight 

in sheep production systems (Pannier et al., 2025). 

This is because these dimensions are directly related 

to body volume, which is a reliable indicator of live 

weight. The analysis of the AIC also provides critical 

insights into the balance between simplicity and 

accuracy. Although ModG has the lowest AIC (-

78.20), positioning it as the most suitable model in 

terms of overall fit, models like Mod1 represent 

viable alternatives with a reasonable trade-off 

between simplicity and predictive power. This 

approach is consistent with the literature, where the 

removal of redundant variables is prioritized to 

avoid issues of multicollinearity and overfitting 

(Mokri et al., 2025). In terms of stability indicators, 

the coefficient of variation (CV%) and relative error 

progressively increase as variables are reduced in 

the models. This indicates that simplified models 

lose stability and precision, with CV% reaching 

5.231% and relative error rising to 4.189% in Mod6. 

These results reinforce the need to balance the 

number of included variables with the explanatory 

power of the model (García-Medina & Aguayo-

Moreno et al., 2024), as highlighted by studies on 

the prediction of productive parameters in sheep. 

 

Machine Learning 

Table 4 provides a comprehensive comparison of 

the results obtained from five predictive models 

used to estimate the live weight of lambs: ModG 

(General Multiple Linear Regression), Ridge 

Regression, Decision Trees, Random Forest, and 

XGBoost. Key performance metrics are 

summarized, including MSE (Mean Squared Error), 

RMSE (Root Mean Squared Error), coefficients of 

determination (R2 and Adjusted R2), Relative 

Standard Deviation (SDR), Relative Error (%), and 

Coefficient of Variation (%). 
 

Tabla 3 

Multiple Linear Regression Models 
 

Model AIC MSE RMSE R2 R2A SDR E.R (%) CV(%) 

ModG  78.20 0.083 0.287 0.890 0.880 0.925 1.844 6.55 

Mod1 81.38 0.089 0.299 0.88 0.872 0.919 1.93 6.51 

Mod2 97.956 0.093 0.306 0.876 0.868 0.910 1.997 6.43 

Mod3 120.88 0.104 0.3223 0.861 0.855 0.908 2.138 6.428 

Mod4 237.76 0.1519 0.389 0.798 0.791 0.869 2.59 6.149 

Mod5 312.366 0.309 0.555 0.589 0.579 0.805 3.784 5.654 

Mod6 370.330 0.425 0.652 0.435 0.428 0.751 4.189 5.231 

AIC = Akaike's Information Criterion, MSE = Mean Squared Error, RMSE = Root Mean Squared Error, R2 = Coefficient of Determination, 

R2A = Adjusted Coefficient of Determination, SDR = Standard Deviation Ratio, ER = Relative Error, CV = Coefficient of Variance. 

ModG: Y=μ+β1(LC)+β2(AC)+β3(PT)+β4(AG)+β5(PA)+β6 (LCA)+β7(PP)+ϵ; 

Mod1: Y=μ+β1(LC)+β2(AC)+β3(PT)+β4(AG)+β5(PA)+β6(PP)+ϵ; 

Mod2: Y=μ+β1(LC)+β2(AC)+β3(PT)+β4(PA)+β5(PP)+ϵ; 

Mod3: Y=μ+β1(LC)+β2(AC)+β3(PT)+β4(PA)+ϵ; 

Mod4: Y=μ+β1(LC)+β2(PT)+β3(PA)+ϵ; 

Mod5: Y=μ+β1(PT)+β2(PA)+ϵ; 

Mod6: Y=μ+β1(PA)+ϵ; 

 

 

Table 4 

Comparison of Machine Learning models 
 

Model MSE RMSE R2 R2Adj Standard Deviation R Relative Error (%) CV(%) 

ModG  0.083 0.287 0.89 0.880 0.925 1.844 6.55 

Ridge 0.083 0.288 0.890 0.880 0.920 1.845 6.52 

DT 0.240 0.490 0.681 0.639 0.039 3.20 5.89 

RF 0.148 0.384 0.803 0.79 0.031 2.57 5.67 

XGBoost 0.119 0.345 0.842 0.828 0.0275 2.19 5.97 

DT= Decision Tree, RF= Random Forest. AD: Best Hyperparameters ({'criterion': 'absolute_error', 'max_depth': 10, 'max_features': 'auto', 

'min_samples_leaf': 5, 'min_samples_split': 2=}). XG: Best Hyperparameters: {'learning_rate': 0.05, 'max_depth': 3, 'n_estimators': 150, 

'subsample': 0.8}. RF: Best Hyperparameters: {'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50}. 

 



Scientia Agropecuaria 16(4): 487-498 (2025)                     Ninahuanca et al. 

-493- 
 

ModG (General Multiple Linear Regression) and 

Ridge Regression (Table 4) demonstrated the best 

overall performance, as evidenced by the lowest 

MSE values (0.083) and RMSE values (0.287 and 

0.288, respectively), as well as the highest R2 (0.89) 

and Adjusted R2 (0.88). These metrics indicate that 

both models exhibit superior predictive capability 

and effectively capture the relationships present in 

the data. Furthermore, the relative error below 2% 

(1.844% and 1.845%) and the low CV% values 

(6.55% and 6.52%) reinforce their stability and reli-

ability for applications where precision is critical. 

These findings align with previous studies highlight 

the performance of penalized linear models such as 

Ridge Regression in complex datasets with high 

multicollinearity.  

The Decision Trees model demonstrated the most 

limited performance, with the highest MSE (0.240) 

and RMSE (0.490) values, as well as the lowest R2 

(0.681) and Adjusted R2 (0.639) among the evalu-

ated models. Although its residual standard devia-

tion is low (0.039), the relative error (3.20%) and 

CV% (5.89%) reflect inadequate predictive capacity 

compared to the other models. This result could be 

attributed to the model's lack of robustness against 

data variability and its limited ability to capture 

complex interactions. Nevertheless, the simplicity 

and interpretability of Decision Trees may make 

them useful in specific scenarios where these factors 

are a priority. The decision tree (Figure 3) hierarchi-

cally reflects the relationship between the predictor 

variables and weight, highlighting Abdominal Girth 

(AG) as the most influential characteristic in the pre-

diction, followed by variables such as Body Length 

(BL), Thoracic Girth (TG), and Withers Height (WH), 

which also show significant contributions. The tree's 

structure, with clear divisions and controlled depth, 

captures relevant patterns in the data, effectively re-

ducing squared errors at the terminal nodes. How-

ever, some nodes with higher errors suggest the 

presence of noise or the need for additional data to 

improve accuracy. According to Long et al. (2025), 

random forest models outperform single decision 

trees by combining multiple trees and averaging 

their predictions, which enhances model accuracy 

and stability. One of the strengths of the decision 

tree is its visual interpretability, allowing users to ob-

serve how variables influence decisions at each 

level. This aspect is crucial for practical decision-

making in the field, where sheep producers can 

quickly identify which attributes need to be priori-

tized to optimize the weight of their animals. 

The Random Forest (Table 4) model also demon-

strated acceptable results, with an MSE of 0.148 and 

an RMSE of 0.384, as well as an R2 (0.803) and 

Adjusted R2 (0.79), reflecting good explanatory 

power. However, this model exhibited a higher 

relative error (2.57%) and a slightly lower CV% 

(5.67%), which could limit its application in contexts 

where maximum precision is required. Nonetheless, 

its performance remains competitive and suitable 

for nonlinear and high-dimensional problems. 

Figure 4 provides a comprehensive evaluation of 

the Random Forest model applied to predicting live 

weight in lambs through four graphs highlighting 

different aspects of the model. Figure 4a Cross-

Validation Curve: Number of Estimators. This graph 

shows how the average R2 obtained through cross-

validation varies with the number of estimators in 

the model. A significant improvement in model per-

formance is observed as the number of estimators 

increases, stabilizing around 100 estimators with an 

average R2 close to 0.815, emphasizing the im-

portance of optimizing the number of estimators to 

balance accuracy and computational efficiency. 

Figure 4b Predictions vs. Actual Values compares 

the model's predicted values with the actual weight 

values. The red reference line represents perfect 

equality between predictions and actual values, and 

the green points clustered near this line indicate 

high accuracy in most cases, with slight deviations 

at some extreme points. Figure 4c Distribution of 

Errors (Residuals) displays a histogram of errors, 

where most errors are concentrated around zero, 

indicating generally accurate predictions, although 

some larger errors suggest potential areas for 

model improvement. Figure 4d Feature Importance 

(Heatmap) presents the relative importance of each 

predictor variable in the Random Forest model. The 

most influential variable is Abdominal Girth (AG), 

with an important value of 0.55, followed by 

Thoracic Girth (TG) at 0.14 and Withers Height (WH) 

at 0.11. Variables such as Rump Width (RW) and 

Cannon Bone Length (CBL) show lower impact, 

suggesting they may be less relevant for weight 

prediction in this model. The application of the 

Random Forest model for predicting live weight in 

5-month-old lambs provides an interesting per-

spective on the potential and limitations of this ap-

proach. This algorithm is widely recognized for its 

ability to handle nonlinear data and its robustness 

against overfitting using multiple decision trees 

(Shen et al., 2025; Jarupunphol et al., 2025). 

However, the results obtained in this study suggest 

that, although the model demonstrates reasonable 

performance, there are areas for improvement that 

warrant attention. With a coefficient of determina-

tion (R2) of 0.80 and an adjusted R2 of 0.79, the 

model explains approximately 80% of the variability 

in the data, reflecting a good overall fit.  
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Figure 3. Decision tree generated for weight prediction in morphology analysis (See in high quality in Supplementary Material). 
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Figure 4. Performance evaluation of the Random Forest Model: Validation curve, predictions, residuals and importance of features. 

 

Nevertheless, this performance is inferior to that 

achieved with other methods, such as Ridge 

Regression, which may be attributed to the intrinsic 

complexity of the interactions between the 

predictor variables. 

XGBoost exhibited outstanding performance, with 

an MSE of 0.119 and an RMSE of 0.345, accompa-

nied by high R2 (0.842) and Adjusted R2 (0.828) val-

ues. These metrics position this model as an effi-

cient alternative for prediction tasks where the 

balance between accuracy and model complexity is 

crucial. Furthermore, the relative error of 2.19% and 

CV% of 5.97% indicate adequate robustness for 

scenarios with moderate variability in the data. 

The set of graphs presented in Figure 5 provides a 

detailed evaluation of the XGBoost model and its 

performance in predicting live weight in 5-month-

old lambs, highlighting various aspects of the 

model. The Cross-Validation Curve of XGBoost, 

MSE (Figure 5a), evaluates the model's perfor-

mance during the cross-validation process. Green 

points represent the average Mean Squared Error 

(MSE) values obtained for different hyperparameter 

configurations, while the red line indicates the final 

model's MSE. Initial variability between configura-

tions stabilizes as hyperparameters are optimized, 

suggesting improved performance with specific 

configurations. The Feature Importance in XGBoost 

(Figure 5b) shows the relative importance of varia-

bles in the model. Abdominal Girth (PA) is identified 

as the most influential feature in the model's pre-

dictions, followed by Thoracic Girth (PT) and With-

ers Height (AC), reinforcing the key role of these 

variables in accurately estimating live weight in 

lambs. Predictions vs. Actual Values (Figure 5c) 

compares the model's predictions with actual 

weight values. Points close to the red reference line 

indicate a good model fit. While most data points 

closely follow the reference line, some deviations 

are visible but remain within acceptable margins, 

demonstrating reliable model predictions. Distribu-

tion of Errors (Residuals) (Figure 5d) presents the 

distribution of prediction errors (residuals), defined 

as the difference between actual and predicted 

weights. Most errors are centered around zero, with 

an approximately symmetric distribution, indicating 

no significant biases in the model and consistent 

predictions. The implementation of the XGBoost 

model for predicting live weight in lambs showed 

promising results, excelling in both predictive ca-

pacity and the identification of the most influential 

features. Cross-validation demonstrated the mod-

el's ability to optimize effectively by adjusting hy-

perparameters such as the number of estimators, 

maximum tree depth, and learning rate, ensuring 

an appropriate balance between bias and variance 

(Liang et al., 2025). This is evident in the cross-vali-

dation graph, where optimal hyperparameter con-

figurations lead to minimal MSE values, reinforcing 

the robustness of the tuning process.  
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Figure 5. Performance evaluation of the XGBoost: Validation curve, predictions, residuals and importance of features. 

 

Regarding feature importance, Abdominal Girth 

(PA) emerged as the most significant variable in the 

model's predictions, followed by Thoracic Girth (PT) 

and Withers Height (AC). This aligns with previous 

studies in production animals, where these body 

measurements are strongly correlated with live 

weight and are used as reliable indicators in animal 

management systems (Ergin et al., 2025). The 

model's ability to identify these key variables 

underscores its practical utility in the zootechnical 

field, enabling efficient and accurate assessment of 

live weight without the need for invasive or 

expensive tools. The analysis of predictions against 

actual values revealed significant alignment, with 

most points closely following the reference line. This 

indicates that the model not only effectively 

captures the general trends in weight but also 

minimizes prediction errors. However, it is 

important to note that some marginal deviations 

could be attributed to unmodeled factors such as 

genetic differences, environmental conditions, or 

feeding, which affect the animals' physical 

characteristics (Contreras et al., 2024). On the other 

hand, the residual distribution showed symmetric 

dispersion around zero, confirming the absence of 

systematic biases in the model. This uniform error 

distribution indicates that the predictions are not 

influenced by outliers or biased towards a specific 

range of live weight. This is crucial in practical 

applications, where the reliability and stability of 

predictions are determining factors for decision-

making in animal production systems. Compared to 

other machine learning models, XGBoost stood out 

for its ability to handle datasets with high 

dimensionality and correlations between variables, 

contributing to superior performance. Studies such 

as those conducted by Ahmed et al. (2023) have 

shown that XGBoost is particularly effective in 

contexts where the relationship between features 

and the target variable is nonlinear and complex, as 

is the case with live weight in animals. 

 
4. Conclusions 
 

The comparative analysis of the Machine Learning 

models identified ModG and Ridge as the most 

accurate and stable options, standing out for their 

low Mean Squared Error (MSE = 0.083) and Root 

Mean Squared Error (RMSE ≈ 0.287 – 0.288). 

Additionally, they exhibited the highest coefficients 

of determination (R2 =0.89, Radj
2=0.88), indicating 

excellent predictive capability and data fit. Their low 

coefficient of variation (CV%) confirms their stability, 

establishing them as the best choices for 

applications where precision is paramount, such as 

the prediction of critical values in production 

processes and high-demand scientific studies. 

While XGBoost proved to be a robust alternative 

with an MSE of 0.119, an RMSE of 0.345, and a 

relative error of 2.22%. 
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The results obtained emphasize the importance of 

selecting predictive models based on the balance 

between accuracy, interpretability, and stability. 

While ModG and Ridge are ideal for scenarios 

where precision is critical, XGBoost emerges as a 

robust option for problems with high variability. In 

contrast, Decision Trees, although less accurate, can 

be useful in applications where the interpretability 

of decision rules is a key factor. Such an approach 

optimizes feed allocation, classifies lambs by market 

weight, and promptly detects growth deviations, 

thereby improving overall flock profitability. 

Further research should validate these findings 

across multiple flocks that differ in age, sex, breed, 

and altitude, while simultaneously exploring low-

cost 3-D photogrammetry or smartphone imagery 

to enrich morphometric inputs. Combining inter-

pretable ensemble methods with post-hoc explain-

ability techniques such as SHAP could also translate 

predictions into clearer on-farm guidelines, enhan-

cing adoption and decision-making throughout 

diverse sheep-production systems. 

 
Acknowledgment 

A special thanks to the workers of SAIS Pachacútec S.A.C. For their 

availability and support in the research. 

 

Authors contribution 

J. Ninahuanca: Writing & formal analysis. E. Garcia-Olarte: review & 

Conceptualization. I. Unchupaico Payano: Data curation. V. 

Sarapura: review & editing. K. Zenteno Vera: data collection. C. 

Quispe Eulogio: Writing & software. E. Ancco Gomez: 

Investigation. M. Mohamed M. Hadi: mathematical formulas, and 

mathematical review. C. Miranda-Torpoco: Conceptualization & 

animal welfare. W. Guerra Condor: data collection & software. 

 

Conflict of interest statement 

The authors declare that they have no conflict of interest. 

 
ORCID 
 

J. Ninahuanca  https://orcid.org/0000-0002-0137-0631 

E. Garcia-Olarte  https://orcid.org/0000-0003-1643-288X 

I. Unchupaico Payano  https://orcid.org/0000-0002-6441-5016 

V. Sarapura  https://orcid.org/0000-0003-1789-7574 

K. Zenteno Vera  https://orcid.org/0009-0008-1392-2131 

C. Quispe Eulogio  https://orcid.org/0000-0002-2316-1646 

E. Ancco Gomez  https://orcid.org/0000-0002-5119-5202 

M. Mohamed M. Hadi  https://orcid.org/0000-0003-1940-8383 

C. Miranda-Torpoco  https://orcid.org/0009-0004-8282-5694 

W. Guerra Condor  https://orcid.org/0000-0003-1672-1817 

 

References 
 

Ahmed, H., Soliman, H., El-Sappagh, S., Abuhmed, T., & Elmogy, 

M. (2023). Early Detection of Alzheimer's Disease Based on 

Laplacian Re-Decomposition and XGBoosting. Computer 

Systems Science & Engineering, 46(3). 

https://doi.org/10.32604/csse.2023.036371 

Arabameri, A., Tiefenbacher, J. P., Blaschke, T., Pradhan, B., & Tien 

Bui, D. (2020). Morphometric analysis for soil erosion 

susceptibility mapping using novel gis-based ensemble 

model. Remote Sensing, 12(5), 874. 

https://doi.org/10.3390/rs12050874 

Bailey, D.W., Trotter, M.G., Tobin, C., & Thomas, M.G. (2021). 

Opportunities to apply precision livestock management on 

rangelands. Frontiers in Sustainable Food Systems, 5, 611915. 

https://doi.org/10.3389/fsufs.2021.611915 

Cam, M. A., Olfaz, M., & Soydan, E. (2010). Body measurements 

reflect body weights and carcass yields in Karayaka sheep. 

Asian Journal of Animal and Veterinary Advances, 5(2), 120-

127. https://doi.org/10.3923/ajava.2010.120.127 

Carhuas, J. N., Capcha, K. B., Garcia-Olarte, E., & Eulogio, C. Q. 

(2024). Production performance of rejected newborn lambs 

fed with different concentrations of whey in Perú. Revista De 

Ciências Agroveterinárias, 23(2), 231–239. 

https://doi.org/10.5965/223811712322024231 

Choque, C. J. B. (2024). Mathematical models of chlorine demand 

in river waters: a systematic review. Tecnia, 34(1), 26-41. 

https://doi.org/10.21754/tecnia.v34i1.1635 

Contreras, J. P., Cordero, A., Rojas, Y., Carhuas, J., Curasma, J., 

Mayhua, P., & Salazar, K. (2024). Prediction models for live 

body weight and body compactness of Criollo sheep in 

Huancavelica Region, Peru. The Indian Journal of Animal 

Sciences, 94(7), 637-641. 

https://doi.org/10.56093/ijans.v94i7.148186 

Courtenay, L. A., Yravedra, J., Huguet, R., Aramendi, J., Maté-

González, M. Á., González-Aguilera, D., & Arriaza, M. C. 

(2019). Combining machine learning algorithms and 

geometric morphometrics: a study of carnivore tooth marks. 

Palaeogeography, Palaeoclimatology, Palaeoecology, 522, 28-

39. https://doi.org/10.1016/j.palaeo.2019.03.007 

Dang, C., Choi, T., Lee, S., Lee, S., Alam, M., Park, M., ... & Hoang, 

D. (2022). Machine learning-based live weight estimation for 

hanwoo cow. Sustainability, 14(19), 12661. 

https://doi.org/10.3390/su141912661 

Ergin, M., & Koşkan, Ö. (2025). Estimating body weight in Sujiang 

pigs using artificial neural network, nearest neighbor, and 

CART algorithms: a comparative study using morphological 

measurements. Tropical Animal Health and Production, 57(1), 

17. https://doi.org/10.1007/s11250-024-04258-7 

Frizzarin, M., Gormley, I. C., Berry, D. P., Murphy, T. B., Casa, A., 

Lynch, A., & McParland, S. (2021). Predicting cow milk quality 

traits from routinely available milk spectra using statistical 

machine learning methods. Journal of Dairy Science, 104(7), 

7438-7447. https://doi.org/10.3168/jds.2020-19576 

García-Medina, A., & Aguayo-Moreno, E. (2024). LSTM–GARCH 

hybrid model for the prediction of volatility in cryptocurrency 

portfolios. Computational Economics, 63(4), 1511-1542. 

https://doi.org/10.1007/s10614-023-10373-8 

Gomes, R.A., Monteiro, G.R., Assis, G.J., Busato, K.C., Ladeira, M.M., 

& Chizzotti, M.L. (2016). Technical note: Estimating body 

weight and body composition of beef cattle trough digital 

image analysis. Journal of Animal Science, 94, 5414–5422. 

https://doi.org/10.2527/jas.2016-0797 

Gonçalves, M. A., Castro, M. S. M., Carrara, E. R., Raineri, C., Rennó, 

L. N., & Schultz, E. B. (2025). Prediction of Weight and Body 

Condition Score of Dairy Goats Using Random Forest 

Algorithm and Digital Imaging Data. Animals, 15(10), 1449. 

https://doi.org/10.3390/ani15101449 

Hu, J., & Szymczak, S. (2023). A review on longitudinal data analysis 

with random forest. Briefings in Bioinformatics, 24(2), 

bbad002. 

Jarupunphol, P., Buathong, W., Kuptabut, S., & Sudjarid, W. (2025). 

Assessing decision tree, random forest, and XGBoost models 

for human capital readiness predictions in low-income areas. 

Multidisciplinary Science Journal, 7(6), 2025296-2025296. 

https://doi.org/10.31893/multiscience.2025296 

Jurkovich, V., Hejel, P., & Kovács, L. (2024). A review of the effects 

of stress on dairy cattle behaviour. Animals, 14(14), 2038. 

https://doi.org/10.3390/ani14142038 

Karna, D. K., Mishra, C., Dash, S. K., Acharya, A. P., Panda, S., & 

Chinnareddyvari, C. S. (2024). Exploring body morphometry 

and weight prediction in Ganjam goats in India through 

https://orcid.org/0000-0002-0137-0631
https://orcid.org/0000-0003-1643-288X
https://orcid.org/0000-0002-6441-5016
https://orcid.org/0000-0003-1789-7574
https://orcid.org/0009-0008-1392-2131
https://orcid.org/0000-0002-2316-1646
https://orcid.org/0000-0002-5119-5202
https://orcid.org/0000-0003-1940-8383
https://orcid.org/0009-0004-8282-5694
https://orcid.org/0000-0003-1672-1817
https://doi.org/10.32604/csse.2023.036371
https://doi.org/10.3390/rs12050874
https://doi.org/10.3389/fsufs.2021.611915
https://doi.org/10.3923/ajava.2010.120.127
https://doi.org/10.5965/223811712322024231
https://doi.org/10.21754/tecnia.v34i1.1635
https://doi.org/10.56093/ijans.v94i7.148186
https://doi.org/10.1016/j.palaeo.2019.03.007
https://doi.org/10.3390/su141912661
https://doi.org/10.1007/s11250-024-04258-7
https://doi.org/10.3168/jds.2020-19576
https://doi.org/10.1007/s10614-023-10373-8
https://doi.org/10.2527/jas.2016-0797
https://doi.org/10.3390/ani15101449
https://doi.org/10.31893/multiscience.2025296
https://doi.org/10.3390/ani14142038


Scientia Agropecuaria 16(4): 487-498 (2025)                     Ninahuanca et al. 

-498- 
 

principal component analysis. Tropical Animal Health and 

Production, 56(8), 298. https://doi.org/10.1007/s11250-024-

04114-8 

Kumar, R., Sharma, D., Dua, A., & Jung, K. H. (2023). A review of 

different prediction methods for reversible data hiding. 

Journal of Information Security and Applications, 78, 103572. 

https://doi.org/10.1016/j.jisa.2023.103572 

Kozaklı, Ö., Ceyhan, A., & Noyan, M. (2024). Comparison of 

machine learning algorithms and multiple linear regression 

for live weight estimation of Akkaraman lambs. Tropical 

Animal Health and Production, 56(7), 250. 

https://doi.org/10.1007/s11250-024-04049-0 

Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive 

analytics in business analytics: decision tree. Advances in 

Decision Sciences, 26(1), 1-29. 

https://doi.org/10.47654/v26y2022i1p1-29 

Liang, Z., Cai, L., Wang, S., & Wang, Q. (2025). K-fold cross-

validation based frequentist model averaging for linear 

models with nonignorable missing responses. Statistics and 

Computing, 35(1), 18. https://doi.org/10.1007/s11222-024-

10554-x 

Lipovetsky, S. (2021). Modified ridge and other regularization 

criteria: A brief review on meaningful regression 

models. Model Assisted Statistics and Applications, 16(3), 225-

227. https://doi.org/10.3233/MAS-210536 

Long, K., Guo, D., Deng, L., Shen, H., Zhou, F., & Yang, Y. (2025). 

Cross-Combination Analyses of Random Forest Feature 

Selection and Decision Tree Model for Predicting 

Intraoperative Hypothermia in Total Joint Arthroplasty. The 

Journal of Arthroplasty, 40(1), 61-69. 

https://doi.org/10.1016/j.arth.2024.07.007 

Mahmud, M. A., Shaba, P., Abdulsalam, W., Yisa, H. Y., Gana, J., 

Ndagi, S., & Ndagimba, R. (2014). Live body weight estimation 

using cannon bone length and other body linear 

measurements in Nigerian breeds of sheep. Journal of 

Advanced Veterinary and Animal Research, 1(4), 169-176. 

https://doi.org/10.5455/javar.2014.a29 

Martins, B. M., Mendes, A. L., Silva, L. F., Moreira, T. R., Costa, J. H., 

Rotta, P. P., Chizzotti, M. L., & Marcondes, M. I. (2020). 

Estimating body weight, body condition score, and type traits 

in dairy cows using three dimensional cameras and manual 

body measurements. Livestock Science, 236, 104054. 

https://doi.org/10.1016/j.livsci.2020.104054 

Mokri, M., Safari, M., Kaviani, S., Juneau, D., Cohalan, C., 

Archambault, L., & Carrier, J. F. (2025). Deep learning-based 

prediction of later 13N-ammonia myocardial PET image 

frames from initial frames. Biomedical Signal Processing and 

Control, 100, 106865. 

Ninahuanca Carhuas, J., Cerna, L, A., Unchupaico Payano, I, 

Garcia-Olarte, E., Mauricio-Ramos, Y., Quispe Eulogio, C., & 

Hadi Mohamed, Mohamed M. (2025). Counting sheep: 

human experience vs. Yolo algorithm with drone to 

determine population. Veterinary Integrative Sciences, 23(2), 

1-9. https://doi.org/10.12982/VIS.2025.032 

Ozen, H., Ozen, D., Kocakaya, A., & Ozbeyaz, C. (2024). Shrinkage 

and tree-based regression methods for the prediction of the 

live weight of Akkaraman sheep using morphological traits. 

Tropical Animal Health and Production, 56(8), 346. 

https://doi.org/10.1007/s11250-024-04187-5 

Pannier, L., Tarr, G., Pleasants, T., Ball, A., McGilchrist, P., Gardner, 

G. E., & Pethick, D. W. (2025). The construction of a 

sheepmeat eating quality prediction model for Australian 

lamb. Meat science, 220, 109711. 

https://doi.org/10.1016/j.meatsci.2024.109711 

Peña-Avelino, L. Y., Alva-Pérez, J., Ceballos-Olvera, I., Hernández-

Contreras, S., & Álvarez-Fuentes, G. (2021). Evaluación de 

diferentes fórmulas zoométricas para la estimación de peso 

vivo en cabras criollas de Tamaulipas, México. Producción 

Vegetal, 532. https://doi.org/10.12706/itea.2021.007 

Qin, Q., Zhang, C. Y., Liu, Z. C., Wang, Y. C., Kong, D. Q., Zhao, D., 

... & Liu, Z. H. (2024). Estimation of the genetic parameters of 

sheep growth traits based on machine vision 

acquisition. Animal, 18(7), 101196. 

https://doi.org/10.1016/j.animal.2024.101196 

Salamanca-Carreño, A., Parés-Casanova, P. M., Vélez-Terranova, 

M., Martínez-Correal, G., & Rangel-Pachón, D. E. (2024). Early 

Cannon Development in Females of the “Sanmartinero” 

Creole Bovine Breed. Animal, 14(4), 527. 

https://doi.org/10.3390/ani14040527 

Samuel, A.L. Algunos estudios en aprendizaje automático 

utilizando el juego de damas. Revista de investigación y 

desarrollo de IBM. 2000, 44206–226. 

Shen, Y., Wu, S., Wang, Y., Wang, J., & Yang, Z. (2025). 

Interpretable model for rockburst intensity prediction based 

on Shapley values-based Optuna-random forest. 

Underground Space, 21, 198-214. 

https://doi.org/10.1016/j.undsp.2024.09.002 

Stewart, W. C., Scasta, J. D., Maierle, C., Ates, S., Burke, J. M., & 

Campbell, B. J. (2025). Vegetation management utilizing 

sheep grazing within utility-scale solar: Agro-ecological 

insights and existing knowledge gaps in the United States. 

Small Ruminant Research, 243, 107439. 

https://doi.org/10.1016/j.smallrumres.2025.107439 

Vlaicu, P. A., Gras, M. A., Untea, A. E., Lefter, N. A., & Rotar, M. C. 

(2024). Advancing Livestock Technology: Intelligent 

Systemization for Enhanced Productivity, Welfare, and 

Sustainability. AgriEngineering, 6(2), 1479-1496. 

https://doi.org/10.3390/agriengineering6020084 

Wang, Z., Shadpour, S., Chan, E., Rotondo, V., Wood, K. M., & 

Tulpan, D. (2021) Applications of machine learning for 

livestock body weight prediction from digital images. Journal 

of Animal Science, 99(2), skab022. 

https://doi.org/10.1093/jas/skab022 

 

https://doi.org/10.47654/v26y2022i1p1-29
https://doi.org/10.1007/s11222-024-10554-x
https://doi.org/10.1007/s11222-024-10554-x
https://doi.org/10.3233/MAS-210536
https://doi.org/10.1016/j.arth.2024.07.007
https://doi.org/10.5455/javar.2014.a29
https://doi.org/10.1016/j.livsci.2020.104054
https://doi.org/10.12982/VIS.2025.032
https://doi.org/10.1016/j.meatsci.2024.109711
https://doi.org/10.12706/itea.2021.007
https://doi.org/10.1016/j.animal.2024.101196
https://doi.org/10.1016/j.undsp.2024.09.002
https://doi.org/10.3390/agriengineering6020084
https://doi.org/10.1093/jas/skab022

