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Abstract 

Essential oils are one of the most important products in the agricultural and food industry, as they are obtained from aromatic plants using 

various extraction techniques, such as steam distillation or hydrodistillation. However, these methods present challenges, such as low 

efficiency, limited selectivity, extensive use of solvents and long extraction times. Moreover, the quality of the oils obtained can be affected 

by hydrolysis or oxidation due to the duration and amount of water used in the process. This review updates the information on Clevenger-

type hydrodistillation extraction of four high-value commercial plant species: Matricaria chamomilla, Rosmarinus officinalis, Origanum 

vulgare, and Eucalyptus spp. The aim is to evaluate the results of original articles, considering the origin and characteristics of the plant 

material, extraction conditions, yield and metabolites. The search covered a 10-year period (2013-2023) in Scopus, Web of Science, 

PubMed, and Google Scholar, using keywords such as species names and terms “essential oils” and “hydrodistillation”, with Boolean 

connectors such as OR, AND or NOT. The results show that quality and yield are influenced by factors such as geographical regions of 

origin, plant part used, drying techniques or extraction conditions (plant material/water ratio, extraction temperature, extraction time, etc.). 

In future research, the conditions associated with the plant material and the extraction process need to be optimized in obtaining high 

quality essential oils. 
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1. Introduction 

Essential oils (EO) are natural volatile liquid mixtures 

of hydrophobic nature. They are usually complex 

and consist of low molecular weight compounds 

(Busatta et al., 2017). These molecules are synthe-

sized as secondary metabolites and handle the 

distinctive odor of plants, often possessing 

medicinal properties and high commercial value (Lo 

et al., 2020; Bhavaniramya et al., 2019). Essential oils 

are obtained from various plant materials, including 

flowers, shoots, leaves, seeds, fruits, roots, twigs, 

barks, herbs, and wood, and they constitute a 

complex mixture of hydrocarbons, alcohols, esters, 

aldehydes, carboxylic compounds, and, in some 

cases, phenylpropanoids (Abbas et al., 2022). The 

most frequent hydrocarbons are terpenoid 

compounds, but sesquiterpenes can also be found 

(Caputo et al., 2022; Busatta et al., 2017). EOs 

protect plants from viral, fungal and bacterial 

diseases; they also prevent oxidative damage to 

many cell structures caused by ultraviolet radiation 

(Önder et al., 2024). EOs are among the most im-

portant products in both the agricultural and food 

industries (Oliveira et al., 2021; Falleh et al., 2020). 

There are an estimated 3,000 known essential oils, 

of which about 300 are commercially relevant. 
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(Sharmeen et al., 2021). They are commonly used as 

flavoring agents in food and beverage products (De 

Cicco et al., 2023; Saeed et al., 2022), as well as in 

the manufacture of perfumes, pharmaceuticals, and 

cosmetics (Sharmeen et al., 2021; Brito et al., 2021). 

Furthermore, natural compounds can play an es-

sential role in mitigating antimicrobial resistance in 

foodborne pathogens (Peralta-Canchis et al., 2024). 

The potential of EOs as antibacterials and herbi-

cides has also been identified, as they are 

biodegradable, have a high structural diversity and 

can reduce natural weed resistance (Yeddes et al., 

2022). The synergies between the different com-

pounds in EOs enable them to exhibit these prop-

erties (Karalija et al., 2020; Rafya et al., 2024).  

EOs are a complex mixture of compounds, mainly 

monoterpenes, sesquiterpenes, and their oxygen-

ated derivatives (alcohols, aldehydes, esters, ethers, 

ketones, phenols, and oxides) (Popa et al., 2021). 

Some volatile compounds include phenylpropenes 

and specific sulfur – or nitrogen – having substan-

ces (Badawy et al., 2014). Generally, the essential oil 

composition is a balance of several compounds, 

although in many species, one constituent may 

prevail over all others (Popa et al., 2021; Badawy et 

al., 2014). 

Essential oils are commonly obtained by steam dis-

tillation or hydrodistillation, and at the end of these 

processes, hydrosols or hydrolats are obtained as 

an aqueous fraction that is separated from the EOs 

(Brito et al., 2021; Stratakos et al., 2016). Several 

different extraction techniques are widely used for 

EO, such as steam distillation and solvent extraction 

(Noori & KhajeNoori, 2013). These methods usually 

have some drawbacks such as low extraction effi-

ciency and selectivity, the use of large amounts of 

solvents, and long extraction times (Yeddes et al., 

2022; Rafya et al., 2024). In many cases, the quality 

of the essential oil obtained by conventional meth-

ods can be influenced by hydrolysis or oxidation 

that may take place due to the long extraction time 

and/or high amount of water (Stratakos et al., 2016; 

Önder et al., 2024). 

 

 
 

Figure 2. PRISMA flow chart for studies related with extraction of essential Oils by Hydrodistillation of M. chamomilla, O. vulgare, R. 

officinalis and Eucalyptus sp. (Page et al., 2020). 
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The present review aims to update the information 

related to the extraction of essential oils by 

Clevenger-type hydrodistillation of four aromatic 

plant species of high commercial value: Matricaria 

chamomilla (MC), Rosmarinus officinalis (RO), 

Origanum vulgare (OV), and Eucalyptus spp. (EU), 

with the objectives of evaluating the results of orig-

inal articles regarding the origin and characteristics 

of the plant material, the conditions for extraction, 

as well as the yield and metabolites obtained by 

these studies. 

 

2. Methodology 

The review follows the PRISMA guidelines for 

scoping reviews (PRISMA-ScR). Access to the 

information and data obtained in this research is 

available full text in Open Access on the Zenodo 

portal (Figure 2). 

A bibliographic search was performed in the 

databases Scopus, Web of Science, PubMed, and 

Google Scholar for a period of 10 years (2013-2023). 

The names of the plant species, "Matricaria 

chamomilla", "Origanum vulgare", "Rosmarinus 

officinalis" and "Eucalyptus" were used as keywords. 

Additionally, words such as "Essential oils" and 

"Hydrodistillation," along with the Boolean 

operators "OR", "AND" or "NOT," were used as con-

nectors for the search (Supplementary Material). 
 

3. Extraction of essential oils 

3.1 Hydrodistillation process 

Hydrodistillation (HD) is the simplest and oldest 

method for obtaining essential oils, and the 

Clevenger-type HD system is recommended in the 

third edition of the European Pharmacopoeia for 

the determination of EO content (El-Assri et al., 

2021; Falleh et al., 2020). HD is a common method 

that involves the evaporation of volatile plant 

components at a lower temperature in the presence 

of steam; for this, a mixture of water and dried plant 

material is brought to a boil in a previously 

established proportion (Berechet et al., 2017). The 

essential oil-laden vapors pass through the coolant 

and then condense, later recovering in a burette to 

be separated from water; the distillate holds both 

the hydrolate and EOs (Lo et al., 2020). HD is 

considered the most widely used method for the 

extraction of essential oils from plants. Although 

widely used, this extraction technique is more time-

consuming and can lead to the degradation of the 

more thermolabile molecules (Hashemi et al., 2017). 

Although HD has disadvantages such as long 

extraction times and low yield, requiring a larger 

amount of fresh plant material (Chávez et al., 2016), 

when comparing HD with advanced extraction 

techniques (microwave-assisted, supercritical, etc.) 

(El-Assri et al., 2021). HD is still the most common 

industrial extraction approach for EOs. This is due 

to its simple installation (requiring no expensive 

equipment), ease of implementation, and selectivity 

(Gladikostić et al., 2023; Bhavaniramya et al., 2019). 

Therefore, HD remains important for industrial 

applications (Busatta et al., 2017). 
 

3.1. Plant material 

3.1.1. Origin of plant material 

The origin of the plant species M. chamomilla, R. 

officinalis, O. vulgare, and Eucalyptus spp. is de-

scribed in Table 1, while the geographical distribu-

tion is shown to Supplementary Material.  

M. chamomilla (Chamomile) is a native plant to 

southeastern Europe and northwestern Asia but can 

also be found in many countries and has been 

introduced naturally in Great Britain, Australia, and 

North America (El Mihyaoui et al., 2022). Most of 

the studies reviewed on this species in this research 

are originates mostly from the Middle Eastern re-

gion, Balkan countries, Mediterranean Europe, 

Asian countries and South America. The origin of 

MC is important because exposure of chamomile 

flowers to cold stress (0 to +10 °C) has been re-

ported to negatively affect the yield of oil extraction 

from the flowers (Bagheri et al., 2020). 

Rosmarinus officinalis L. (Rosemary) is a perennial 

plant and a member of the Lamiaceae family, dis-

tributed throughout the Mediterranean countries, 

where it is primarily used in food and as a raw ma-

terial for obtaining essential oils (Sadeh et al., 2019). 

Table 1 shows that the countries with the highest 

contribution of plant material for the primary stud-

ies of this review were from North Africa, Other 

countries contributing plant material were from the 

Middle Eastern and European countries; among the 

countries in the Americas were Mexico (9.4%), 

Brazil, and Peru (4.8%). 

Origanum vulgare L. (Oregano) is an important 

species due to its antibacterial, antifungal, antioxi-

dant, antiviral, and flavoring properties supported 

by its complex chemical composition (Béjaoui et al., 

2013). OV is a perennial herbaceous species of 

Mediterranean origin from the Lamiaceae family, 

known and used since ancient times (Gonceariuc et 

al., 2021).  

As shown in Table 1, OV has a more diverse geo-

graphic distribution, with most of the plant material 

used in the research originating from countries such 

as Italy (18.8%), other European Mediterranean 

countries, and the Balkan Peninsula. However, the 

second largest country of origin is Iran (13.2%), 

along with other Middle Eastern countries.  
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Table 1 

Origin and characteristics of plants used in the studies on essential oil extraction by hydrodistillation for species M. chamomilla, O. vulgare, R. officinalis, and Eucalyptus spp. 
 

Plant Origin % (N) Reference 
Material used % 

(N) 
Reference Part of plant used % (N) Reference 

M
a
tr

ic
a
ri

a
 c

h
a
m

o
m

ill
a
 

Iran: 20.0% (5) 
[Bagheri, 2020; Homami, 2016; Kazemi, 2015; Noori & Khajenoori, 2013; 

Sharifzadeh, 2015] 

Dried: 

80.0% 

(20) 

Bagheri, 2020; De Cicco, 2023; El-Assri 

et al, 2021; Gladikostic, 2023; Karalija, 

2020; Lo et al., 2020; Lopez, 2016; 

Noori & Khajenoori, 2013; Mekonnen, 

2016; MeLo et al., 2020; Mithbaokar, 

2020; Qasem, 2022; Rathore, 2021; 

Rezaeih, 2015; Roby, 2013; Satyal, 

2015; Salamon, 2023; Sharifzadeh, 

2015; Tomic, 2014; Wesolowska, 2015] 

Flowers: 

60.9% 

(14) 

[Bagheri, 2020; Berechet, 2017; El-Hefny et al., 

2019; Gladikostic, 2023; Lopez, 2016; Mekonnen, 

2016; Mithbaokar, 2020; Rathore, 2021; Rezaeih, 

2015; Roby, 2013; Salamon, 2023; Stanojevic, 2016; 

Tomic, 2014; Wesolowska, 2015] 

Bosnia: 8.0% (2) [Karalija, 2020; Stanojevic, 2016] 

Egypt: 8.0% (2) [El-Hefny et al., 2019; Roby, 2013] 

India: 8.0% (2) [Mithbaokar, 2020; Rathore, 2021] 

Morocco: 8.0% (2) [El-Assri et al., 2021; Qasem, 2022] 

Serbia: 8.0% (2) [Gladikostic, 2023; Tomic, 2014] 

Albania:4.0% (1) [Salamon, 2023] 

Aerial parts: 30.5% 

(7) 

[De Cicco, 2023; El-Assri et al., 2021; Homami, 

2016; Kazemi, 2015; MeLo et al., 2020; Satyal, 2015; 

Sharifzadeh, 2015] 

China: 4.0% (1) [Lo et al., 2020] 

Colombia: 4.0% (1) [MeLo et al., 2020] 

Spain: 4.0% (1) [Lopez, 2016] 

Italy: 4.0% (1) [De Cicco, 2023] 

Fresh: 20.0% 

(5) 

[Berechet, 2017; El-Hefny et al., 2019; 

Homami, 2016; Kazemi, 2015;  

Stanojevic, 2016] 

Leaves: 4.3% 

(1) 
[Noori & Khajenoori, 2013] 

Nepal: 4.0% (1) [Satyal, 2015] 

Poland: 4.0% (1) [Wesolowska, 2015] 
Leaves & flowers: 

4.3% (1) 
[Lo et al., 2020] Romania: 4.0% (1) [Berechet, 2017] 

Turkey: 4.0% (1) [Rezaeih, 2015] 

 Total: 100% (25)  Total: 100% (25)  Total: 100% (23) 

R
o
sm

a
ri
n
u
s 

o
ff
ic

in
a
lis

 

Morocco: 23.8% 

 (5) 

[Baghouz, 2022; Chbel, 2022; El-Kharraf et al., 2022;  

Elyemni, 2019; Gourich, 2022] 

Dried: 81.0% 

(17) 

 

[Alvarado, 2023; 

Arfa, 2022; 

Baghouz, 2022; Casas, 2023; 

Chbel, 2022; Conde, 2017; 

El-Kharraf et al., 2022; Elyemni, 2019; 

Farhat, 2017; 

Frescura, 2019; 

Ganjali, 2017; 

Gezici, 2017; Gourich, 2022; 

Karalija, 2020; 

Luca, 2023; 

Wollinger, 2016; Yeddes, 2022] 

Leaves: 

75.0% 

(15) 

[Alvarado, 2023; Arfa, 2022; Baghouz, 2022; Casas, 

2023; Chbel, 2022; El- Kharraf, 2022; Farhat, 2017; 

Frescura, 2019; Gezici, 2017; Gourich, 2022; Luca, 

2023; Mekonnen, 2016; Sadeh, 2019; Wollinger, 

2016; Yeddes, 2022] 

Tunisia: 14.2%  

(3) 
[Arfa, 2022; Farhat, 2017; Yeddes, 2022] 

France: 9.4%  

(2) 

[Filly, 2014;  

Wollinger, 2016] 

Mexico:9.4% 

 (2) 

[Conde, 2017;  

Silva-Flores et al., 2019] 
Leaves & branches: 

5.0% (1) 
[Conde, 2017] 

Germany:4.8% (1) [Luca, 2023] 

Bosnia: 4.8% (1) 
[Ka 

ralija, 2020] Leaves & apical parts: 5.0% (1) [Elyemni, 2019] 

Brazil:4.8% (1) [Frescura, 2019] 

Spain:4.8% (1) [Casas, 2023] 
Leaves & stems: 5.0% (1) [Ganjali, 2017] 

Ethiopia: 4.8% (1) [Mekonnen, 2016] 

Iran:4.8% (1) [Ganjali, 2017] 

Fresh: 

19.0 % (4) 

[Filly, 2014; Mekonnen, 2016; Sadeh, 

2019; 

Silva-Flores et al., 2019] 

Leaves, stems & flowers: 5.0% 

(1) 
[Filly, 2014] 

Israel: 4.8% (1) [Sadeh, 2019] 

Peru: 4.8% (1) [Alvarado, 2023] 
Aerial parts: 5.0% (1) [Silva-Flores et al., 2019] 

Turkey: 4.8% (1) [Gezici, 2017] 

 Total: 100% (21)  Total: 100% (21)  Total: 100% (20) 

O
ri
g
a
n
u
m

 v
u
lg

a
re

 

Italy: 18.8% (10) 
[Caputo, 2022; De Falco, 2013; Giuliani, 2013; La Pergola, 2017; Licata, 2015; 

Mancini, 2014; Napoli, 2020; Taglienti, 2022; Tuttolomondo, 2016; Zinno, 2023] 

Dried: 90.6% (48) 

[Atazhanova, 2022; Badawy, 2014; 

Badekova, 2021; Béjaoui, 2013; Brito, 

2021; Brondani, 2018; Busatta, 2017; 

Caputo, 2022; De Falco, 2013; Drinic, 

2020; Enayatifard, 2021; Fikry, 2019 

Gallegos, 2022; Giuliani, 2013; 

Gladikostic, 2023; Hashemi, 2017; 

Heni, 2021; Hernández-Hernández, 

2014; Hodaj, 2017; Hernández-

Aerial parts: 

 53.8% 

(28) 

 

[Badawy, 2014; Badekova, 2021; Brondani, 2018; 

Caputo, 2022; Enayatifard, 2021; Fikry, 2019; 

Gallegos, 2022; Gladikostic, 2023; Gonceariuc, 

2021; Heni, 2021; Hodaj, 2017; Khan, 2018; Licata, 

2015; Mancini, 2014; Milenkovic, 2021; 

Moghrovyan, 2019; Moghrovyan, 2022; Moukhfi, 

2022; Özer et al., 2018; Popa, 2021; Sharifzadeh, 

2015; Simirgiotis, 2020; Stanojevic, 2016; 

Tahmasebi, 2016; Teixeira, 2013; Tsoumani, 2022; 

Iran: 13.2% (7) 
[Enayatifard, 2021; Hashemi, 2017; Moradi, 2015; Morshedloo, 2017; Sharififard, 

2018; Sharifzadeh, 2015; Tahmasebi, 2016]  

Serbia: 7.4% (4) [Drinic, 2020; Gladikostic, 2023; Milenkovic, 2021; Stanojevic, 2016] 

Chile: 5.6% (3) [Brito, 2021; Busatta, 2017; Simirgiotis, 2020] 

Saudi Arabia: 3.7% (2) [Khan, 2018; Khan, 2019] 

Armenia: 3.8% [Moghrovyan, 2019;  
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 (2) Moghrovyan, 2022] Hernández, 2014; Jiménez-Penago, 

2021; Karalija, 2020; Kawase, 2013; 

Khan, 2018; Khan, 2019; La Pergola, 

2017; Licata, 2015; Machado, 2023; 

Mancini, 2014; Mechergui, 2016; 

Milenkovic, 2021; Moradi, 2015; 

Morshedloo, 2017; Moukhfi, 2022; 

Napoli, 2020; Özer et al., 2018; Popa, 

2021; Sharififard,, 2018; Sharifzadeh, 

2015; Simirgiotis, 2020; Stanojevic, 

2016; Tahmasebi, 2016; Tanasescu, 

2019; Teixeira, 2013; Tsoumani, 2022; 

Tuttolomondo, 2016; Yilar, 2013; Zinno, 

2023] 

Yilar, 2013 

Leaves: 19.2% (10) 

[Alarcon, 2015; Busatta, 2017; Giuliani, 2013;  

Hernández-Hernández, 2014;  

Jiménez-Penago, 2021; Khan, 2019;  

Moradi, 2015;  

Sharififard,, 2018; Taglienti, 2022; Tanasescu, 2019] 

Brazil: 3.8% (2) 
[Brondani, 2018;  

Kawase, 2013] 

Egypt: 3.8% (2) [Badawy, 2014; Fikry, 2019] 

Portugal: 3.8%  

(2) 

[Machado, 2023;  

Teixeira, 2013] 

Romania: 3.8% 

 (2) 

[Popa, 2021;  

Tanasescu, 2019] 
Leaves & flowers:  

9.7% 

 (5) 

[Atazhanova, 2022; Hashemi, 2017;  

Mechergui, 2016; Napoli, 2020; Zinno, 2023] 

Tunisia: 3.8%  

(2) 

[Béjaoui, 2013;  

Mechergui, 2016] 

Turkey: 3.8%  

(2) 

[Özer et al., 2018;  

Yilar, 2013] 

Flowers: 7.8% (4) 

[Béjaoui, 2013; Brito, 2021;  

La Pergola, 2017;  

Tuttolomondo, 2016] 

Albania: 1.9% (1) [Hodaj, 2017] 

Algeria: 1.9% (1) [Heni, 2021] 

Bosnia: 1.9% (1) [Karalija, 2020] 
Leaves & stems: 3.8% (2) [Kawase, 2013; Laothaweerungsawat, 2021] 

Colombia: 1.9% (1) [Alarcon, 2015] 

Greece: 1.9% (1) [Tsoumani, 2022] Fruits: 1.9% (1) [Machado, 2023] 

Kazakhstan: 1.9 % (1) [Atazhanova, 2022] 

Fresh: 9.4% 

(5) 

 

[Alarcon, 2015; Laothaweerungsawat, 

2021; Moghrovyan, 2019; 

Moghrovyan, 2022; Taglienti, 2022] 

Leaves, stems  

& flowers:  

1.9% (1) 

[De Falco, 2013] Lithuania: 1.9 % (1) [Badekova, 2021] 

Morocco: 1.9% (1)  [Moukhfi, 2022] 

Moldavia: 1.9% (1) [Gonceariuc, 2021] 
Whole plant: 1.9% (1) [Drinic, 2020] 

Thailand: 1.9% (1) [Laothaweerungsawat, 2021] 

 Total: 100% (53)  Total: 100% (53)  Total: 100% (52) 

E
u
ca

ly
p
tu

s 
sp

p
. 

Algeria: 14.1% (5) 
[Abbaci, 2023; Benabdesslem, 2020; Harkat-Madouri, 2015; Obeizi, 2020; Said, 

2016] 

Dried:  

47.1% (16) 

[Abbaci, 2023; Abbas, 2022; Ayed, 

2023; Benabdesslem, 2020; Bett, 2016; 

Bossou, 2013; Ebadollahi, 2020; 

Harkat-Madouri, 2015; 

Hashemi, 2013; 

Jeddi, 2023; Maghsoodlou, 2015; 

Marwa, 2023; Ngo, 2016; Said, 2016; 

Su et al., 2017; Vivekanandhan, 2019] 

Leaves:  

80.0% 

 (31) 

[Abbaci, 2023; Abbas, 2022; Ali & Mohammed, 

2020; Ayed, 2023; Bachheti, 2015; Benabdesslem, 

2020; Bett, 2016; Bossou, 2013; De Souza, 2016; 

Ebadollahi, 2020; Harkat-Madouri, 2015; Hashemi, 

2013; Maghsoodlou, 2015; Marwa, 2023; 

Mekonnen, 2016; Moreira et al., 2022; Mossa et al., 

2017; Ndiaye, 2017; Ngo, 2016; Obeizi, 2020; Ostad 

et al., 2016; Pinheiro, 2020; Pino, 2021; Queiroz, 

2017; Ribeiro, 2017; Sameza et al., 2014; Siddique, 

2017; Silva et al., 2020; Usman, 2020; Villarreal-

Rivas et al., 2023; Vivekanandhan, 2019] 

Brazil: 14.1% (5) [De Souza, 2016; Pinheiro, 2020; Queiroz, 2017; Ribeiro, 2017; Silva et al., 2020] 

Iran: 11.3% (4) [Ebadollahi, 2020; Hashemi, 2013; Maghsoodlou, 2015; Ostad et al., 2016] 

Ethiopia: 5.7% (2) [Bachheti, 2015; Mekonnen, 2016] 

Morocco: 5.7% (2) [Ainane, 2018; Jeddi, 2023] 

Pakistan: 5.7% (2) [Abbas, 2022; Siddique, 2017] 

Tunisia: 5.7% (2) [Ayed, 2023; Marwa, 2023] 

Benin: 2.9% (1) [Bossou, 2013] 

Fresh:  

52.9% (18) 

[Ainane, 2018; Ali & Mohammed, 

2020; Bachheti, 2015;  

De Souza, 2016; Mekonnen, 2016; 

Moreira et al., 2022;  

Ndiaye, 2017; Obeizi, 2020; Ostad et 

al., 2016;  

Pinheiro, 2020; Pino, 2021; Queiroz, 

2017;  

Ribeiro, 2017;  

Sameza et al., 2014; Siddique, 2017; 

Silva et al., 2020; Usman, 2020; 

Villarreal-Rivas et al., 2023] 

Cameroon 2.9% (1) [Sameza et al., 2014] 

Ecuador 2.9% (1) [Pino, 2021] 

Egypt: 2.9% (1) [Mossa et al., 2017] 

India: 2.9% (1) [Vivekanandhan, 2019] 

Iraq: 2.9% (1) [Ali & Mohammed, 2020] Fruits: 7.5% 

(3) 
[Abbaci, 2023; Said, 2016; Su et al., 2017] 

Kenya: 2.9% (1) [Bett, 2016] 

Niger: 2.9% (1) [Usman, 2020] 
Aerial parts: 5.0% (2) [Ainane, 2018; Jeddi, 2023] 

Portugal: 2.9% (1) [Moreira et al., 2022] 

Senegal: 2.9% (1) [Ndiaye, 2017] 
Leaves & stems: 5.0% (2) [Abbaci, 2023; Su et al., 2017] 

Taiwan: 2.9% (1) [Su et al., 2017] 

Venezuela: 2.9% (1) [Villarreal-Rivas et al., 2023] 
Flowers: 2.5% (1) [Maghsoodlou, 2015] 

Vietnam: 2.9% (1) [Ngo, 2016] 

 Total: 100% (35)  Total: 100% (34)  Total: 100% (39) 

Note: %(N) = Percentage% (Number of studies). 
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Asian countries as well as American countries have 

contributed plant material for studies of this species 

in smaller quantities. 

The genus Eucalyptus is the subject of numerous 

studies due to its wide geographical distribution 

and adaptability to different climatic conditions 

(Ebadollahi et al., 2020). Plant materials of this spe-

cies have been found on several continents and in 

various countries. In the Americas, research has 

predominantly focused on Brazil, Venezuela, and 

Ecuador. In Africa, studies were conducted in Alge-

ria, Tunisia, Ethiopia, Morocco, Benin, Egypt, Kenya, 

Niger, Senegal, and Cameroon. In Asia, these in-

clude Iran, Pakistan, Taiwan, India, Iraq, and 

Vietnam. Finally, in Europe, only one study was 

found in Portugal. 
 

3.1.2. Parts of the plant used for essential oil 

extraction 

Table 1 shows the percentages according to the 

parts of the plant used for the extraction of the 

essential oil of the 4 plant species (MC, RO, OV, and 

EU). For MC, it is seen that the most used part was 

only flowers (60.9%), followed by a mixture of aerial 

parts (30.5%), only leaves (4.3%), and a mixture of 

leaves and flowers (4.3%). Earlier research reports 

that in addition to flowers, leaves, stems, and roots 

of the plant also contain essential oil (Singh et al., 

2011). Compounds such as (Z)-3-hexenol, (E)-β-

Farnesene, α-farnesene, germacrene D, (E)-

nerolidol, Linalool, Geraniol, β-Elemene, α-

Spatulenol, τ-Cadinol, τ-Muurolol, β-

Caryophyllene, cis-Caryophyllene, Caryophyllene 

oxide, and Chamomillol have been found. However, 

these oils lack Chamazulene, and α-Bisabolol 

oxides were present as minor components (El 

Mihyaoui et al., 2022). 

Moreover, RO is a plant from which essential oils 

are primarily extracted from leaves (75.0%), with a 

much smaller proportion coming from a mixture of 

leaves and stems, apical parts, branches, flowers, or 

aerial parts (5.0% in all cases). RO leaves are known 

to be rich in bridged bicyclic monoterpenes such as 

α-pinene and β-pinene, as well as their enantiomers 

limonene and linalool, so it would be logical to use 

the leaves of the plant for the extraction of essential 

oils in most studies (Mekonnen, 2016). 

In the case of OV, the parts used were more varied, 

with the highest usage being a mixture of aerial 

parts (53.8%), followed by leaves only (19.2%), a 

mixture of leaves and flowers (9.7%), only flowers 

(7.8%), a mixture of leaves and stems (3.8%), a mix-

ture of fruits and cuttings (1.9%), a mixture of leaves, 

stems, and flowers (1.9%), and the whole plant 

(1.9%). It has been reported that monoterpenoid 

chemical compounds of the essential oils of this 

plant species, such as thymol, carvacrol, limonene, 

myrcene, among others, are widely distributed 

throughout the plant, so it would be right to use the 

aerial parts of the plant (Atazhanova, 2022). In EU, 

the most considered plant sample is also the leaves 

(80.0%); fruits (7.7%); aerial parts; leaves and stems 

(5.0% in both cases). This would be explained by the 

reported composition of oxygenated monoter-

penes and sesquiterpenes compounds, with the 

main components being 1,8-Cineole (carvacrol), 

Spathulenol, α-Terpineol, among others (Harkat-

Madouri, 2015). 
 

3.1.3. Conditioning of plant material 

To ensure mass transfer enhancement, plant mate-

rial should be crushed to a suitable particle size, 

typically ranging from 100 µm to 2 mm (Gladikostic 

et al., 2023). Larger contact surfaces are known to 

increase extraction efficiency (Abbas et al., 2022). 

Furthermore, finer particles enhance the rate of 

mass transfer from the solid to the liquid phase 

(Moreira et al., 2022). Therefore, it is recommended 

that the diameter of the plant material be no larger 

than 2 mm and no smaller than 0.5 mm (<10%) 

(Gladikostic et al., 2023). In this review, all the arti-

cles reported that the material was crushed prior to 

the HD process. 

Drying is a traditional preservation method for food 

in general and medicinal plants in particular (Abbas 

et al., 2022). This method is based on simultaneous 

heat and mass transfer phenomena and is widely 

used to preserve properties such as aroma, flavour 

and nutritional factors (Caputo et al., 2022). The aim 

of drying is to decrease the weight of the plant raw 

material without affecting its quality. The drying 

treatment is essential for the processing of aromatic 

and medicinal plants (Brondani et al., 2018), as it 

slows down the growth of microorganisms and 

inhibits biochemical reactions that can affect the or-

ganoleptic properties, thus increasing the shelf life 

of the products (Abbas et al., 2022; Ozdemir et al., 

2018). A study into the effects of hot air drying on 

OV and RO, the results showed that hot air caused 

drastic losses in the oregano plant as the essential 

oils volatilized and the dried product lost quality, 

while the volatile compounds in the rosemary plant 

were not affected by hot air drying (Ozdemir et al., 

2018). This study found that different drying meth-

ods led to variations in the proportions of essential 

oil constituents, with new compounds appearing 

and others disappearing. Further research showed 

that oxygenated sesquiterpenes increased to vary-

ing degrees after drying, except for a slight de-

crease after oven drying (Brondani et al., 2018).  
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Table 1 shows that dried plant material was the most 

used in the extraction of AEs from MC, RO, and OV 

(80.0%, 81.0%, and 90.6%, respectively), unlike EU, 

where dried material was used in only 47.1% of the 

articles reviewed in this research. Is important to 

remember that drying methods should be selected 

considering the active metabolites, plant species, 

and plant tissues where these molecules 

accumulate (Caputo et al., 2022; Ozdemir et al., 

2018). The drying process has been reported to 

have a great influence on the chemical constituents 

and yield of the essential oil of aromatic plants 

(Bathily et al., 2023). In a study on the effects of hot 

air drying on OV and RO, the results showed that 

hot air caused drastic losses in the OV as the 

essential oils volatilized and the dried product lost 

quality. In contrast, the volatile compounds in the 

RO were not affected by hot air drying; the 

difference in drying method led to variations in the 

proportions of essential oil components, as well as 

the appearance of new compounds and 

disappearance of others (Ozdemir et al., 2018). In 

another study, it was shown that oxygenated 

sesquiterpenes increased to varying degrees after 

drying, except for a slight decrease after oven 

drying (Brondani et al., 2018). 

In general, oven drying is considered the best 

method according to previous studies; however, it 

is important to establish the drying conditions for 

each aromatic species, as applying the optimal 

drying method can be useful in increasing the 

composition and yield of the essential oil (Özer et 

al., 2018). In addition, air drying under sun or shade 

conditions is usually more economical; however, it 

requires prolonged times that lead to a loss of 

metabolites (Piri et al., 2019). Furthermore, being in 

ambient conditions, factors such as temperature 

and humidity are not controllable, increasing the 

probability of contamination of the plant material 

(Gourich et al., 2022). That is why other modern 

methods are often used to dry plants, such as oven 

drying, dehydration, and lyophilization (Abbas et 

al., 2022). 

According to the type of drying, as shown in Table 

1, the plant materials used were Fresh (20.0%) and 

Dried (80.0%) for MC; Fresh (19.0%) and Dried 

(81.0%) for RO. In the case of OV, it is seen that fresh 

material was considerably less used than Dried 

material (9.4% and 90.6%, respectively), unlike EU 

where fresh material represented 52.9% compared 

to dried material at 47.1% in the studies considered. 

The drying method, drying speed, and drying 

temperature have a significant impact on the 

quantity and quality of the active ingredients of 

aromatic plants (Piri et al., 2019). Despite technical 

advances, the choice of appropriate drying 

methods remains a fundamental economic and 

ecological criterion for the preservation of aromatic 

plants (Abbas et al., 2022). The drying methods 

recommended in the literature and the methods 

used in practice are different, confirming the need 

for research on this topic (Özer et al., 2018). 

 
Figure 1. Graphical abstract of the conditions for hydrodistillation extraction by the Clevenger type and obtaining the chemical profile of 

essential oils. (Created with BioRender.com). 
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3.2. Hydrodistillation conditions of essential oils 

The analysis of essential oils has shown that their 

chemical profile can differ not only in the number 

of different constituents but also in the structure of 

the extracted molecules, depending on the extrac-

tion method, which influences the characteristics of 

the essential oil (Figure 1). 

It has been proved that various extraction methods 

can produce essential oils with a more natural or-

ganoleptic profile. This difference can be attributed 

to the varying composition of the oils depending on 

the conditions used for their extraction (Stratakos & 

Koidis, 2016). 
 

3.2.1. Plant material/water ratio 

Although the extraction of essential oil by HD 

appears to be a simple process, it has many 

drawbacks. During HD, plant materials are exposed 

to boiling water or steam to release the EO they 

contain through evaporation. As the steam and 

essential oil vapors condense, they are collected 

and separated.  

Since the EO are exposed to boiling water for 

prolonged periods, by-products may form due to 

the amount or acidity of the water. This may lead to 

differences in the composition of the extracted EO 

(Stratakos & Koidis, 2016). Table 2 shows the plant 

material/water ratios reported by the studies that 

were part of this research.  

The most used ratio for the extraction of the 4 plant 

species (MC, RO, OV, and EU) was one gram of 

plant material per 10 ml of water (1/10), with 

percentages of 36.3%, 37.5%, 36.1%, and 29.4% 

respectively for each plant species. The second 

most reported ratio was 1/15 for MC (18.2%); 

between 1/7 and 1/16 (12.5%) for RO; between 1/1 

and 1/33 (7.1%) for OV; and 1/3.3 (17.7%) for EU. The 

determination of plant material/water ratio is 

important because during HD, hydrolysis of esters 

into alcohols and acids can occur, which can have 

significant consequences in the case of oils with 

excessive amounts of esters. Furthermore, some 

essential oils require rectification; this process 

involves redistillation of the oil to remove 

undesirable impurities (such as waxes among 

others), as well as components that may give it an 

unacceptable odor (Stratakos & Koidis, 2016). 

Hydrolate (HY) is the fraction recovered from the 

aqueous distillate generated during HD. It is also 

known as recovered essential oil or water-soluble 

essential oil, composed of volatile compounds due 

to its isolation by a distillation-extraction process 

(Lei et al., 2018). The type and chemical composition 

of the HY from obtaining essential oils are precisely 

related to the amount of water used during 

extraction. GC-MS analysis and/or NMR 

spectroscopy have shown that non-polar molecules 

are the main components of essential oils, while 

more hydrophilic molecules and trace essential oils 

form HYs (Brito et al., 2021; Lei et al., 2018). 
 

3.2.2. Hydrodistillation temperature 

Temperature is one of the crucial parameters 

influencing the HD process. Increasing the 

extraction temperature beyond a certain threshold 

may lead to the degradation of essential oil 

components. It is advisable to determine the 

maximum extraction temperature for each plant 

material through experimental means (Noori & 

KhajeNoori, 2013). For essential oil extraction, the 

optimal conditions for HD usually occur at 

temperatures between 100 and 175 °C (Noori & 

KhajeNoori, 2013). Generally, the percentage of 

major components increases with rising 

temperature up to 150 °C; however, around 175 °C, 

the number of components decreases, and a burnt-

smelling extract is produced, resulting from the 

degradation of some essential oil components 

(Noori & Khajenoori, 2013). In this study, the 

temperatures for the HD process are shown in 

Table 2. For MC, the HD temperature range was 

from 100 °C to 200 °C, with 100 °C being the most 

used temperature (50.0%), followed by 150 °C 

(33.3%), and 200 °C (16.7%). In RO, the 

temperatures used were 100 °C (66.7%) and 80 °C 

(33.3%). For OV, distillation temperatures ranged 

from 90 °C to 260 °C, with 220 °C being the most 

used temperature (22.3%), followed by 90 °C, 100 

°C, 110 °C, 180 °C, 210 °C, 240 °C, and 260 °C (11.1% 

for all temperatures mentioned). For EU, only three 

research were found that reported the distillation 

temperature, with 100 °C representing 66.7% and 

one study using 120 °C (33.3%). 
 

3.2.3. Hydrodistillation (HD) time 

The study of HD times is extremely important since 

it is known that in many essential oil (EO) extraction 

processes, the quality of the EO obtained by HD can 

be influenced by hydrolysis or oxidation that can 

occur due to a long extraction time and/or a high 

amount of water used (Stratakos & Koidis, 2016). HD 

times for MC, OV, RO, and EU are shown in Table 

2. For MC, HD times ranged from 2 to 12 hours, with 

the most used times being 3 hours (38.1%) and 4 

hours (28.6%); followed by 2 hours (14.2%), 6 hours 

(9.5%), 10 hours, and 12 hours (4.8% each). For RO, 

the most used HD times in the reviewed studies 

were 3 and 4 hours (35.0%), followed by 1.5; 2 and 

3.5 hours (10.0%). For OV, the times varied between 

1 and 5 hours, with 3 hours being the most used 

time (56.0%), followed by 2 hours (18.0%), 4 hours 
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(12.0%), 1 hour (6.0%), 5 hours (4.0%), 1.5 hours, and 

2.26 hours (2.0%). Regarding EU, it has been 

determined that in 31 studies, the most considered 

HD time is 3 hours (64.5%), followed by 4 hours 

(22.6%), 2 hours (9.7%), and 3.5 hours (3.2%). 

 

4. Hydrodistillation extraction yield 

The percentage yield of the HD extraction process 

for the four plant species can be observed in Table 

3. For MC, the yield varied between 0.06% and 

2.00%, with the range of 0.50%-0.82% being the 

most reported (50.0%), followed by 0.06%-0.30% 

(35.0%) and 1.50%-2.00% (15.0%). It is appreciated 

that the Chamomile flowers EO can have a yield 

between 0.4% and 1.5%, depending on the habitat 

conditions of the plants (Bagheri et al., 2020; El-

Hefny et al., 2019). Theoretically, it is known that 

chamomile (Matricaria spp.) flowers should contain 

a minimum of 4 ml/kg of essential oil (De Cicco et 

al., 2023); however, this value should be 

experimentally validated depending on the 

extraction and cultivation conditions of the plant. 

For RO, the percentage yields obtained in the 

studies ranged between 0.35% and 3.53%, with the 

ranges of 2.50%-3.53% and 1.30%-1.86% being the 

most frequent (35.7% in both cases), followed by 

the range of 0.35%-0.72% with a lower number of 

studies (28.6%). These values, in addition to those 

already mentioned above, may be related to the 

rosemary drying method, the extraction technique, 

and the anatomical part of the plant used for 

extraction (Gourich et al., 2022). In the case of OV, 

the reported yield percentages ranged between 

0.09% and 9.50%. The most frequently reported 

values were in the range of 2.00%-3.90% (24.42%), 

followed by 1.00%-1.75% (17.76%), 0.50%-0.90% 

(15.54%), 0.09%-0.45% (11.1%), 4.10%-5.00% and 

5.30%-9.50% (8.88% in both cases). These 

variations may be due to a great diversity of factors 

such as soil conditions, harvest time, geographical 

location, and climatic and growing conditions 

(Brondani et al., 2018). For EU, the yield shown from 

23 plant samples in the included studies ranged 

between 0.17% to 4.6%, with the range of 1.00%-

1.82% being the most frequent (34.8%), followed by 

the range of 0.17%-0.96% (26.1%), 2.10%-2.90% 

(21.7%), and 3.10% -4.60% (17.4%). 
 

5. Chemical profile of essential oils 

In the chemical identification of extracted essential 

oils, the most common method is gas chromato-

graphy-mass spectrometry (GC-MS) (Lo et al., 

2020); it is suitable for volatile samples that can 

evaporate upon heating (Gourich et al., 2022). Gas 

chromatography can separate analyte components 

by partitioning between the gaseous mobile phase 

and the stationary phase at different retention 

times; finally, all components are eluted, and the 

detector identifies them. The detector is a mass 

spectrometer that can decompose molecules into 

ionized fragments and detect these fragments at 

their characteristic mass-to-charge ratio (m/z) (Lo 

et al., 2020). 

Table 3 shows the number of metabolites identified 

in each of the four plant species. For MC, the most 

frequent range was 31 to 52 compounds (34.8%), 

followed by 5 to 15 compounds (30.4%), and 17 to 

24 compounds (26.1%). In some cases, a higher 

number of compounds, ranging from 70 to 75 

(8.7%), were identified, consistent with reports on 

the phytochemical composition of MC essential oils, 

which have identified more than 120 compounds 

(De Cicco et al., 2023). 

In studies of RO essential oils, the number of iden-

tified compounds varied from 9 to 66. The most 

common range was 9 to 18 compounds (40.0%), 

followed by 22 to 29 compounds (30.0%). Addition-

ally, ranges of 31 to 33 compounds and 45 to 66 

compounds were observed, each accounting for 

15.0% of cases. The number and nature of these 

compounds are influenced to a greater or lesser ex-

tent by the thermal and hydrolytic effects during the 

HD process of RO essential oil (Filly, 2014). Regard-

ing OV, the most frequently identified range of 

compounds was 3 to 19 (34.6%), followed by 20 to 

39 compounds (30.7%), and 42 to 54 compounds 

(21.2%). Additionally, ranges of 64 to 77 and 79 to 

158 compounds were identified, each accounting 

for 13.5% of cases. The analysis of 34 studies utiliz-

ing various species of Eucalyptus spp. revealed that 

EOs contained between 5 to 106 compounds. The 

most common range was 5-16 compounds (32.4%); 

then 17-28 compounds (29.4%); 32-48 compounds 

(26.4%); and 75-106 compounds (11.8%). 
 

5.1. Chemical constituents of essential oils 

The chemical constituents of EOs are mainly sec-

ondary metabolites, whose content and profile 

largely depend on various factors such as the stage 

of development, pedoclimatic conditions, drying, 

storage, and type of plant materials used (Heni et 

al., 2021). Generally, the primary components of 

EOs consist of monoterpenes and sesquiterpenes, 

which typically exist in the form of hydrocarbons or 

oxygenated compounds (Gladikostić et al. 2023). 

Monoterpenes are highly lipophilic compounds that 

interact with biological membrane constituents, al-

tering their densities, fluidity, and physical arrange-

ment of membrane phospholipids (Moghrovyan et 

al., 2019). 
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Table 2 

Extraction conditions for essential oils by hydrodistillation in studies of plant species M. chamomilla, O. vulgare, R. officinalis, and Eucalyptus spp. 
 

Plant 
Plant Material/Water Ratio 

%(N) 
Reference HD T° %(N) Reference HD Time %(N) Reference  

M
a
tr

ic
a
ri
a
 c

h
a
m

o
m

ill
a
 1/10: 36.3% (4) 

[El-Assri et al., 2021; Gladikostic.2023; Noori & 

Khajenoori, 2013; Wesolowska.2015] 
100 °C: 50.0%  

(3) 

[El-Assri et al., 2021; Homami,  

2016; Melo et al., 2020] 

3 hours:  

38.1% (8) 
[Bagheri, 2020; Mekonnen, 2016; Rathore, 2021; Satyal, 2015; Wesolowska, 2015] 

4 hours:  

28.6% (6) 

[Berechet, 2017; De Cicco, 2023; Homami, 2016; Kazemi, 2015; Noori & Khajenoori, 2013; Lopez, 2016; Melo 

et al., 2020; Sharifzadeh, 2015] 
1/15: 18.2% (2) [El-Hefny et al., 2019; Melo et al., 2020] 

1/5: 9.1% (1) [Lo et al., 2020] 
150 °C: 33.3% 

 (2) 

[Noori & Khajenoori, 2013; 

Stanojevic, 2016] 
2/15: 9.1% (1) [Berechet, 2017] 

2 hours: 14.2% (3) [El-Hefny et al., 2019; Gladikostic, 2023; Salamon, 2023] 
1/20: 9.1% (1) [Mithbaokar, 2020] 

1/13.3: 9.1% (1) [Mekonnen, 2016] 
200 °C: 16.7% (1) [Lo et al., 2020] 

10 hours: 4.8% (1) [Stanojevic, 2016] 

1/25: 9.1% (1) [Bagheri, 2020] 12 hours:4.8% (1) [Mithbaokar, 2020] 

 Total: 100% (11) Total: 100% (6)  Total: 100% (21) 

R
o
sm

a
ri
n
u
s 

o
ff
ic

in
a
lis

 1/10: 37.5% (3) [Gourich, 2022; Luca, 2023; Mekonnen, 2016] 
100 °C: 66.7% 

(2) 
[Gezici, 2017; Sadeh, 2019] 

3 hours:  

35.0% (7) 
[Arfa, 2022; Casas, 2023; Elyemni, 2019; Farhat, 2017; Frescura, 2019; Gourich, 2022; Mekonnen, 2016] 

1/7: 12.5% (1) [Filly, 2014] 4 hours:  

35.0% (7) 

[Alvarado, 2023; Baghouz, 2022; Gezici, 2017; Luca, 2023; Silva-Flores et al., 2019; Wollinger, 2016; Yeddes, 

2022] 1/8: 12.5% (1) [Elyemni, 2019] 

1/7.5:12.5 % (1) [Baghouz, 2022] 
80 °C: 33.3% 

(1) 
[Ganjali, 2017] 

1.5 hours: 10.0% (2) [Conde, 2017; Sadeh, 2019] 

1/15: 12.5% (1) [Yeddes, 2022] 2 hours: 10.0% (2) [El-Kharraf et al., 2022; Filly, 2014] 

1/16: 12.5% (1) [Wollinger, 2016] 3.5 hours: 10.0% (2) [Chbel, 2022; Ganjali, 2017] 

 Total: 100% (8) Total: 100% (3)  Total: 100% (20) 

O
ri
g
a
n
u
m

 v
u
lg

a
re

 

1/10: 36.1% 

(5) 

[Gladikostic, 2023; Milenkovic, 2021; Stanojevic, 

2016] 

220 °C:  

22.3% (2) 
[Özer et al., 2018; Tahmasebi, 2016] 

3 hours:  

56.0%  

(28) 

[Atazhanova, 2022; Badawy, 2014; Badekova, 2021; Béjaoui, 2013; Brito, 2021; Caputo, 2022; De Falco, 2013; 

Giuliani, 2013; Hernández-Hernández, 2014; Khan, 2018; Khan, 2019; La Pergola, 2017; Licata, 2015; Machado, 

2023; Mancini, 2014; Moghrovyan, 2019; Moghrovyan, 2022; Moradi, 2015; Morshedloo, 2017; Moukhfi, 

2022; Napoli, 2020; Sharifzadeh, , 2015; Stanojevic, 2016; Tanasescu, 2019; Teixeira, 2013; Tsoumani, 2022; 

Tuttolomondo, 2016; Zinno, 2023] 

90 °C:  

11.1% (1) 
[Sharififard, 2018] 1/1: 7.1% 

(1) 
[Alarcon, 2015] 

1/2: 7.1% 

(1) 
[Sharifzadeh, 2015] 

100 °C:  

11.1% (1) 
[Gallegos, 2022] 

1/4: 7.1% 

(1) 
[Yilar, 2013] 

110 °C:  

11.1% (1) 
[Jiménez-Penago, 2021] 

1/6.25: 7.1% 

(1) 
[Hernández-Hernández, 2014] 

180 °C:  

11.1% (1) 
[La Pergola, 2017] 2 hours:  

18.0%  

(9) 

[Gallegos, 2022; Gladikostic, 2023; Hashemi, 2017; Hodaj, 2017; Jiménez, 2021; Kawase, 2013; 

Laothaweerungsawat, 2021; Milenkovic, 2021; Yilar, 2013] 1/8.3: 7.1% 

(1) 
[Jiménez-Penago, 2021] 210 °C: 

11.1% (1) 
[Fikry, 2019] 

1/15:7.1 % (1) [Tsoumani, 2022] 
4 hours:  

12.0% (6) 
[Alarcon, 2015; Enayatifard, 2021; Fikry, 2019; Mechergui, 2016; Özer et al., 2018; Tahmasebi, 2016] 

240 °C: 11.1% 

(1) 
[Popa et al, 2021] 1/20: 7.1% (1) [Drinic, 2020] 1 hour:  

6.0% (3) 
[Gonceariuc, 2021; Simirgiotis, 2020; Taglienti, 2022] 

1/25: 7.1% 

(1) 
[Hashemi, 2017] 

260 °C: 11.1% (1) [Moradi et al, 2015] 

5 hours: 4.0 % (2) [Brondani, 2018; Sharififard, 2018] 

1/33: 7.1% 

(1) 
[La Pergola, 2017] 

1.5 hours: 2.0% (1) [Busatta, 2017] 

2.26 hours: 2.0% (1) [Drinic, 2020] 

 Total: 100% (14) Total: 100% (9)  Total: 100% (50) 

E
u
ca

ly
p
tu

s 
sp

p
. 

1/10: 29.4% (5) 
[Hashemi, 2013; Maghsoodlou, 2015; Mekonnen, 

2016; Moreira et al., 2022; Ribeiro, 2017] 

100 °C: 66.7% 

 (2) 
[Jeddi, 2023; Said, 2016] 

3 hours: 

64.5% (20) 

[Abbaci, 2023; Abbas, 2022; Ainane, 2018; 

Ali & Mohammed, 2020; Ayed, 2023; Benabdesslem, 2020; 

De Souza, 2016; Ebadollahi, 2020; 

Harkat-Madouri, 2015; Hashemi, 2013; Jeddi, 2023; Mekonnen, 2016; Moreira et al., 2022; Ribeiro, 2017; Said, 

2016; Siddique, 2017; Su et al., 2017; Usman, 2020; Villarreal-Rivas et al., 2023; Vivekanandhan, 2019] 

1/3.3: 17.7% (3) [Harkat-Madouri, 2015; Said, 2016; Ostad et al., 2016] 

1/3: 11.7% (2) [Benabdesslem, 2020; Su et al., 2017] 

1/15: 11.7% (2) [De Souza, 2016; Ndiaye, 2017] 4 hours: 

22.6% (7) 

[Bachheti, 2015; Bett, 2016; Bossou, 2013; Maghsoodlou, 2015; Ndiaye, 2017; Ostad et al., 2016; Sameza 

et al., 2014] 1/1.25: 5.9% (1) [Pinheiro, 2020] 

1/1.6: 5.9% (1) [Jeddi, 2023] 

120 °C: 33.3% 

(1) 
[Ngo, 2016] 

2 hours: 

9.7% (3) 

[Pino, 2021; Queiroz, 2017; 

Silva et al., 2020] 1/5: 5.9% (1) [Ebadollahi, 2020] 

1/6: 5.9% (1) [Ngo, 2016] 1.5 hours: 

3.2% (1) 
[Ngo, 2016] 

1/11.67: 5.9% (1) [Vivekanandhan, 2019] 

 Total: 100% (17) Total: 100% (3)  TOTAL: 100% (31) 

Note: %(N) = Percentage% (Number of studies); HD: Hydrodistillation; T°: Temperature.



Scientia Agropecuaria 15(3): 385-408 (2024)        Olascuaga-Castillo et al. 

-395- 
 

Table 3 presents the primary metabolites identified 

in the studies reported for the essential oils (EOs) of 

the four plant species. In the EO of M. chamomilla, 

the most frequently identified main metabolites 

were β-farnesene and α-bisabololol oxide A (30.5% 

for both metabolites), α-bisabololol oxide B (21.8%), 

α-pinene; bisabolone oxide; chamazulene and 

camphor (4.3% for each of the four metabolites). 

Figure 3-A illustrates the main metabolites reported 

in the included studies. Chamazulene is a molecule 

formed from matricin, naturally present in the 

flowers during HD or steam distillation; the color of 

the oil determines its quality, as the blue color is due 

to the sesquiterpene. The most characteristic 

metabolites of chamomile EO reported in a 

previous study are terpenoids, with the most 

important compounds being bisabolol and its 

oxides A and B, farnesene, spatulenol, spiroethers, 

and azulenes, such as chamazulene (De Cicco et al., 

2023). It is noteworthy that the oil extracted from 

chamomile flowers consists mainly of sesquiterpene 

derivatives (75%-90%), with only traces of 

monoterpenes (Singh et al., 2011). The chamazulene 

content of different chamomiles depends on the 

origin and age of the material, decreasing the 

longer the storage time of the flowers (Singh et al., 

2011; EL-Hefny et al., 2019). 

In the EO of RO, the most frequently identified 

major metabolites were 1,8-cineole (52.4%), 

camphor (23.8%), α-Pinene (19.0%), and limonene 

(4.8%). Oxygenated compounds present in the EO 

of R. officinalis (such as 1,8-cineole and camphor) 

tend to be more odorous than monoterpene 

hydrocarbons (Figure 3-B). Therefore, essential oils 

containing significant amounts of oxygenated 

compounds and less monoterpene hydrocarbons 

(for example, α-pinene and limonene) are more 

valuable (Yeddes et al., 2021; Filly, 2014). RO 

essential oil is known to exhibit high chemical 

variability, which may be related to its geographical 

origin, environmental conditions, harvest time or 

extraction method. Currently, chemotypes of RO 

essential oil are classified based on their major 

component (Casas et al., 2023). 

For OV, the main identified metabolites were 

carvacrol (50.9%), thymol (18.9%), 4-terpineol 

(9.4%), germacrene D (5.7%), β-caryophyllene 

epoxide (3.7%), α-Pinene, γ-terpinene, eugenol, p-

cymene, pulegone and trans-anetol (1.9% for each 

of the five metabolites) (Figure 3-0). Carvacrol is 

responsible for various biological activities of this 

plant, including antitumor, antimutagenic, antige-

notoxic, antiparasitic, inhibition of acetylcho-

linesterase enzyme, antielastase, insecticidal, 

antihepatotoxic, and hepatoprotective activities. It is 

also used as a food additive, in bee breeding, and 

for the treatment of gastrointestinal conditions 

(Béjaoui et al., 2013). The high content of phenolic 

compounds, such as carvacrol and thymol, is 

present during the flowering stage of the plant. 

During this stage, the precursors of these phenolic 

compounds undergo a decrease in their content of 

p-cymene and γ-terpinene. In contrast, during the 

vegetative development stages, the amount of the 

phenolic portion decreases, while the amount of its 

precursors increases (Béjaoui et al., 2013). 

In relation to EU, the most important active 

principles extracted are 1,8-cineole (63.9%), 

Citronellal, p-cymene and α-phellandrene (8.3% in 

all three cases). The remaining compounds are 

represented by camphene, estragole, globulol and 

limonene (2.8% in all this cases) (Figure 3-D). 

Notably, the presence of globulol in fruits of E. 

globulus has also been determined (Said et al., 

2016), and estragole was identified in the same 

plant in a study where a mixture of leaves, stems, 

flowers, and other aerial parts was used in HD 

(Ainane et al., 2018). 

 

5.2. Yield and chemical composition of essential 

oils according to plant material and extraction 

conditions: 

Table 4 presents the yield and main metabolites 

obtained from the extraction of essential oils of MC, 

RO, OV, and EU, categorized by the origin of the 

plant species, type of plant material, part of the 

plant used, plant material/water ratio, temperature, 

and Hydrodistillation time. For MC, the highest yield 

percentages are observed for plant materials were 

0.60-2.00%. The primary molecules commonly 

found in these extracts are β-Farnesene, α-

Bisabolol oxide A, and α-Bisabolol oxide B.  

Drying methods, temperature, and duration 

significantly impact essential oil production. 

Achieving low moisture content is crucial for stable 

matrices, inhibiting or limiting microbial activity in 

treated products. A study suggests that a final 

moisture content of <10% (wet basis) effectively 

restricts microbiological activity and could serve as 

an intermediate treatment to enhance subsequent 

operations such as extraction or mechanical 

crushing (Caputo et al., 2022). Depending on the 

type of plant material, it is observed that in dried 

samples of MC, the yield is higher (up to 2.00%) 

versus fresh material (up to 1.50%), as well as the 

diversity of main molecules present in dried 

material (α-Bisabolol oxide A; α-Bisabolol oxide B; 

Chamazulene; β-Farnesene and Bisabolone oxide) 

versus fresh material (α-Bisabolol oxide A and β-

Farnesene). 
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Table 3 

Yield and metabolites obtained in studies of essential oil extraction by hydrodistillation (HD) for plant species M. chamomilla, O. vulgare, R. officinalis, and Eucalyptus spp. 
 

Plant 

Yield 

(ml/100g DS) 

%(N) 

Reference 

Identified 

Compound 

%(N) 

Reference Major metabolite %(N) Reference 

M
a
tr

ic
a
ri

a
 c

h
a
m

o
m

ill
a
 

0.50-0.82: 

50.0% (10) 

[De Cicco, 2023; Kazemi, 2015; Noori & 

Khajenoori, 2013; Lo et al., 2020; Lopez, 

2016; Rathore, 2021; Roby, 2013; Salamon, 

2023; 

Stanojevic, 2016; Wesolowska, 2015] 

31 – 52: 

34.8% (8) 

[Noori & Khajenoori, 2013; Lo et al., 2020; 

Mekonnen, 2016; Melo et al., 2020; Mithbaokar, 

2020; Rathore, 2021; Roby, 2013] 

β-Farnesene: 

30.5% (7) 

[El-Hefny et al., 2019; Karalija, 2020; Noori & Khajenoori, 2013; 

Melo et al., 2020; Mithbaokar, 2020; Satyal, 2015; Stanojevic, 

2016] 

5 – 15: 

30.4% (7) 

[Berechet, 2017; El-Hefny et al., 2019; Kazemi, 

2015; Qasem et al., 2022; Satyal, 2015; Salamon, 

2023; Stanojevic, 2016; Tomic, 2014] 

α-Bisabolol oxide A 

30.5% (7) 

[Berechet, 2017; Gladikostic, 2023; Kazemi, 2015; Lo et al., 

2020; Lopez, 2016; Rathore, 2021; Roby, 2013] 

0.06-0.30: 35.0% (7) 

[Berechet, 2017; El-Assri et al., 2021; 

Gladikostic, 2023; Homami, 2016; 

Mithbaokar, 2020; Rezaeih, 2015; Tomic, 

2014] 

α-Bisabolol oxide B: 21.8% 

(5) 

[De Cicco, 2023; Mekonnen, 2016; Salamon, 2023; Tomic, 

2014; Wesolowska, 2015] 

17 – 24: 

26.1% (6) 

[De Cicco, 2023; El-Assri et al., 2021; Gladikostic, 

2023; Karalija, 2020; Rezaeih, 2015 Sharifzadeh, 

2015] 

α-Pinene: 4.3% (1) [Sharifzadeh, 2015] 

Bisabolone oxide: 4.3% (1) [Rezaeih, 2015] 

1.50-2.00: 15.0% 

(3) 

[Bagheri, 2020; El-Hefny et al., 2019;  

Satyal, 2015] 
70 – 75: 

8.7% (2) 
[Lopez, 2016; Wesolowska, 2015] 

Chamazulene:4.3% (1) [El-Assri et al., 2021] 

Camphor: 4.3% (1) [Qasem er al., 2022] 

Total: 100% (20) Total: 100% (23) Total: 100% (23) 

R
o
sm

a
ri

n
u
s 

o
ff
ic

in
a
lis

 

2.50-3.53: 35.7%  

(5)  

[Farhat, 2017; Frescura, 2019; Gourich, 

2022; Luca, 2023; Yeddes, 2022] 

9 – 18:  

40.0 % (8) 

[Alvarado, 2023; Baghouz, 2022; Chbel, 2022; 

Conde, 2017; Elyemni, 2019; Karalija, 2020; 

Mekonnen, 2016; Sadeh, 2019] 

1,8 Cineole:  

52.4% (11) 

[Alvarado, 2023; Arfa, 2022; Baghouz, 2022; Chbel, 2022; El- 

Kharraf, 2022; Elyemni, 2019; Ganjali, 2017; Gezici, 2017; 

Gourich, 2022; Luca, 2023; Karalija, 2020] 

1.30-1.86: 35.7%  

(5) 

[El- Kharraf, 2022;  

Elyemni, 2019; Ganjali, 2017; Gezici, 2017; 

Wollinger, 2016] 

22 – 29: 

30.0% (6) 

 

[El- Kharraf, 2022; Farhat, 2017; Frescura, 2019; 

Gezici, 2017; Gourich, 2022; Silva-Flores et al., 

2019] 
Camphor:  

23.8% (5) 

[Conde, 2017; Frescura, 2019; Silva-Flores et al., 2019; 

Wollinger, 2016; Yeddes, 2022] 
31 – 33: 

15.0% (3) 
[Arfa, 2022; Ganjali, 2017; Yeddes, 2022] 

0.35 - 0.72: 

28.6% 

 (4) 

[Casas, 2023;  

Conde, 2017; Filly, 2014;  

Silva-Flores et al., 2019] 

Limonene: 4.8% (1) [Filly, 2014] 

45 – 66: 

15.0% (3) 
[Casas, 2023; Filly, 2014; Luca, 2023] 

α-Pinene:  

19.0 % (4) 
[Casas, 2023; Farhat, 2017; Mekonnen, 2016; Sadeh, 2019] 

Total: 100% (14) Total: 100% (20) Total: 100% (21) 

O
ri

g
a
n
u
m

 v
u
lg

a
re

 

2.0-3.9:  

24.42 % (11)  

[Heni, 2021; La Pergola, 2017; Licata, 2015; 

Machado, 2023; Mancini, 2014; 

Morshedloo, 2017; Napoli, 2020; Özer et 

al., 2018; Popa, 2021; Taglienti, 2022; 

Tuttolomondo, 2016] 

3 – 19:  

34.6% (18) 

[Alarcon, 2015; Badawy, 2014; Béjaoui, 2013; Brito, 

2021; Enayatifard, 2021; Gallegos, 2022; Giuliani, 

2013; Jiménez-Penago, 2021; Karalija, 2020; 

Kawase, 2013; Laothaweerungsawat, 2021; 

Machado, 2023; Moghrovyan, 2022; Sharifzadeh, 

2015] 

Carvacrol:50.9 % (27)  

[Alarcon, 2015; Atazhanova, 2022; Badekova, 2021; Béjaoui, 

2013; Caputo, 2022; De Falco, 2013; Drinic, 2020; Enayatifard, 

2021; Gallegos, 2022; Gonceariuc, 2021; Heni, 2021; Hodaj, 

2017; Karalija, 2020; Khan, 2018; Khan, 2019; La Pergola, 2017; 

Laothaweerungsawat, 2021; Machado, 2023; Mancini, 2014; 

Moradi, 2015; Morshedloo, 2017; Moukhfi, 2022; Özer et al., 

2018; Taglienti, 2022; Teixeira, 2013; Tsoumani, 2022; Zinno, 

2023] 

1.0 - 1.75: 17.76% 

(10) 

 

[Brito, 2021; Busatta, 2017; Giuliani, 2013; 

Jiménez-Penago, 2021; Khan, 2018; Khan, 

2019; Moghrovyan, 2019; Moghrovyan, 

2022; Moradi, 2015; Tanasescu, 2019] 
20 – 39: 

30.7% (16) 

[Atazhanova, 2022; Brondani, 2018;  

Busatta, 2017; Caputo, 2022;  

De Falco, 2013; Drinic, 2020; Fikry, 2019;  

Gonceariuc, 2021;  
0.50-0.90: 15.54% 

(9) 

[Badekova, 2021;  

Béjaoui, 2013; Caputo, 2022;  

Thymol: 

18.9 % (10) 

[Hashemi, 2017; Kawase, 2013; Licata, 2015; Napoli, 2020; 

Sharifzadeh, 2015; Simirgiotis, 2020; Stanojevic, 2016; 
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De Falco, 2013;  

Fikry, 2019; Hernández-Hernández, 2014; 

Sharififard, 2018; Tahmasebi, 2016; Teixeira, 

2013] 

Heni, 2021; Hodaj, 2017; Mechergui, 2016;  

Moghrovyan, 2019;  

Moradi, 2015; Moukhfi, 2022; Özer et al., 2018; 

Zinno, 2023] 

 Tanasescu, 2019; Tuttolomondo, 2016; Yilar, 2013] 

 

4-Terpineol :9.4 % (5)  

 

[Brondani, 2018; Busatta, 2017; Fikry, 2019; Sharififard, 2018; 

Tahmasebi, 2016] 

0.09-0.45: 11.1% 

(7) 

[Alarcon, 2015; Brondani, 2018; Enayatifard, 

2021; Gladikostic, 2023; Kawase, 2013; 

Laothaweerungsawat, 2021; Milenkovic, 

2021] 

42 – 54: 

21.2% (11) 

[Gladikostic, 2023; Hashemi, 2017; Hernández-

Hernández, 2014; La Pergola, 2017;  

Morshedloo, 2017; Napoli, 2020;  

Popa, 2021; Simirgiotis, 2020; Tahmasebi, 2016;  

Tanasescu, 2019;  

Tuttolomondo, 2016] 

Germacrene D: 5.7% (3)  [Giuliani, 2013; Milenkovic, 2021; Popa, 2021 

β-Caryophyllene epoxide: 

3.7% (2) 
[Moghrovyan, 2019; Moghrovyan, 2022] 

α-Pinene: 1.9% 

 (1) 
[Hernández-Hernández, 2014] 

4.10-5.00: 8.88% (4) 

[Gonceariuc, 2021; Mechergui, 2016; 

Moukhfi, 2022; 

Stanojevic, 2016] 

γ-Terpinene: 

1.9 % (1) 
[Brito, 2021] 

64 – 158: 

13.5% (7) 

[Khan, 2018; Khan, 2019; Licata, 2015; Mancini, 

2014; Milenkovic, 2021; Sharififard, 2018; 

Teixeira, 2013] 

Eugenol: 1.9% (1)  [Jiménez-Penago, 2021] 

p-Cymene: 1.9% (1)  [Mechergui, 2016] 

5.30-9.50: 8.88%  

(4) 

[Drinic, 2020; Hashemi, 2017; Hodaj, 2017; 

Simirgiotis, 2020] 

Pulegone: 1.9% (1) [Badawy, 2014] 

Trans-Anethole: 1.9% (1)  [Gladikostic, 2023] 

Total: 100% (45) Total: 100% (52) Total: 100% (53) 

E
u
ca

ly
p
tu

s 
sp

p
. 

1.00-1.82: 34.8% 

(8) 

[Abbas, 2022; Ayed, 2023; Marwa, 2023; 

Moreira et al., 2022; Ngo, 2016; Sameza  

et al., 2014; 

Silva et al., 2020; 

Villarreal-Rivas et al., 2023] 

5 – 16: 

32.4% (11) 

[Ali & Mohammed, 2020; De Souza, 2016; 

Mekonnen, 2016; Mossa et al., 2017; Obeizi, 2020; 

Pinheiro, 2020; Queiroz, 2017; Ribeiro, 2017; Silva 

et al., 2020; Villarreal-Rivas et al., 2023; 

Vivekanandhan, 2019] 

1,8 Cineole: 

63.9% (23) 

[Abbaci, 2023; Abbas, 2022; Ayed , 2023; Bett, 2016; Harkat-

Madouri, 2015; Hashemi, 2013; Jeddi, 2023; Marwa, 2023; 

Mekonnen, 2016; Moreira et al., 2022; Mossa et al., 2017; 

Ndiaye, 2017; Ngo, 2016; Obeizi, 2020; Ostad et al., 2016; Pino, 

2021; Queiroz, 2017; Ribeiro, 2017; Sameza et al., 2014; 

Siddique, 2017; Silva et al., 2020; Villarreal-Rivas et al., 2023; 

Vivekanandhan, 2019] 

 

17 – 28: 

29.4% (10) 

[Abbaci, 2023; Ayed, 2023; Bossou, 2013; Harkat-

Madouri, 2015; Hashemi, 2013; Jeddi, 2023; Ostad 

et al., 2016; Said, 2016; Siddique, 2017; Su et al., 

2017] 

0.17-0.96: 26.1% (6) 
[Bett, 2016; Hashemi, 2013; Ndiaye, 2017; 

Pino, 2021; Su et al., 2017; Usman, 2020] Citronellal: 

8.3% (3) 
[Bossou, 2013; De Souza, 2016; Pinheiro, 2020] 

2.10-2.90: 21.7% 

(5) 

[Benabdesslem, 2020; 

De Souza, 2016; 

Ebadollahi, 2020; Harkat-Madouri, 2015; 

Jeddi, 2023] 

32 – 48: 

26.4% (9) 

[Abbas, 2022; Bett, 2016; Ebadollahi, 2020; 

Marwa, 2023; Moreira et al., 2022; Ndiaye, 2017; 

Ngo, 2016; Sameza et al., 2014; Usman, 2020] 

p-Cymene:8.3% (3) [Benabdesslem, 2020; Ebadollahi, 2020; Su et al., 2017] 

α-phellandrene: 8.3% (3) [Maghsoodlou, 2015] 

  
75 – 106: 

11.8% (4) 

[Ainane, 2018; 

Benabdesslem 2020; Maghsoodlou, 2015; 

Pino, 2021] 

Camphene: 2.8% (1) [Ali & Mohammed, 2020] 

3.10-4.60: 17.4% 

(4) 

[Abbaci, 2023; 

Bossou, 2013; 

Queiroz, 2017; Said, 2016] 

Estragole: 2.8% (1) [Ainane, 2018] 

Globulol: 2.8% (1) [Said, 2016] 

 Limonene: 2.8% (1) [Usman, 2020] 

Total: 100% (23) Total: 100% (34) Total: 100% (36) 

Note: %(N)= Percentage% (Number of studies); DS: dried sample. 
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These results are related to a study conducted in 

Egypt, where they compared the chemical compo-

sition of EO obtained from fresh and dried flowers 

of MC, using different techniques (sunlight, shade, 

oven, solar dryer, and microwave). The results 

showed that the main component of all EOs was α-

bisabolol A oxide (33-50.5%); however, the drying 

methods used in this study significantly influenced 

the number of compounds identified, with 21 com-

pounds after solar drying and only 13 after 

microwave drying (Abbas et al., 2022). 

The sensitivity of volatile oils determines the appro-

priate temperature for drying processes; thus, 

higher temperatures promote the loss of more vol-

atile components and the degradation of less stable 

substances (Ozdemir et al., 2018). In addition, air 

temperature influences both the quantity and qual-

ity of essential oils in aromatic plants, not only dur-

ing drying, but also during storage (Moreira et al., 

2022). Regarding the chemical composition as a 

function of the type of drying, it is known that ses-

quiterpene hydrocarbons predominate in fresh 

samples; shade-dried plant material contains many 

oxygenated monoterpenes and oxygenated ses-

quiterpenes (Bhatt et al., 2019). 

 

 
 

Figure 3. Molecules found in higher concentration during GC-MS chemical profiles of essential oils from Matricaria chamomilla (A), 

Rosmarinus officinalis (B), Origanum vulgare (C) and Eucalyptus spp. (D). Chemical structures created with ACD/ChemSetch Freeware 

2020.2.1
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Table 4 

Yield percentage and metabolites obtained from essential oils by Hydrodistillation according to the origin, characteristics of the material used and conditions for the extraction of essential oils from plant species M. chamomilla; O vulgare; R. officinalis and Eucalyptus 

spp. 
 

Plant 
Yield (ml/100g DS) and major 

compound by Origin 

Yield 

(ml/100g DS) and Major compound by 

Plant Material Type 

Yield 

(ml/100g DS) and Major compound by Plant 

Material Part 

Yield 

(ml/100g DS) and Major 

compound by Plant 

Material/Water Ratio 

Yield 

(ml/100g DS) and Major 

compound by HD 

temperature 

Yield 

(ml/100g DS) and Major compound by 

HD time 

M
a
tr

ic
a
ri

a
 c

h
a
m

o
m

ill
a
 

Nepal: 2.00% (β-Farnesene) 

Dried: 

0.08-2.00% 

(α-Bisabolol oxide A; α-Bisabolol oxide B; 

Chamazulene; β-Farnesene; Bisabolone 

oxide) 

Aerial parts: 0.30-2.00% 

(α-Bisabolol oxide A; 

α-Bisabolol oxide B; Chamazulene; β-Farnesene) 

1/15: 

1.50% 

(β-Farnesene) 

150 °C: 

0.5-0.6% 

(β-Farnesene) 

4 hours: 0.30-2.00% (α-Bisabolol oxide A; 

α-Bisabolol oxide B; β-Farnesene; 

Bisabolone oxide) 

Egypt: 0.73-1.50% (α-Bisabolol oxide 

A; β-Farnesene) 

Iran: 0.60-0.82% (α-Bisabolol oxide A; 

β-Farnesene) 1/10: 

0.29-0.73% 

(α-Bisabolol oxide A; α-Bisabolol 

oxide B; β-Farnesene; 

Chamazulene) 

200 °C: 

0.6% 

(α-Bisabolol oxide A) 

Albania: 0.75% (α-Bisabolol oxide B) 
Flowers: 0.08-1.5% 

(α-Bisabolol oxide A; 

α-Bisabolol oxide B; 

β-Farnesene; 

Bisabolone oxide) 

Italy: 0.75% (α-Bisabolol oxide B) 
2 hours: 0.29-1.50% 

(α-Bisabolol oxide A; α-Bisabolol oxide B; 

β-Farnesene) 

Poland: 0.73% (α-Bisabolol oxide B) 

Spain: 0.63% (α-Bisabolol oxide A) 

China: 0.60% (α-Bisabolol oxide A) 

100 °C: 

0.06-0.30% 

(β-Farnesene; Chamazulene) 

India: 0.26-0.57% (α-Bisabolol oxide 

A; β-Farnesene) 
1/5: 0.60% 

(α-Bisabolol oxide A) 

6 hours: 

0.6-0.73% 

(α-Bisabolol oxide A) 
Leaves and Flowers: 

0.6% 

(α-Bisabolol oxide A) 

Bosnia: 0.50% (β-Farnesene) 

Fresh: 

0.25-1.50% 

(α-Bisabolol oxide A; β-Farnesene) 

Morocco: 0.30% (Chamazulene) 1/20: 0.26% 

(β-Farnesene) 

10 hours: 

0.50% 

(β-Farnesene) 

Turkey: 0.30% (Bisabolone oxide) 
60-65 °C: 

0.26% 

(β-Farnesene) 

Serbia: 0.08-0.29% (α-Bisabolol oxide 

A; α-Bisabolol oxide B) 

Leaves: 

0.60% 

(β-Farnesene) 

2/15: 0.25% 

(α-Bisabolol 

oxide A) 

12 hours: 0.26% 

(β-Farnesene) Romania: 0.25% (α-Bisabolol oxide A) 

R
o
sm

a
ri
n
u
s 

o
ff
ic

in
a
lis

 

Morocco: 

1.30-3.53% (1,8-Cineole) Dried: 

0.35-3.53% 

(Camphor; α-Pinene;1,8-Cineole) 

Leaves: 0.64-3.53% 

(Camphor; α-Pinene; 1,8-Cineole) 

1/10: 2.50-3.53% 

(1,8-Cineole) 
100 °C: 1.86% 

(α-Pinene; 1,8-Cineole) 

3 hours: 0.64-3.53% 

(α-Pinene, 1,8-Cineole; Camphor) 
Tunisia: 2.85-3.18% 

(Camphor; α-Pinene) 
1/15: 2.85% (Camphor) 

Leaves and apical parts: 

1.35% (1,8-Cineole) 
4 hours: 0.72-2.85% 

(1,8-Cineole; Camphor) 
Brazil: 2.69% (Camphor) 

1/16: 1.80% (Camphor) 
Germany: 2.5% (1,8-Cineole) 

Fresh: 

0.57-0.72% (Camphor; Limonene) 

Leaves & stems: 

1.7% (1,8-Cineole) 

80 °C: 

1.7% 

(1,8-Cineole) 

Turkey: 1.86% (1,8-Cineole) 
1/8: 1.35% 

(1,8-Cineole) 

3.5 hours: 1.7% (1,8-Cineole) 
Iran: 1.70% (1,8-Cineole) 

Leaves, stems, & flowers: 0.57% (Limonene) Spain: 0.64% (α-Pinene) 2 hours: 0.57-1.30% (Limonene; 1,8-

Cineole) France: 0.57-1.80% 

(Camphor; Limonene) 1/7: 0.57% (Limonene) 
Aerial parts: 0.72% (Camphor) 1.5 hours: 0.35% (Camphor) 

Mexico: 0.35-0.72% (Camphor) 

O
ri
g
a
n
u
m

 v
u
lg

a
re

 

Iran: 0.08-9.5% (4-Terpineol; 

Carvacrol; Thymol) 

Dried: 

0.08-9.5% 

(α-Pinene; γ-Terpinene;4-Terpineol; 

Carvacrol; Germacrene D; p-Cymene; 

Thymol; Trans-Anetol) 

Leaves & Flowers: 3.80-9.5% (p-Cymene; 

Thymol) 

1/25: 

9.50% 

(Thymol) 

180 °C: 3.30% 

(Carvacrol) 
2 hours: 0.08-9.5% 

(Carvacrol; Eugenol; Germacrene D; 

Thymol; Trans- Anetol) 

Serbia: 0.08-5.8% (Carvacrol; 

Germacrene D; Thymol; Trans-

Anethole) 

Whole plant: 5.8% (Carvacrol) 
1/20: 

5.80% 

(Carvacrol) 

220 °C: 0.67-2.80% 

(Carvacrol; 4-Terpineol) 
Albania: 5.40% (Carvacrol) 

Aerial parts: 0.08-5.4% (β-Caryophyllene 

epoxide; 4-Terpineol; Carvacrol; Germacrene D; 

Thymol; Trans-Anethole) 

2.26 hours: 5.80% (Carvacrol) 
Chile: 1.22-5.30% (γ-Terpinene; 4-

Terpineol; Thymol) 1/10: 0.08-4.10% 

(Germacrene D; Thymol; 

Trans-Anethole) 

3 hours: 

0.50-5.00% 

(α-Pinene; β- Caryophyllene epoxide; 

Morocco: 5.0% (Carvacrol) 240 °C: 2.00% 

(Germacrene Tunisia:0.60-4.60% (Carvacrol; p-
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cymene) D) γ-Terpinene; Carvacrol, Germacrene D; 

Thymol) Moldavia: 4.10% (Carvacrol) 
Flowers: 0.60-3.90% 

(Carvacrol, γ-Terpinene; Thymol) 
Italy: 0.70-3.90% (Carvacrol, 

Germacrene D; Thymol) 
1/33: 3.30% (Carvacrol) 

Portugal: 0.75-3.30% (Carvacrol) 

Leaves: 0.09-3.48% 

(α-Pinene; 4-Terpineol; Carvacrol; Eugenol; 

Thymol) 

110 °C: 1.70% 

(Eugenol) 
Algeria: 2.80% (Carvacrol) 

1/8.3: 1.70% (Eugenol) 
Turkey: 2.80% (Carvacrol) 4 hours: 0.09-4.60% 

(Carvacrol, 4-Terpineol; 

p-Cymene) 

Romania: 2.00% (Germacrene D) 1/2: 0.90% 

(4-Terpineol) 

260 °C: 1.44% 

(Carvacrol) Saudi Arabia: 1.30-1.70% (Carvacrol) 

Mexico: 0.65-1.70% (α-Pinene; 

Eugenol) 

Fresh: 

0.09 -3.48% 

(β-Caryophyllene epoxide; Carvacrol) 

Fruits cuttings: 

3.30% 

(Carvacrol) 

1/2: 0.90% (4-Terpineol) 
90 °C: 

0.90% 

(4-Terpineol) 

1.5 hours: 

1.22% 

(4-Terpineol) 

Armenia: 1.0% (β-caryophyllene 

epoxide) 

Egypt:0.85% (4-Terpineol) 

Lithuania: 0.5% (Carvacrol) 

Leaves & stems: 

0.20-0.45% 

(Carvacrol; Thymol) 

1/6.25: 0.65% (α-Pinene) Brazil: 0.4-0.45% (4-Terpineol; 

Thymol) 
210 °C: 

0.85% 

(4-Terpineol) 

5 hours: 

0.4-0.9% 

(4-Terpineol) 
Thailand: 0.20% (Carvacrol) 1/1: 0.09% 

(Carvacrol) Colombia: 0.09% (Carvacrol) 

E
u
ca

ly
p
tu

s 
sp

p
. 

Benin: 4.6% (Citronellal) 

Dried: 

0.29-4.6% (1,8-Cineole; p-Cymene; 

globulol; Citronellal) 

Leaves: 

0.17-4.6% 

(1,8-Cineole; 

p-Cymene; 

Limonene; 

Citronellal) 

1/3.3: 

2.53-3.1% 

(1,8-Cineole, globulol) 

100 °C: 

2.13-3.1% 

(1,8-Cineole, globulol) 

4 hours: 

0.38-4.6% 

(1,8-Cineole; 

Citronellal) 

Brazil:1.82-4.1% (1,8-Cineole; 

Citronellal) 

Algeria: 2.53-3.10% (1,8-Cineole; p-

Cymene; globulol) 

Morocco: 2.13% (1,8-Cineole) 

1/15: 0.9- 2.9% (1,8-Cineole; 

Citronellal) 

2 hours: 

0.17-4.1% 

(1,8-Cineole) 

Iran: 0.29-2.1% (1,8-Cineole, p-

Cymene) 

Portugal: 1.7% (1,8-Cineole) 

Vietnam: 1.65% (1,8-Cineole) 1/3: 0.96-2.64% 

(p-Cymene) Venezuela: 1.35% (1,8-Cineole) 

Fresh: 

0.17-4.1% (1,8-Cineole; Limonene; 

Citronellal) 

Fruits: 

0.96-3.1% 

(p-Cymene, 

globulol) 

3 hours: 

0.29-3.1% 

(1,8-Cineole; 

p-Cymene; 

Citronellal; 

Globulol; 

Limonene) 

Pakistan: 1.32% (1,8-Cineole) 1/1.6: 2.13% 

(1,8-Cineole) Tunisia: 1.1-1.32% (1,8-Cineole) 

Ethiopia: 1.21% (1,8-Cineole) 1/5: 2.1% 

(p-Cymene) 

120 °C: 

1.65% 

(1,8-Cineole) 

Cameroon: 1% (1,8-Cineole) 

Taiwan: 0,96% (p-Cymene) 

Aerial parts: 

2,13% 

(1,8-Cineole) 

1/10: 0.29-1.7% 

(1,8-Cineole) Senegal: 0.9% (1,8-Cineole) 

Niger: 0.54%(Limonene) 
1/6: 1.65% 

(1,8-Cineole) 

1.5 hours: 

1.65% 

(1,8-Cineole) 

Kenia: 0.38% (1,8-Cineole) 

Ecuador: 0.17% (1,8-Cineole) 

Note: HD: Hydrodistillation; DS: Dry Sample. 
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Regarding the part of the plant used for HD, aerial 

parts showed a higher yield of M. chamomilla EO 

with a yield of up to 2.00% and 4 major molecules 

identified, while in flowers the yield was up to 1. 50% 

and 4 molecules were identified; however, these 

values are higher than those found for yields of 

leaves alone and a mixture of leaves and flowers 

(0.6% in both cases), also reducing the variability of 

major compounds (β-farnesene and α-bisabolol 

oxido A). Reportedly, the quality of chamomile EO 

is generally determined by its blue color, which 

indicates a good amount of terpenoids (Piri et al., 

2019). This is dependent on factors such as plant 

origin, drying techniques, extraction techniques, 

use of biofertilizers, among other factors (De Cicco 

et al., 2023; El Mihyaoui et al., 2022). The plant 

material/water ratio that yielded the highest EO 

extraction from MC was 1/15 (1.50%) with β-

farnesene as the main metabolite; however, it is 

worth highlighting that the 1/10 ratio had a lower 

yield (0.29-0.73%) but a higher diversity of main 

metabolites (α-bisabolol oxide A; α-bisabolol oxide 

B; β-farnesene and chamazulene). 

The HD temperature that produces the highest 

yield is 150 °C (0.5-0.6%) with one major metabolite 

(β-Farnesene), while reducing the temperature to 

100 °C reduces the yield (up to 0.30%) but increases 

the variability of major compounds (β-Farnesene 

and Chamazulene). 

With temperatures below 100 °C, the yield remains 

low (0.26%), and the variability of major metabolites 

(β-Farnesene) is also reduced. The HD extraction 

time of MC essential oils for 4 hours showed the 

best yield (0.30-2.00%) and the highest variability of 

major metabolites (α-Bisabolol oxide A; α-Bisabolol 

oxide B; β-Farnesene; and Bisabolone oxide). It is 

worth noting that a 2-hour HD produces a lower 

yield (0.29-1.50%); however, the variability of its 

major metabolites is like the 4-hour HD time (α-

Bisabolol oxide A; α-Bisabolol oxide B and β-

Farnesene). Increasing the distillation time to 

between 6 to 12 hours reduces the percentage yield 

to 0.73% and 0.26%, respectively, and in both cases, 

the major metabolite identified is β-Farnesene. 

The extraction yields of Rosmarinus officinalis were 

highest in Morocco and Tunisia (around 3.5%). The 

main compounds found were 1,8-Cineole, α-

Pinene, Camphor, and Limonene. The yield of dry 

material was higher than that of fresh material 

(3.52% and 0.72%, respectively). The leaves of RO 

had the highest yield (up to 3.53%) with metabolites 

identified as Camphor, α-Pinene, and 1,8-Cineole. It 

is important to note that Limonene was observed 

as the most abundant compound when flowers 

were added as a sample. The highest yield for RO 

was achieved with a plant material to water ratio of 

1:10, resulting in up to 3.53% of essential oil 

extracted. In this ratio, 1,8-Cineole was identified as 

the most abundant metabolite. Additionally, a high 

yield of 2.85% was achieved with a 1:15 ratio, with 

Camphor being identified as the most abundant 

compound. The studies reported HD temperatures 

of 80 °C and 100 °C, which resulted in close yields 

of 1.70% and 1.86%, respectively. The compounds 

obtained were 1,8-Cineole at both temperatures 

and α-Pinene at 100 °C. The highest yield of 3.53% 

and the highest diversity of metabolites, including 

α-Pinene, 1,8-Cineole, and Camphor, were 

obtained after 3 hours of HD time. However, it was 

observed that the yield was low (0.35%), and the 

major metabolite produced in a shorter HD time 

(1.5 hours) was Camphor, in comparison to the 

other times. 

For O. vulgare, the highest yields were 5.00-9.5%, 

with the main metabolites most frequently found 

being carvacrol, 4-terpineol, and thymol. When 

considering the type of plant material used, dried 

samples obtained a higher yield (up to 9.5%) 

compared to fresh material (up to 3.48%). Dried 

material also yielded a greater number of main 

compounds (carvacrol, thymol, α-pinene, p-

cymene, germacrene D, 4-terpineol, γ-terpinene, 

trans-anethole, pulegone, and eugenol) compared 

to fresh material (carvacrol and β-caryophyllene 

epoxide). In a study on the influence of drying on 

the extraction of EO from OV, the highest yield of 

essential oil was obtained with sun-dried material 

(0.30% w/w), while the material dried in the shade 

and oven at 35 °C and 45 °C had a yield of 0.20%. 

This effect on oil production is due to the 

modification of the biological structure of the oil 

glands after the rupture of the trichomes (Bhatt et 

al., 2019). 

Aerial parts from OV obtained a higher yield (up to 

5.4%) than other parts used, and they also 

presented the highest diversity of main metabolites 

(carvacrol, pulegone, 4-terpineol, trans-anethole, 

germacrene D, β-caryophyllene epoxide, and 

thymol). However, extraction using only O. vulgare 

leaves resulted in a lower yield (up to 3.48%) but 

presented an interesting number of major 

compounds (carvacrol, thymol, α-pinene, 

germacrene D, 4-terpineol, and eugenol). 

The plant material/water ratio used in HD with the 

best results in yield was 1/25 (9.50%) with thymol as 

the main metabolite, while a ratio of 1/20 reported 

carvacrol as the main metabolite. However, the 

plant material/water ratio of 1/10, although 

reporting a lower yield (up to 4.10%), showed a 

higher number of main metabolites (germacrene D 
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and thymol). In the other ratios analyzed in this 

review, the yield was lower than 3.30%, with 

carvacrol being the main metabolite in most cases. 

The HD temperature with the best results in yield 

for OV was 180 °C (up to 3.30%), with carvacrol as 

its main metabolite. At 220 °C, the yield decreased 

to up to 2.80%, but a greater number of main 

metabolites was identified (carvacrol and 4-

terpineol). Temperatures higher than 220 °C 

resulted in a low yield (up to 2.00%), with carvacrol 

and 4-terpineol remaining as the main molecules. 

However, temperatures below 180 °C yielded up to 

1.70%, with the identification of carvacrol, eugenol, 

and 4-terpineol as main metabolites at low 

temperatures. 

The HD time for O. vulgare with the highest yield is 

2 hours (up to 9.5%), identifying major metabolites 

such as carvacrol, thymol, germacrene D, trans-

anethole, and eugenol. Meanwhile, a HD time of 3 

hours has a lower yield (up to 5.00%) but a higher 

number of major metabolites identified (carvacrol, 

thymol, α-pinene, germacrene D, γ-terpinene, and 

pulegone). As the HD time increases above 3 hours, 

the yield is still low (4.60%), and the identifiable 

major metabolites are reduced to carvacrol, 4-

terpineol, and p-cymene. 

For Eucalyptus sp. the highest yields have been seen 

in plant material were 3.1% - 4.6%. 1,8-Cineole has 

been found to be a major compound in research 

studies that mention its yield. Similar yields (ranging 

from 1.32% to 2.13%) In all cases, the main 

metabolite found was 1,8-Cineole. The material 

from Algeria was more diverse in chemical 

composition, with 1,8-Cineole, p-Cymene, and 

globulol reported as the main metabolites. There 

was no significant difference in yield between fresh 

and dry materials (4.1% and 4.6% respectively). 

However, differences were observed in the 

chemical compounds obtained. Both materials 

contained 1,8-Cineole and Citronellal, but dry 

samples also contained p-Cymene and globulol, 

while fresh samples contained Limonene. 

In terms of yield, leaves were the plant part with the 

highest yield in HD (up to 4.6%) and with the 

highest diversity of metabolites (1,8-cineole; p-

cymene; limonene and Citronellal), while fruits and 

aerial parts had lower yields (3.1% and 2.13%, 

respectively) and also reduced the number of main 

metabolites found (p-cymene, globulol in fruits and 

1,8-cineole in aerial parts). The plant material/water 

ratio that resulted in the highest yield was 1/3.3 

(3.1%). Ratios of 1/15 (up to 2.9%) and 1/3 (up to 

2.64%) also produced significant yields. However, 

the first two ratios produced a greater diversity of 

main metabolites, including Globulol and 

Citronellal, respectively, in addition to 1,8-Cineole. 

The highest reported HD times were 100 °C and 120 

°C, with decreasing yields at higher temperatures 

(3.1% and up to 1.65%, respectively). Lower 

temperatures resulted in a higher number of 

identified metabolites. The optimal time for higher 

yields and major metabolites (1,8-Cineole, p-

Cymene, Citronellal, Globulol, and Limonene) was 

found to be 3 hours, with HD times ranging from 2 

to 4 hours (3.1% - 4.6%). It is important to note that 

the yield and chemical composition of Eucalyptus 

EO can vary depending on factors such as the 

species, leaf maturation during collection, sample 

preparation and the season in which it was obtained 

(Usman et al., 2020). 
 

6. Current and future challenges 

The extraction of essential oils from aromatic plants 

presents numerous challenges, including small ex-

traction yields, high plant material costs, variable 

chemical compositions of the oils, and the genera-

tion of solvents and plant waste. In the search for 

sustainable and efficient extraction, modern meth-

ods have gained prominence, including micro-

wave-assisted, supercritical and ultrasonic extrac-

tion techniques. These innovative approaches have 

circumvented the inherent limitations of conven-

tional methods and provide new opportunities to 

harness the full potential of essential oils (Olalere et 

al., 2024).  

The increasing demand in the global supply chain 

for essential oils faces the challenge of maintaining 

consistent quality standards, which is why standard-

ization and optimization of the extraction process is 

crucial to address these challenges (Smith, 2024). 

Quality and yield are influenced by various factors 

such as geographical region, climate, plant varie-

ties, genetics, drying techniques, and extraction 

conditions (e.g., plant material-to-water ratio, ex-

traction temperature, and time). Future challenges 

for the study of essential oil extraction processes are 

directed towards the use of nanotechnologies to 

ensure the least possible degradation and access to 

the sites of chemical activity of essential oils as 

nanocapsules, nanoemulsions and nanofiber mem-

branes (Zhang et al., 2024). Despite advances, 

optimizing extraction conditions, encapsulation and 

ensuring the stability of EOs remain key challenges. 

Ongoing research promises innovative solutions to 

maximize the therapeutic potential of essential oils 

(Rodilla et al., 2024). 

 

7. Conclusions 

Optimization of extraction conditions as well as 

proper conditioning of plant material are essential 
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to obtain higher volumes of essential oils at lower 

cost and ensure better quality, adding value to the 

product. Although new extraction methods exist, 

hydrodistillation remains the most common and 

cost-effective. Therefore, understanding the 

optimal extraction conditions is critical to maximize 

the production and quality of essential oils. 
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