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Abstract 

Soil moisture content can be used to predict drought impact on agricultural yield better than precipitation. Remote sensing is viable source 

of soil moisture data in instrument-scarce areas. However, space-based soil moisture estimates lack suitability for daily and high-resolution 

agricultural, hydrological, and environmental applications. This study aimed to assess the potential of the random forest machine learning 

technique to enhance the spatial resolution of remote soil moisture products from the SMAP satellite. Models were built using random 

forest for spatial downscaling of SMAP-L3-E, then visually and statistically evaluated for disaggregation quality. The impact of topography, 

soil properties, and precipitation on the downscaled soil moisture was examined. The relationship between downscaled soil moisture and 

in-situ soil moisture was analyzed. The results indicate that the proposed method demonstrated spatial and hydrological coherence, along 

with a satisfactory downscaling quality. Statistical validation indicated suitable generalization error for scientific and practical use (RMSE < 

0.05 cm3 cm-3). Random forest effectively achieved spatial downscaling of SMAP-L3-E in the study area. Principal component and spatial 

analysis revealed dependence of downscaled soil moisture on elevation, soil organic carbon content, clay content, and saturated hydraulic 

conductivity, mainly under near-saturation conditions. Regarding validation against in-situ data, downscaled soil moisture explained in-situ 

soil moisture well under low soil water content (𝜌 = 0.624). Downscaling performance deteriorates for water contents between 0.40 to 0.50 

cm3 cm-3, suggesting inadequacy under near saturation conditions at a daily temporal frequency. However, coarser temporal aggregations 

(7 to 10 days) yielded an average 0.98 correlation coefficient, regardless of saturation conditions. These results could potentially be applied 

in irrigation planning, soil physics studies and hydrology monitoring, to forecasting the occurrence of droughts, leaching of contaminants, 

surface runoff modeling, carbon cycle studies, soil's capacity to store and provide nutrients. Our results could mainly be applied to 

understanding the impact of droughts on crop yield. 
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1. Introduction 

It has been demonstrated that soil water content is 

a direct indicator of water availability for crops and 

can predict the impact of drought on agricultural 

yield better than precipitation (Xia et al., 2014). In 

developing countries like Peru, there is limited high-

resolution spatiotemporal information about soil 

properties and processes, making it challenging to 

obtain such information for various applications 

(Sabino Rojas et al., 2017). Particularly, there is 

almost no long-term soil moisture monitoring 

infrastructure in developing countries (Brocca et al., 

2017). Furthermore, in the context of climate 

change, there is an increasing need for continuous 

and long-term soil moisture information (Dorigo & 

de Jeu, 2016). In areas without instrumentation, re-

mote sensing is a viable alternative for obtaining 

high-resolution and near real-time soil moisture 

information. Currently, the Soil Moisture Active 

Passive (SMAP) mission launched by NASA on 

January 31, 2015, is the primary dedicated remote 

source for continuous global soil moisture 

information. The soil moisture product derived from 

the SMAP mission, known as SMAP-L3-E (hereafter 

referred to as the SMAP mission), (Chan et al., 2018) 

provides global soil moisture information through 

passive observations from the radiometer aboard 

SMAP and offers an average accuracy of 0.05 (5%) 

cm3cm-3 (Das et al., 2019). However, the spatial 

resolution of SMAP-L3-E soil moisture estimates is 
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approximately 9 kilometers, with an approximate 

temporal frequency of four days, which constitutes 

its main limitation (Das et al., 2019). This makes 

them less suitable for agricultural, hydrological, and 

environmental applications requiring daily and high 

spatial detail information (Vergopolan et al., 2021). 

Several methods have been proposed to enhance 

the spatial resolution of remote soil moisture esti-

mates through a process called "downscaling" 

(Abbaszadeh et al., 2019; Bai et al., 2019; Cui et al., 

2019; Fang et al., 2019; Guevara & Vargas, 2019; 

Hernandez-Sanchez et al., 2020; Liu et al., 2020; 

Mao et al., 2019; Montzka et al., 2020; Peng et al., 

2017; Shangguan et al., 2024; Sishah et al., 2023; Xu 

et al., 2024; Zhu et al., 2023). Recently, machine 

learning techniques such as random forest (Hengl 

et al., 2018) have achieved advancements in the 

downscaling of remote soil moisture estimates, 

either spatially (Bai et al., 2019; Chen et al., 2019; 

Zappa et al., 2019; Zhao et al., 2018) or temporally 

(Lu et al., 2015; Mao et al., 2019; Xing et al., 2017). 

While remote sensing has proven to be a valuable 

tool for soil moisture measurement, in-situ obser-

vations remain essential for assessing the accuracy 

of soil moisture products derived from remote 

estimation techniques (Dorigo & de Jeu, 2016). 

Our study is the first in address the problem of 

remote soil moisture downscaling in the Region. 

Furthermore, it is the only study, to the best of our 

knowledge, that attempts to apply a remote soil 

moisture downscaling approach in a context of data 

scarcity as commonly found in developing coun-

tries. Additionally, our study is the first of its kind to 

delve into the relationship between downscaled 

remote soil moisture and geospatial soil and terrain 

variables using multivariable statistical techniques 

(i.e., PCA). 

Overall, the intention of this work is to assess a 

machine learning technique called random forest to 

enhance the spatial resolution of remote soil 

moisture estimates from the SMAP-L3-E product, 

covering the period from 2015 to 2022. Additionally, 

it aimed to evaluate these predictions over a 

hydrological year in a study area within the K´ayra 

watershed (Cusco, Peru). 
 

2. Methodology 
 

2.1 Study Area 

The study area covered an approximate area of 

8328 km², ranging from 72.30° W to 70.83° W and 

from 13.13° S to 14.68° S. This area is sufficiently 

large to encompass a representative number of 

pixels from the SMAP product with a spatial 

resolution of 9 km (approximately 400 pixels are 

covered), thus allowing for an adequate amount of 

satellite observations for model training.  
 

 
 

Figure 1. Location map. a) Location of the esudy region (red) within the Urubamba basin, b) shows the study region( red polygon) and 

location of the validation watershed (blue polygon), c) shows the validation soil moisture monitoring station (orange point) and wheter 

station (purple point) nearby the Kayra watershed. All plotting was done in QGIS 3.30.1-'s-Hertogenbosch. 
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The satellite data collection area is the Urubamba 

sub-basin situated within the Urubamba-Vilcanota 

River Basin (Figure 1). Additionally, the monitoring 

area is located within K´ayra micro-watershed, 

which is located inside the Huatanay watershed. 

This region experiences a dry season from May to 

Sept ember, coinciding with the austral winter, and 

a wet season from October to April, corresponding 

to the austral summer (Sagredo & Lowell, 2012). The 

mean elevation of the study area according to the 

SRTM3 DEM (Shuttle Radar Topography Mission 3) 

is 3746.95 meters, with a standard deviation of 

399.48 meters. 
 

2.2 Data Acquisition  
 

2.2.1 The SMAP Soil Moisture Product 

Launched into space in January 2015, the Soil 

Moisture Active Passive (SMAP) satellite, developed 

by the National Aeronautics and Space Adminis-

tration (NASA), was designed to provide global 

mapping of soil moisture at high spatial and 

temporal resolution (Chan et al., 2018). 

Soil moisture remote sensing data served as the 

primary component in the downscaling process. In 

this study, the Level 3 SMAP-L3-E product derived 

from the L-band radiometer on the NASA Soil 

Moisture Active Passive (SMAP) satellite was used. 

This product was obtained through NASA's Earth 

Observing System Data and Information System 

(EOSDIS). 

The SMAP-L3-E product represents the average 

volumetric soil moisture content at a depth of 

approximately 5 centimeters (Entekhabi et al., 2010). 

The data for the SMAP product was downloaded 

from https://nsidc.org/data/spl3smp_e/versions/5 

in GTIFF format for each available date. The data 

was downloaded from the start of the SMAP 

mission (March 31, 2015) until July of 2022 with the 

goal of using all available data (approximately 2000 

rasters) to calibrate the proposed model. 
 

2.2.3 Soil Properties 

Geospatial information for soil physical and 

chemical properties at a depth of 5 cm and a spatial 

resolution of 250 meters was obtained for the study 

area using the SoilGrids system for soil property and 

class spatial prediction (Hengl et al., 2017) 

developed by ISRIC (International Soil Reference 

and Information Centre). The data was accessed via 

the following link: https://soilgrids.org/. SoilGrids 

offers raster-format predictions for the soil 

properties listed in Table 1. 

Recently, Gupta et al. (2021, 2022) utilized the same 

database and SoilGrids to derive the global 

distribution of soil hydraulic properties using 

random forest at a one-kilometer spatial resolution. 

These predictions were employed in the current 

study. An overview of the hydraulic properties used 

is provided in Table 2. 

Additionally, the soil hydraulic properties were 

downloaded in GTiff format from Chue Hong 

(2019). The GTiff files containing soil properties were 

aggregated to the spatial resolution of SMAP and 

subsequently converted into stacks in the same 

manner as was done with the SMAP data. 
 

2.2.4 Digital Elevation Model (DEM) 

The digital elevation model (DEM) MERIT (Yamazaki 

et al., 2017) at a 90-meter spatial resolution was 

downloaded from http://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_DEM/. Subsequently, 

the DEM was cropped and reprojected to match the 

study area. 
 

Table 1 

Soil properties of SoilGrids 
 

Soil Property⋆ Covariate Symbol Unit Description 

Organic Carbon 

Content 
OC g kg-1 

Gravimetric content of carbon present in soil organic matter (Nelson & 

Sommers, 2018). 

Bulk Density DA cg cm-3 Mass per unit volume of soil (Grossman & Reinsch, 2002). 

Cation Exchange 

Capacity 
CEC 

cmol 

kg-1 

Total sum of exchangeable cations that a soil can absorb (Sumner & Miller, 

2018). 

Clay Content Arc g kg-1 Gravimetric content of minerals smaller than 1 μm in size (Gee & Or, 2002). 

⋆ All variables at 250 m spatial resolution. 
 

Table 2 

Hydraulic properties of soil from Gupta et al. 
 

Soil properties⋆ Covariate Symbol Unit Description 

Saturated soil hydraulic conductivity. KSAT cm day-1 
Maximum water flow rate in soil under saturated 

conditions. 

Saturation water content. SVG cm cm-3 
Volumetric water content in the soil when it reaches 

saturation. 

Residual water content. RVG cm cm-3 
Minimum possible volumetric water content in a specific 

soil. 

Parameters of the van Genuchten 

moisture retention function. 
𝐴𝑙𝑝ℎ𝑎, 𝑁𝑉𝐺 

Dimension

less 
Parameters for fitting the van Genuchten function (1980). 

⋆ All variables at 1 km spatial resolution. The data can be freely accessed of Chue Hong (2019). 

https://nsidc.org/data/spl3smp_e/versions/5
https://soilgrids.org/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
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For processing the DEM, the terrain analysis tools of 

the System for Automated Geoscientific Analyses 

(SAGA-GIS) were employed. The processing of the 

DEM involved hydrological correction using the 

Wan and Lu method. 

The topographic wetness index (TWI), also known 

as the topographic index or composite topographic 

index (Qin et al., 2007), was calculated in its original 

spatial resolution using equation 1: 
 

𝑇𝑊𝐼 = 𝑙𝑛 [
𝐴

tan⁡(𝛽)
] (1) 

 

Where A represents the drainage or catchment area 

(AdC), β is the local topographic slope. The concept 

of Topographic Wetness Index (TWI) is grounded in 

the principle of mass conservation, where the total 

catchment area is a parameter indicating the 

tendency to receive water, and the local slope is a 

parameter indicating the tendency to drain water. 

TWI assumes steady-state conditions and spatially 

invariant conditions for water infiltration and 

transmissivity in the soil (Gruber & Peckham, 2009)  

The open-source software SAGA GIS implements 

various flow routing algorithms for calculating the 

topographic wetness index. These algorithms are 

summarized in Table 3.  

Subsequently, the GTiff files of the DEM and 

topographic wetness indices were harmonized to 

match the spatial resolution of the SMAP product. 

They were then processed into stacks in the same 

manner as the SMAP data and soil properties. 
 

2.2.4 PISCO Product 

The PISCO product was obtained in NETCDF format 

from the repository of the International Research 

Institute for Climate and Society at Columbia 

University (http://iridl.ldeo.columbia.edu/). The 

preprocessing involved estimating historical daily 

precipitation averages for the four hydrological 

seasons, following the approach of Imfeld et al. 

(2021). Subsequently, the raster data were harmo-

nized to match the spatial resolution of SMAP-L3-

E. They were then processed into stacks in the same 

manner as the SMAP data, soil properties, and 

topography. 
 

2.2.4 CHIRPS Product 

Daily gridded precipitation data from the CHIRPS 

product (Funk et al., 2015; SENAMHI, 2015; Sun et 

al., 2018) were downloaded at a 5 km spatial reso-

lution from https://climateserv.servirglobal.net/ for 

the period from March 2015 to July 2022 (Figure 2). 

Upon subsequent data analysis, it was observed 

that the precipitation on a specific day had limited 

correlation with soil moisture on the same day, at 

least as estimated by the SMAP product. Therefore, 

the arithmetic mean of the preceding 3-day precip-

itation was calculated and used as a covariate, 

omitting the precipitation for the same day. 

These data underwent the same processing as the 

other covariates, including harmonization to match 

the spatial resolution of SMAP and conversion of 

the 2000 rasters into a single raster stack.  
 

2.2.4 Field Soil moisture  

The daily soil moisture monitoring station (orange 

point in Figure 1) was chosen based on accessibility 

and its representation of an SMAP pixel. It is located 

160 meters away from the K´ayra Farm meteorolog-

ical station (purple point in Figure 1) at an elevation 

of 3,216 meters, with the following geographic 

coordinates: Latitude: 13.558° S and Longitude: 

71.876° W.  

Soil moisture was monitored daily from May 2021 to 

July 2022 using the following protocol: For each 

measurement date, a monitoring point was located 

within a pixel of the downscaled SMAP product us-

ing a Garmin GPSMAP multi-band GPS device with 

an accuracy of approximately 1.5 meters. Once the 

coordinates of the sampling point were determined, 

three to four measurements were taken using the 

ThetaProbe ML3 sensor, spaced at an approximate 

distance of 1.5 meters from each other with the aid 

of a measuring tape. Subsequently, the measure-

ments were averaged (this is permissible due to the 

GPS accuracy and aims to reduce soil moisture 

variability, as described by (Cooper, 2016). The 

measurements were taken at a depth of 5 cm below 

the soil surface (Babaeian et al., 2019). The only 

condition for a measurement to be considered valid 

is that the measured soil volume must be 

homogeneous and free from significant organic 

debris, rocks, or large cracks (NASA, 2014). 
 

2.3 Soil moisture downscaling strategy 

Our study workflow (illustrated in Figure 3) is mainly 

composed of 7 steps. 

 

Table 3 

Flow routing algorithms for calculating the Topographic Wetness Index (TWI), proposed in this research project 
 

Covariate Name Symbol Description Reference 

Digital Elevation 

Model 
DEM 

The algorithm divides each pixel into triangular regions, and the flow is divided 

towards neighboring pixels, proportional to the topographic gradient. 
 

FD8 Fd8 
The algorithm guides the flow to all neighboring pixels with lower elevation through 

a flow partition exponent. 

(Quinn et al., 

1995) 

MFD-md. md 
The algorithm directs the flow to all neighboring pixels with lower elevation based 

on the linear function of the maximum topographic gradient. 

(Qin et al., 

2007) 

http://iridl.ldeo.columbia.edu/
file:///D:/tesis_to_journal/revision/from%20https:/climateserv.servirglobal.net/
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Figure 2. Daily precipitation intensity from CHIRPS product. Blue line represents the median precipitation across the entiere study region. 

Gray lines represent CHIRPS precipitation for all pixel inside the study reagion.  

 

 

 
 

Figure 3. Flowchart of the processing steps. 
 

2.3.1 Step 1: Regression matrix construction  

Since the original SMAP L3-- product has a 9 km 

resolution, all input predictors were resampled to 9 

km, and stacked for each SMAP product available 

day. We end up having almost 2000 stacked rasters. 

Then, a regression matrix was constructed based on 

the stacks of the SMAP-L3 product and the covari-

ates, all at the same spatial resolution. The response 

variable was the volumetric soil moisture content of 

the SMAP product for each available date. As a re-

sult, each row of the regression matrix corresponds 

to a specific pixel and date of the SMAP product. 

For static covariates, only pixel coincidence was 

considered. However, for dynamic covariates such 

as precipitation, both pixel and date coincidence 

with the response variable were considered. The 

purpose of this step was to organize the available 

data effectively, facilitating the development of the 

proposed models. Subsequently, the regression 

matrix was divided into two separate matrices: one 

for temporal disaggregation (for each pixel) and an-

other for spatial disaggregation (for each date). 

These matrices were constructed using geospatial 

operations with the raster, sp (Pebesma & Bivand, 

2005), and dplyr (Wickham et al., 2022) libraries in 

R. 
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2.3.2 Step 2: Random Forest training 

In this research we propose a simple downscaling 

method based on the Random Forest algorithm 

(Hengl et al., 2018; Heung et al., 2016; Zhao et al., 

2018). Random Forests (Breiman, 2001), is ensemble 

learning algorithm which consist of a collection of 

prediction trees. It is a substantial modification of 

the bagging method that constructs an ensemble 

of decorrelated trees and then averages them. The 

main idea behind random forest is to reduce 

variance through bagging, which decreases the 

correlation between trees. This is achieved during 

the tree construction process by randomly selecting 

covariates for tree fitting, introducing two levels of 

randomness into the model (Hastie et al., 2009). 

When generating a tree within a bootstrap 

subsample, before each split, m⁡≤ M covariates are 

randomly selected as potential candidates for the 

split, where M is the total number of covariates. 

Typically, M can take the form 𝑚 = 𝑀 3⁄ , but it is 

generally a parameter that needs to be optimized. 

Mathematically, random forest takes the form show 

in equation 2: 
 

𝑔𝑟𝑓
𝐵 (𝑥) = ⁡

1

𝐵
∑ 𝑇(𝑥;⁡𝛩𝑏)
𝐵
𝑏=1  (2) 

 

Where 𝛩𝑏 is a vector that characterizes the b-th tree 

in terms of its parameters: decision variables, 

number of nodes, and terminal node values, b is a 

bootstrap subsample., B is the total number of trees, 

and 𝑇(𝑥;⁡𝛩𝑏) is the regression tree fitted to the 

bootstrap subsample b. 

For the purpose of the current work, the ranger 

implementation (Wright & Ziegler, 2017) within the 

machine learning modeling environment mlr 

(Schratz et al., 2021) was utilized. Ranger is a highly 

efficient implementation of the random forest 

algorithm proposed by Breiman (2001). Many 

studies have demonstrated that random forest is 

one of the top-performing machine learning 

techniques available today (Hengl et al., 2018). It has 

been applied in previous soil moisture remote data 

downscaling studies (Abbaszadeh et al., 2019; Chen 

et al., 2019), including SMAP data (Hu et al., 2020; 

Rao et al., 2022; Zappa et al., 2019). The training of 

the random forest models was conducted in the 

original SMAP support (9 km), the spatial 

disaggregation for each date between 2015 and 

2022 generates approximately 4000 models (for 

step 7 we only consider 400 model outputs, 

spanning only the monitoring period). 

One of the crucial parameters of the random forest 

algorithm is "mtry," which is defined as the number 

of variables randomly chosen to perform a partition 

in a tree (Probst et al., 2019). Lower values of mtry 

produce trees with lower correlation, resulting in 

better stability. However, extremely low mtry values 

can lead to poorer predictions. Typically, p/3 is quite 

robust and stable, though in some cases, it may be 

optimized. Empirical findings suggest that, for low-

dimensional regression problems, √p is generally 

better than p/3. In this study, mtry was set to 7. 

Additionally, computing time decreases linearly as 

mtry decreases (Wright & Ziegler, 2017). The 

number of trees in the random forest should be suf-

ficiently large to avoid bias and overfitting. For error 

estimators based on mean squared losses, such as 

root mean squared error (RMSE), a higher number 

of trees results in lower generalization error (Probst 

et al., 2019). In this study, 100 trees were used for all 

models due to computational considerations. In 

general, the recommended parameters from Probst 

et al. (2019) and default values in the ranger 

package (Wright & Ziegler, 2017) were employed. 
 

2.3.3 Step 3: Calculate the Prediction Error of the 

downscaling approach 

Prior to applying the models for high-resolution soil 

moisture prediction, the model performance was 

evaluated within the spatial support of the θSMAP 

pixels (approximately 9 km). Given that the study 

area is relatively small compared to other studies 

(Bai et al., 2019; Rao et al., 2022; Xu et al., 2024), 

model generalization error was assessed through 

repeated 10-fold cross-validation with grid search, 

as implemented according to (Krstajic et al., 2014) 

(2014, p. 3) in the mlr package (Schratz et al., 2021). 

Common statistics for evaluating regression model 

performance are summarized in Table 4. The eval-

uation process provided insights into the model's 

ability to generalize and make accurate predictions 

across the spatial domain of the θSMAP pixels. 

To quantitatively assess the predictive capability of 

the disaggregation models, the Root Mean Squared 

Error (RMSE) and the Coefficient of Determination 

(R2) were used (Colliander et al., 2017; Entekhabi et 

al., 2010). These statistics were calculated on the 

residuals of the models, which represent the 

differences between the observed values and the 

predicted values for each validation fold (CV). 

Through cross-validation, the prediction error of the 

models (RMSE and R2) was estimated. 
 

2.3.4 Step 4: Generation of high-resolution soil 

moisture maps 

After step 2 and step 3, we obtain the respective 

models and models prediction measures. The 

statistical assessment suggested in step 3 the 

models' capability to downscale the SMAP product 

with adequate precision. Ensuring their ability to 

capture the nonlinear relationships between the 

covariates and soil moisture at the original SMAP 
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resolution, these models are applied to downscaling 

de 𝜃𝑆𝑀𝐴𝑃(~ 9km) to predict soil water content 𝜃𝐷𝑊𝑆 

at high spatial resolutions (~100 m). Predicting daily 

soil moisture at a 100-meter spatial resolution 

across the entire study region (The entire Vilcanota 

Basin) was unattainable with the available 

computational resources. Therefore, the predictions 

were conducted only for the area covered by the 

K´ayra watershed. This choice was supported by the 

existence of a nearby meteorological monitoring 

station and a significant history of agricultural 

experiments facilitated by the proximity of San 

Antonio Abad University. 

The predictions were made under the assumption 

that the random forest models constructed at lower 

spatial resolutions (i.e., 9 Km) are also valid for 

predicting soil moisture at higher spatial resolutions 

(i.e., 100 m) using the predictive covariates at 

original resolution on the previous trained random 

forest models. In other words, it is assumed that the 

disaggregation models are invariant with respect to 

spatial resolution. 
 

2.3.5 Step 5: Spatial Analysis of downscaled soil 

moisture 

Downscaled soil moisture maps obtained in step 4 

can reveal patterns at various spatial scales that 

emerge from interactions among hydrology, 

topography, and soil properties across the 

landscape (Vergopolan et al., 2022). As a result, it 

allowed us to study the spatial variability of soil 

moisture. To quantify the variability of soil moisture 

at local or field scales, 80 polygons of approximately 

1 km2 each were sampled using a grid sampling 

approach for two representative hydrological dates 

(dry season and wet season). The spatial mean, 

standard deviation, and coefficient of variation (C.V.) 

of the downscaled soil moisture at 100 m (μDWS, 

σDWS, and C.V. DWS) were calculated for each 

polygon. In total, 80 observations were obtained for 

each variable under analysis. Two polygons were 

situated in impermeable areas or bodies of water 

and were excluded from the analysis.  
 

2.3.6 Step 6: Factors Related to the Spatial 

Distribution of downscaled soil moisture 

In the current study, a Principal Component Analysis 

(PCA) (Wackernagel, 2010) was conducted to 

identify and characterize the relationship between 

the spatial variability of soil moisture and the 

physical landscape characteristics (drivers of soil 

moisture variability characterized by covariates). 

The PCA allowed us to identify dominant modes of 

variation in the data and quantify how different 

variables co-vary and influence the mean and 

variability of the downscaled soil moisture product. 

Specifically, PCA was used to compare the mean 

and standard deviation of the downscaled soil 

moisture (μDWS, σDWS) with the mean and 

standard deviation of high-resolution covariates 

that modulate soil moisture in the landscape, such 

as soil properties, topography, and hydrology. 

Before applying PCA, the covariates were 

standardized to reduce the influence of certain 

variables due to differences in measurement scale 

(e.g., elevation magnitude is hundreds of times 

larger than saturated hydraulic conductivity of soil). 

The analysis was carried out using the FactoMineR 

library (Husson et al., 2008) through the Singular 

Value Decomposition (SVD) algorithm (Husson et 

al., 2017) on the correlation matrix of the means and 

standard deviations of the covariates. The results 

were interpreted using a biplot, which provides a 

visual representation of the relationships between 

variables and observations in a reduced-

dimensional space resulting from the PCA. 
 

2.3.7 Step 7: Field validation. 

By comparing the downscaled and field reference 

soil moisture data, we can find out if the 

downscaled soil moisture has realistic results. For 

this purpose, we calculate the absolute error by 

subtracting the downscaled and in situ soil moisture 

time series (𝜃𝐸𝑅𝑅𝑂𝑅 = |𝜃𝐷𝑊𝑆 − 𝜃𝐹𝐼𝐸𝐿𝐷|). When 

𝜃𝐸𝑅𝑅𝑂𝑅 ⁡is closer to zero, the corresponding 𝜃𝐷𝑊𝑆 

approaches 𝜃𝐹𝐼𝐸𝐿𝐷 and the downscaling results 

area satisfactory. 

Table 4 

Common Performance Evaluation Measures for a Regression Model 
 

Symbol  Name Formula Explanation 

RMSE 

Root Mean 

Squared Error 

(RMSE) 

√
1

𝑛
∑(𝑦𝑗 − �̂�𝑗)

2
𝑛

𝑗=1

 
The Root Mean Squared Error (RMSE) is calculated by taking 

the square root of the sum of squared residuals. 

R2 
Coefficient of 

Determination 

∑ (𝑥𝑗𝑦𝑗 − 𝑥𝑦̅̅ ̅)𝑛
𝑗=1

(∑ 𝑥2𝑗 − �̅�2𝑛
𝑗=1 ) (∑ 𝑦2𝑗 −

𝑛
𝑗=1 𝑦2)

 

= 1 −
𝑆𝑆𝑅𝐸

𝑆𝑆𝑇
 

 R2 indicates the proportion of the variance in the prediction 

variable that the model is capable of explaining. R2 indicates 

how much the model improves the prediction of the variable 

compared to using the mean of the observed values. 

In MAE and RMSE 𝑛, 𝑦𝑗 , ⁡�̂�𝑗 ⁡ represent the sample size, observed values, and predicted values, respectively. R2, 𝑥𝑗 , 𝑦𝑗 are the observed and 

predicted values, �̅�, 𝑦 are the respective means; 𝜌 is the Pearson correlation coefficient, 𝜎𝑥 , 𝜎𝑦 are the observed and predicted variances 

respectively and 𝜇𝑥, 𝜇𝑦 are the means of the observed and predicted values, respectively. 
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Previous validation studies (Bai et al., 2019; 

Colliander et al., 2017; Liu et al., 2020; Singh et al., 

2019; Sishah et al., 2023; Xu, 2019) used the 

correlation coefficient σ for analytical comparison 

between in-situ measurements and remote soil 

moisture estimates. 

In the current work, we choose was made to use the 

Multiscale Quantile Correlation Coefficient (MQCC) 

analysis (Xu et al., 2020) calculated between the 

time series of observed in-situ soil water content 

𝜃𝐹𝐼𝐸𝐿𝐷⁡and that produced by the downscaling of 

SMAP 𝜃𝐷𝑊𝑆 in the monitoring area. A similar 

approach was employed by Singh et al. (2019), while 

Beck et al. (2021) used the Median Regression 

Coefficient (quantile 0.5) at various temporal scales 

to assess different satellite soil moisture products 

and downscaling approaches.  

The correlation coefficient 𝜌𝜏 at quantile 𝜏 is defined 

as the geometric mean of the two quantile 

regression coefficients 𝛽𝑋,𝑌(𝜏) and 𝛽𝑌,𝑋(𝜏) and it is 

expressed as: 𝜌𝜏
𝑋,𝑌 =

⁡sign(𝛽𝑋,𝑌(𝜏))√𝛽𝑋,𝑌(𝜏)𝛽𝑌,𝑋(𝜏)⁡, 𝜏⁡ ∈ ⁡ (1,0) (3) 

Where(𝛼2,1(𝜏), 𝛽2,1(𝜏)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽𝐿𝜏
𝑋,𝑌(𝛼, 𝛽) 

and(𝛼1,2(𝜏), 𝛽1,2(𝜏)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽𝐿𝜏
𝑋,𝑌(𝛼, 𝛽) and L 

is a loss function, typically quadratic.  

Before analyzing the correlation between the time 

series, a multiscale analysis was conducted, 

involving the transformation of observed and 

predicted time series using the coarse-graining 

method. The time series were aggregated at various 

temporal resolutions, ranging from daily (original) 

to monthly scale (average over 20 days). The 

multiscale analysis allowed us to examine the 

relationship between the two variables at different 

scales, enabling the discovery of patterns that might 

not have been discernible in the original time series. 

Finally, quantile analysis was implemented for each 

temporal aggregation using the quantreg library in 

r (Koenker et al., 2017). 

 

2.4 Implementation 

All modeling analyses were conducted using the R 

programming language (R Core Team, 2013). A 

combination of open-source GIS software, mainly 

SAGA GIS (Neteler & Mitasova, 2008), along with R 

packages (R Core Team, 2013), primarily raster 

(Hijmans & van Etten, 2012), sp (Pebesma & Bivand, 

2005), and rGDAL (Bivand et al., 2021), were used to 

process the covariates. The algorithm implemen-

tation was perform using ranger library (Wright & 

Ziegler, 2017) for random forest (RF) modeling 

based on (Breiman, 2001).  

 

3. Results and discussion 
 

3.1 Random forest Model Specification 

Table 5 presents the hyper-parameters used for 

random forest training for our downscaling 

approach. 

Parameter optimization was not the focus of this 

work mainly due by computational limitations. The 

computational power required for more complex 

parameterization and validation strategies (Krstajic 

et al., 2014; Roberts et al., 2017) was beyond the 

available computing capacity. Additionally, the most 

significant danger of not optimizing machine 

learning models is overfitting (Schratz et al., 2021). 

However, it is generally considered that random 

forests are less prone to overfitting (Breiman, 2021). 

Hence, we choose to use general accepted good 

performing parameters suggested by the literature 

(Probst et al., 2019). 
 

3.2 Statistical Validation of downscaling models 

Figure B1 (in Appendix B) depicts the scatter 

between observations and predictions of the first 10 

models (dates from April 2 to April 11, 2015) at the 

original support of soil moisture (~9 km). In general, 

a strong correlation between the points was 

evident. However, the points are not evenly 

distributed along the 1:1 line. It can be observed that 

the models tend to underestimate in high soil 

moisture conditions or near saturation (above 0.35 

cm3 cm-3), with points distributed above the 1:1 line. 

Conversely, they tend to overestimate in drying or 

low moisture conditions (below 0.15 cm3 cm-3), with 

points distributed below the 1:1 line. 

Figures 4 shows the distribution of validation 

metrics for the daily spatial downscaling models 

(i.e., 2000 random forest models). Additionally, 

Table 6 shows the mean, median and standard 

deviation depicted in Figure 4. 

 

Table 5 

Selected hyperparameter data types and chosen values for random forest algorithm 
 

Parameter Description Used values 

Number of variables used in each split Number of covariates used in the splitting process in each tree 7 

Sample size Number of observations used in each tree 1278 

Sampling with replacement Use of sampling with or without replacement to train each tree Yes 

Node size Minimum number of observations in a node 5 

Number of trees Total number of trees in the random forest 100 

Splitting criterion Metric that determines whether a node is split or not Variance 
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Figure 4. Performance Evaluation Measures for the random forest 

based downscaling models. a) RMSE and, b) R2.  
 

Table 6 

Performance Evaluation Measures for spatial downscaling Models 
 

Metric  RMSE R2 MAE 

Mean 0.043 0.492 0.0345 

Median 0.043 0.476 0.0340 

Standard deviation 0.046 0.346 0.0418 
 

The scatter plots and error statistics (Figure B1 and 

Figure 4) indicate that the downscaling approach 

using random forest successfully captured the 

nonlinear relationship between soil water content 

and the covariates used, particularly at smaller 

scales (lower spatial resolutions). All models exhibit 

similar behavior in terms of RMSE, with fluctuations 

around 0.040 to 0.045 cm3 cm-3 and occasional 

peaks of up to 0.050 cm3 cm-3. It is evident that on 

average, RMSE is higher during the wet season 

(from November to March) and decreases to values 

around 0.04 cm3 cm-3 for models trained during the 

dry season (from May to September). Generally, the 

RMSE falls within the expected accuracy limits of the 

SMAP product (0.04 to 0.06 cm3 cm-3) (Chaubell, 

2016). Thus, having a mean RMSE of 0.043. the 

evaluated downscaling models possess a suitable 

capacity for capturing the SMAP soil moisture and 

predictive covariates relationship. 

Figure 4.b shows the coefficient of determination R2, 

it generally falls within a range of 0.2 to 0.8, 

indicating relatively good performance of each 

model in predicting SMAP soil moisture data based 

on the set of covariates at the original spatial 

resolution. Regard the temporal distribution of 

model’s R2, lower R2 values are observed during the 

dry season (0.20 to 0.30), while higher values are 

seen during the wet season (~0.40). This behavior 

is unexpected; typically, models are expected to 

perform better during dry periods, as demon-

strated in numerous previous studies (Wakigari & 

Leconte, 2022). One possible explanation, rein-

forced by subsequent results, is that soil moisture 

distribution becomes more complex during dry pe-

riods as well as the inclusion of DEM derivatives in 

our work that have been demonstrated to be strong 

predictive factors of soil moisture at basin scale, 

especially in wet season (Raduła et al., 2018). Distri-

bution during these periods relies less on precipita-

tion and more on subsurface flows, heavily influ-

enced by soil properties that exhibit greater varia-

bility at larger scales than topographical or hydro-

logical properties in the landscape (Famiglietti et al., 

2008). 

This result may seem somewhat discouraging at first 

glance, but it is only slightly inferior to previous 

studies (Beck et al., 2021), and there are two specific 

reasons that can be conjectured: Firstly, the 

downscaling models were not fully optimized, as 

explained in the previous section. Secondly, the 

coefficient of determination (R2) is calculated at the 

original resolution of the SMAP product. Therefore, 

it is not a metric solely representing disaggregation 

error but also reflects the modeling error at those 

spatial scales. 

While it's true that the models should be trained to 

minimize error and maximize explained variance 

(R2), the actual predictive capacity of the models is 

determined by the quality of the covariates and the 

number of observations available. The models need 

to strike a balance between optimizing their param-

eters and the constraints posed by the covariates 

and observational data, which can influence the 

models' ability to make accurate predictions. 
 

3.3 Soil moisture Spatial Predictions 

Once the models were evaluated and their ability to 

capture nonlinear relationships between covariates 

and SMAP soil moisture was ensured, they were 

applied to the downscaling of soil moisture at high 

spatial resolutions (~100 m). We generated high 

resolution soil moisture maps over the studied 

region using the trained models. For generating the 

maps, we used all available predictor covariates at 

their original spatial resolution in a sequential way.  

To analyze the predictions in greater detail we show 

a set of predictions on a small sub-basin located 

near Cusco City (Figure 5). This figure depicts the 

process of downscaling of SMAP soil moisture in an 

area around the monitoring station at the K'ayra 

weather station through different spatial resolutions 

for a specific date as an example of the high-

resolution soil moisture mapping approach. The 

white areas represent impermeable surfaces such as 

urban areas or superficial water bodies, which were 

excluded from the analysis beforehand. 

Figure S1 in Supplement material shows the spatial 

distribution of daily downscaled soil moisture for 
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Kayra watershed, primarily determined at this reso-

lution by hydro-topography and soil properties. 

The daily dynamics of soil moisture, primarily influ-

enced by precipitation, can also be observed. The 

downscaling scheme's capability allows for observ-

ing the variability of water flow processes in the soil 

and their redistribution at high spatiotemporal 

scales. in soil moisture content). After careful evalu-

ation, it can be postulated that the reason is that the 

models for those dates were trained with few SMAP 

pixels, possibly due to non-optimal retrieving con-

ditions. This led to predictions within a covariate 

range with low variability, resulting in the observed 

artifacts. This is noticeable in the map generated 

using the model trained on August 12, 2021. 

Certain spatial discontinuities can be observed in 

some maps from Figure S1 (regions with abrupt 

changes. 
 

3.4 Spatial Analysis of downscaled soil moisture 

The analysis of downscaled soil moisture spatial 

mean and standard deviation is shown though a 

Violin diagram in Figure 6.a and 6.b. Figure 6.a 

demonstrate the high spatial variability of soil 

moisture during dry and rainy seasons. Additionally 

Figure 6.b shows a slightly more variability of soil 

moisture in wet season compared against dry 

season. This phenomenon has been previously 

described in studies such as Famiglietti et al., (2008), 

Mohanty et al. (2017), and Western and Blöschl 

(1999). The findings of this study are consistent with 

the moisture dynamics described by the 

aforementioned authors. Additionally, the study 

area is significantly large, and it is expected that 

there would be soil moisture variability, primarily 

due to precipitation gradients. Considering that 

each block was sampled within a single pixel of the 

original 9 km resolution SMAP product, and the 

sampling was done without replacement, a reason-

able representation of moisture distribution for the 

original 9 km SMAP pixels was obtained. 

Based on the analysis of Figure 6.b, it appears that 

at 100 m resolution the downscaled product is 

unable to capture the natural spatial variability of 

soil moisture within 1 km² areas (average standard 

deviations of 0.05% for both hydrological seasons). 

Moreover, it seems to be insensitive to the influence 

of saturation conditions (i.e., both dates exhibit the 

same standard deviation despite significantly 

different saturation conditions). This inherent 

variability in soil moisture (i.e., the spatial variability 

of soil moisture is considered greater during wet 

periods) is well-documented in numerous previous 

studies (Vergopolan et al., 2021). In general, it can 

be postulated that this is the reason why the 

subsequent PCA analysis struggled to produce 

coherent results for the spatial standard deviation of 

downscaled soil moisture content (σ2DWS). 

 

 
 

Figure 5. Downscaling of SMAP soil moisture product. a) 3 km, b) 1 km, c) 250 m and d) 100 m spatial resolution near Cusco City. 
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Figure 6. Violin diagrams of downscaled soil moisture mean and standard deviation. a) spatial mean of downscaled soil moisture (μDWS) 

and b) spatial standar deviation of downscaled soil moisture (σ2DWS) within 1 km2 squared spatial unit randomly sampled over the 

studied region. Wet season is February 9, 2022, and dry season is August 18, 2021.  

 

3.5 Factors Related to the Spatial Distribution of 

downscaled soil moisture 

Figures 9.a and 9.b displays biplots of principal 

component analysis for the covariates, both for 

August 16, 2021, and February 9, 2022, illustrating 

their relationship with the spatial mean of the 

downscaled product (μDWS) within 1 km2 squared 

spatial units randomly sampled over the studied 

region show in Figure 7. 

In general, there is an observable trend in the spatial 

mean of the downscaled soil moisture in the wet 

season (February 9, 2022) (Figure 9.b), denoted as 

μDWS. This tends to follow the first principal 

component (PC1), which is positively influenced by 

the variables μDEM and μOC, while being negatively 

influenced by μDA and μARC (higher clay content 

and bulk density result in lower μDWS, and higher 

mean elevation and organic carbon content lead to 

higher μDWS.  

In the dry season, the distribution patterns of soil 

moisture are not as strong (Figure 7.b), and there is a 

higher variability not fully explained by the covar-

iables. However, a trend along PC1 is still observable, 

although the variables no longer explain the moisture 

distribution as effectively. 𝜌DEM and μKsat are still 

responsible for high soil moisture values, as well as 

μMAM, but there is generally more heterogeneity or 

randomness in the soil moisture distribution. 

Furthermore, it appears that PC2 better modulates 

the average soil moisture, particularly the variation in 

elevation 𝜌DEM, the mean soil sand content μARN, 

μAlpha, and the saturated hydraulic conductivity 

μKsat, which seem to modulate moisture conditions 

in dry periods. 

The interpretation of the biplot from Figures 7.a and 

7.b allows us to analyze the relationship between 

downscaled soil moisture and the environmental 

factors that determine its spatial variability. It is no-

ticeable that soil moisture follows the spatial precip-

itation gradients of the PISCO product. Points with 

higher μDWS values are associated with higher 

μMAM and μDEF values, indicating that the historical 

mean precipitation described by PISCO during the 

months of December to May explains the distribution 

of areas with high soil moisture content. The second 

principal component is negatively dominated by 

σDEM and μKsat, and positively by μfd8 and μmd. 

This implies that higher elevation variability and 

greater mean saturated hydraulic conductivity of the 

soil result in lower average soil moisture. Additionally, 

higher spatial variability of topographic moisture 

indices leads to higher average soil moisture. 

However, PC2 can only explain 13% of the total 

variability of the variables, making its explanatory 

power for soil moisture variability less than that of 

PC1. 

Soil heterogeneity and its properties, such as texture, 

organic matter content, bulk density, and saturated 

hydraulic conductivity, influence the water storage 

capacity of soils, as well as the speed of flow and 

redistribution of moisture. This, in turn, contributes to 

the spatial heterogeneity of the average downscaled 

moisture, in agreement with prior studies (Brocca et 

al., 2017; Crow et al., 2012; Famiglietti et al., 2008). In 

areas with shallow groundwater, such as wetlands 

(Guevara & Vargas, 2019), this soil heterogeneity 

plays a much more complex role, requiring additional 

analysis supported by hydrological models and 

groundwater level monitoring data. For instance, 
Warner et al. (2021) achieved excellent results in 

SMAP downscaling using the KNN model in the 

CONUS monitoring network (United States), except 

in wetland-dominated areas, where the model 

consistently underestimated soil moisture (Guevara & 
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Vargas, 2019). Furthermore, topographical and 

hydrological characteristics, such as surface elevation 

and topographic wetness index, modulate soil 

moisture variability towards convergence areas 

through surface flow/runoff or subsurface lateral 

flow. The results exhibit high soil moisture variability 

related to topographic moisture indices μfd8 and 

μmd, and their spatial variability σfd8 and σmd, 

illustrating the role of topography in moisture 

distribution (Beven & Freer, 2001; Liu et al., 2020; 

Raduła et al., 2018), particularly during wet periods of 

the year (Western & Blöschl, 1999). 

In fact, the results suggest that high-altitude locations 

(greater μDEM) with high hydro-topographic 

divergence conditions (low μfd8 and μmd) and low 

variability (low σfd8 and σmd), along with soils high 

in organic matter content (greater μOC and μOCS), 

are associated with higher soil moisture conditions in 

the study area. 

 

3.6 Field validation 

Figure 8 depicts the daily time series of soil moisture 

in-situ measurements, downscaled soil moisture 

product, and the difference between them (i.e., 

𝜃𝐸𝑅𝑅𝑂𝑅 ). A strong agreement between the analyzed 

time series can be observed. The agreement from 

May to August is nearly perfect, with differences 

ranging between 0.01 to 0.05 cm3 cm-3. 

Figure 8 shows clearly, that starting from October, the 

downscaled product consistently underestimates soil 

moisture content, with notable differences ranging 

between 0.15 to 0.25 cm3 cm-3. This underestimation 

is particularly significant in November. From 

December onward, the time series tend to converge, 

and the differences decrease again to values close to 

0.05 cm3 cm-3. After April, the downscaled product 

tends to overestimate soil moisture content in the 

validation pixel where the monitoring station is 

located, resulting in negative differences between the 

time series in this period (-0.05 cm3 cm-3). 

The MQCC analysis allowed for an examination of the 

relationship between the time series. The following 

observations can be made from Figure S3. At weekly 

temporal aggregation levels (graining ~ 7), the 

correlation between DWS and OBS is strong. At 

larger time aggregations (14 days ≤ grainings ≤ 20 

days), the correlation coefficient decreases, 

fluctuating between 0.60 and 0.69. 
 

 
 

Figure 7. Biplots from PCA analysis. a) Biplot diagram for the covariables for the wet season (February 9, 2022) and their relationship with 

the spatial mean of downscaled soil moisture (μDWS) within 1 km2 squared spatial units randomly sampled over the studied region. b) 

Biplot diagram for the covariables for the dry season (August 16, 2022). Axis represents the two first principal components. Prefix mu means 

spatial mean and prefix sd means spatial standar deviation. 
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Figure 8. Time series of observed and downscaled soil moisture. DWS represents the downscaled soil moisture product at a spatial resolution of 100 

m. OBS refers to the moisture content observed in the field through daily monitoring using the ThetaProbe ML3 sensor within a pixel of the 

downscaled product. The variable ERROR is calculated as the difference between OBS and DWS, i.e., ERROR =|𝜃𝐷𝑊𝑆 −⁡𝜃𝐹𝐼𝐸𝐿𝐷|. 
 

Additionally, it was expected that the correlation 

coefficients would vary significantly at different 

quantile levels (for instance, that the correlation 

would be higher at quantile τ = 0.1 than at quantile τ 

= 0.9). The scatter plot suggest that the correlation is 

higher under low saturation conditions (small 

quantiles) and lower under high saturation condi-

tions (large quantiles). However, the behavior of the 

relationship between DWS and OBS at different 

quantiles remains consistent and independent of the 

value of τ. For instance, both at τ = 0.1 (considering 

low saturation values of OBS and DWS time series) 

and at τ = 0.9 (considering high saturation values of 

OBS and DWS time series), the regression coefficient 

fluctuates between 0.65 and 0.95, modulated solely 

by the temporal aggregation scale. 

These results are consistent with previous research. 

For example, Hu et al. (2020) obtained correlations 

between 0.246 and 0.705 when disaggregating 

SMAP data for 30 stations in Mongolia. Abbaszadeh 

et al. (2019) obtained correlation coefficients between 

0.65 and 0.70 when disaggregating SMAP data for 

300 soil moisture monitoring stations across the 

CONUS network in the United States. Wakigari & 

Leconte (2022) obtained correlation coefficients 

between 0.68 and 0.83 in their study area located in 

the northeastern region of the United States. Huang 

et al. (2020) validated a quantile-based random 

forest (QRF) SMAP downscaling strategy across 

various monitoring networks worldwide, obtaining 

correlation coefficients between 0.754 and 0.632. 

Shangguan et al. (2024) generated downscaled soil 

moisture data which exhibited satisfying accuracy 

(mean R = 0.52 and RMSE = 0.047 m3 m3), Sishah et 

al. (2023) downscaled SMAP soil moisture in small 

watershed in Ethiopia, following that, the accuracy of 

downscaled soil moisture against a sensor network 

was 0.1320 cm3 cm3 Root Mean Square Error (RMSE). 

Nadeem et al. (2023) gap-filled SMAP soil moisture 

data, their approach showed high R (0.40) and low 

RMSE (0.064 m3 m3) against in situ SM. 

Singh et al. (2019) which is the most comparable 

study, as both studies only utilized a single soil 

moisture sensor, unlike other studies that employed 

sensor networks, found correlation coefficients 

ranging from 0.416 to 0.943. Additionally, some 

studies also analyzed the correlation relationship with 

land cover, finding that moisture content was better 

explained by models in pastures (𝜌 = 0.696) than in 

cultivated areas (𝜌 = 0.624), forests (𝜌 = 0.611), or 

bare soil (𝜌 = 0.433).  

Figure 9 displays the scatter plot between the daily 

observations of the SMAP downscaled product and 

the field-observed soil moisture for approximately 

400 days. 

Regarding the scatter plot in Figure 9, there is an 

accumulation of points in the low moisture zone (0.1 

to 0.2 cm3 cm-3), indicating the overall average 

moisture for the area. The red regression line di-

verges from the perfect 1:1 relationship line as mois-

ture increases. It can be observed that the product 

underestimates observed moisture at higher soil 

water content values. The distribution of points is 

quite similar to that obtained by Singh et al. (2019), 

showing a concentration of points in the low to in-

termediate moisture range (0.10 to 0.20 cm3 cm-3). 
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3.7 Methodological limitations 

Unlike previous studies such as Abbaszadeh et al. 

(2019) and Wakigari & Leconte (2022) that parame-

terized random forests using all available data for an 

entire study period, this study used approximately 

1300 SMAP pixels within the study area. While this 

approach captures dynamic relationships between 

soil moisture and covariates, this strategy reduces the 

sample size used for training the daily models; posing 

the risk that the models may not have enough 

observations to effectively capture the relationships 

between covariates and soil moisture of the SMAP 

product. This is a challenge observed in machine 

learning models and is common (Adab et al., 2020; 

Heuvelink et al., 2021).  

 
Figure 9. Scatter plot pf observed and downcaled soil moisture. DWS (the downscaled soil moisture product at a spatial resolution of 100 

m), OBS (soil moisture observed in the field through daily monitoring using the ThetaProbe ML3 sensor). 

 

In some cases, downscaling models exhibited 

suboptimal behavior due to lack of hyper-parameter 

optimization, attributed to computational limitations. 

Instead of focusing on optimize the models’ 

parameters, we focused on independent validation 

through in-situ soil moisture monitoring. In a recent 

study, (Hernandez-Sanchez et al., 2020; Singh et al., 

2019) validated the SMAP product through in-situ 

monitoring with sparsely distributed sensor network 

measurements. In the aforementioned studies, a soil 

moisture measurement station was utilized for each 

pixel of the SMAP product. This work adopts the 

subsequent results as a working hypothesis. 

Therefore, despite potential errors arising from the 

limited spatial representativeness of soil moisture 

measured by a single monitoring station, the rela-

tionship between in-situ soil moisture and remote 

estimation was considered acceptable. Additionally, 

due the lack of in situ analytical soil information spa-

tially distributed at the sub-basin level we choose to 

use geospatial information for soil physical and 

chemical properties using the SoilGrids (Hengl et al., 

2018) product developed by ISRIC as a covariate. 

While this enables to use soil properties as predictive 

variables which can lead to better downscaling 

results, SoilGrids were not validated for our study 

region, hence possibly introducing some bias in the 

results. 

 
4. Conclusions 
 

The present work aimed to assess a machine learning 

technique called random forest to enhance the 

spatial resolution of remote soil moisture estimations 

from the SMAP product of the SMAP satellite for the 

period from 2015 to 2022. Furthermore, it sought to 

evaluate these predictions over a hydrological year in 

a study watershed.  

After training downscaling models using random 

forest as the downscaling function, it was demon-

strated that the temporal disaggregation 

(reconstruction of time series) adequately captures 

the temporal dynamics of the SMAP product. 

Regarding the spatial downscaling, the statistical 

analysis of RMSE indicated that the generalization 

error of the downscaling models is suitable for 

scientific and practical applications (less than 0.05 

cm3 cm-3). In conclusion, it was demonstrated that 

random forest is capable of spatial downscaling of 

the SMAP product in the study area. 
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By applying Principal Component Analysis (PCA) to 

the mean of high-resolution soil moisture and hydro-

topographic and soil covariates in 80 systematically 

sampled polygons within the study area, it was 

demonstrated that at high spatial resolutions (~ 100 

m) and under conditions of moderate to high soil 

moisture, the downscaled soil moisture product 

primarily depends on elevation, soil organic carbon 

content, clay content, and saturated hydraulic 

conductivity of the soil. Under conditions of lower soil 

water content, its distribution becomes more random 

and ceases to depend directly on the covariates used 

in this study. As for precipitation, it explains the 

majority of the spatial dynamics of the SMAP product 

at the original resolutions (~ 9 km). 

Through scatter plot and Multiscale Quantile 

Correlation Coefficient (MQCC) analysis, it has been 

demonstrated that the time series of the downscaled 

soil moisture product at 100 m and the time series of 

soil moisture observed in the field through 

monitoring with dielectric sensors over 400 days 

exhibit a coherent and highly significant relationship 

with each other. More specifically, it can be concluded 

that the soil moisture downscaled using the random 

forest model adequately explains the in-situ soil 

moisture measurements in the monitored area under 

conditions of low soil moisture content. However, the 

relationship diverges from this behavior in conditions 

with moisture contents between 0.4 and 0.5 cm3 cm-

3. As a result, the downscaling scheme proposed in 

this study did not yield satisfactory results under 

extremely wet (saturation) conditions. Furthermore, 

at coarse temporal aggregations (approximately 

weekly averages), the quantile-based correlation 

coefficients between the time series average around 

0.98, regardless of the season. This indicates that the 

downscaled soil moisture product using random 

forest explains the in-situ measurements almost 

perfectly at weekly time aggregations. 

 

Supplementary Materials: Figure S1: Maps of predictive covariates 

used for downscaling, Figure S2: Downscaled Soil Moisture Maps. 

Figure S3: Multiscale Quantile Correlation Coefficient (MQCC). 
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