
Scientia Agropecuaria 14(2): 171-178 (2023)               Pacheco-Sánchez et al. 

-171- 
 

 

 

 
 

 
 

 
 

RESEARCH ARTICLE           
 

Forecasting occurrence of palm weevil Rhynchophorus palmarum L. 

(Coleoptera, Curculionidae) using Autoregressive Integrated Moving Average 

modeling 
 

Eduardo L. Pacheco-Sánchez1 ; Lenin A. Guamani-Quimis1 ; Cinara Ewerling da Rosa2, 3 ;  

Diego Portalanza2, 4 * ; Alejandro E. Mieles5 ; Felipe R. Garcés-Fiallos1, 6 *  
 

1  Postgraduate Institute, Technical University of Manabí, Av. José María Urbina y Che Guevara, Portoviejo, EC13132, Manabí, Ecuador. 
2  Center of Natural and Exact Sciences, Federal University of Santa Maria, Roraima Av. 1000, Santa Maria, 10587, RS, Brazil.  
3  Campus São Vicente do Sul, Instituto Federal Farroupilha, Rua 20 de setembro, 2616, Sao Vicente do Sul, 97420000, RS, Brazil. 
4  Carrera de Ingeniería Ambiental, Facultad de Ciencias Agrarias, Instituto de Investigación “Ing. Jacobo Bucaram Ortiz, Ph.D”, Universidad 

Agraria del Ecuador (UAE), Avenida 25 de Julio, Guayaquil, Guayas 090104, Ecuador. 
5  Facultad de Ciencias Ambientales, Universidad Estatal del Sur de Manabí, Km 0.5 vía Jipijapa-Noboa, Jipijapa, Manabí, Ecuador. 
6  Laboratory of Phytopathology, Experimental Campus La Teodomira, Faculty of Agronomic Engineering, Technical University of Manabí, 

Santa Ana, EC130105, Manabí, Ecuador. 
 

* Corresponding authors: diegoportalanza@gmail.com (D. Portalanza). felipe.garces@utm.edu.ec (F. R. Garcés-Fiallos). 
 

Received: 2 March 2023. Accepted: 13 April 2023. Published: 8 May 2023. 
 

 

Abstract 

Oil palm (Elaeis guineensis L.) is a crucial crop in Ecuador, considerably affected by black palm weevil Rhynchophorus palmarum L. 

(Coleoptera: Curculionidae) for several years. Despite its importance, the behavior of the black weevil in Ecuador is not well comprehended 

presently. Therefore, this study aimed to predict infestation patterns of the black palm weevil in Ecuador using a mathematical model based 

on monitoring data. Data on the number of insects per trap from a commercial oil palm farm in Quinindé, Ecuador, was collected every 

two weeks for five years (2016-2020) and analyzed using the Classical Fourier (CF) spectrum and the Dickey-Fuller test to determine 

seasonality. The trend component of the data dropped from 16.33 in January 2017 to 11.96 in January 2019, with a fluctuation ranging from 

-0.11 to 2.50 observed for the entire data set. The results obtained after fitting the model ranged from -0.11 to 3.19, with a maximum of 5.30. 

The augmented Dickey-Fuller (ADF) test for the black weevil time series yielded a result of -5.60 (P<0.01). The partial autocorrelation ranged 

from -0.35 to 0.1. Based on our model, we projected the occurrence of black palm weevil from 2021 to 2024, with a fluctuation in the 

number of insects per trap ranging from 12.68 in January 2021 to 13.023 in November 2023. This model can be used to predict future insect 

occurrences in Ecuador, providing valuable insights into the behavior of the black weevil and using it for effective development control 

measures for this pest. 
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1. Introduction 
 

Oil palm (Elaeis guineensis L.) is one of the most 

widely cultivated crops in the world. Indonesia is the 

top producer and exporter of palm oil, with oil palm 

plantations covering about 12.3 million hectares. 

Other major producers include Colombia, Thailand, 

Nigeria, Papua New Guinea, and Ecuador (The 

World Bank, 2020). These countries account for 

approximately 19 million hectares or 0.39% of the 

world's cultivated land. The high global demand for 

vegetable oils and the need for alternatives to fossil 

fuels, such as biodiesel, are driving the expansion of 

agricultural frontiers into forested areas. One of the 

sustainable options for producing oil is using oil 

palm, as it is the world's most efficient oil seed crop 

(Gassler & Spiller, 2018; Tang & Al Qahtani, 2020).  

Ecuador's oil palm crop plays a significant role in 

the country's agricultural sector, contributing 4.35% 

to the total agricultural gross domestic product 

(GDP) and 0.90% to the overall GDP (FAOSTAT, 

2019). However, large infestations of the black palm 

weevil (BW) Rhynchophorus palmarum L. 

(Coleoptera: Curculionidae) pose a significant 

threat to the country's oil palm industry. A study by 

Guamani-Quimis et al. (2022) found that for every 
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weevil caught in traps, oil palm net revenue and 

fresh fruit bunches yield decreased by USD 343.32 

per year and 0.18 tons per hectare per year, 

respectively, using a multiple linear regression 

model.  

The BW is a destructive species of stem borer that 

primarily attacks palm trees (Arecales: Arecaceae) 
(Kurdi et al., 2021). The larvae of this insect feed on 

the terminal meristem, the tip of the crown, and 

fragments of the palm stem, causing the tree to rot, 

desiccate, and crack, potentially leading to its death 

(Antony et al., 2021). Originally native to certain 

parts of Mexico, South America, Central America, 

and the Caribbean, R. palmarum has become a 

major pest of commercial palm trees such as oil 

palms (E. guineensis Jacq.), coconuts (Cocos 

nucifera L.), and ornamental palms (Esparza-Díaz et 

al., 2013). In countries like Ecuador, the presence of 

BW may be positively correlated with the 

occurrence of Spear rot caused by the fungus 

Fusarium solani (Guamani-Quimis et al., 2022). 

To ensure sustainable production of oil palm, 

various initiatives are being implemented to reduce 

negative impacts and enhance positive ones. These 

include the use of effective Integrated Pest 

Management (IPM) strategies to reduce the use of 

pesticides (Murguía-González et al., 2018) and the 

implementation of continuous monitoring systems 

for early detection and warning of infestations 

caused by pests like the weevils of the genus 

Rhynchophorus. These monitoring systems employ 

infection models based on data mining algorithms 

such as Naive Bayes, random forest, AdaBoost, 

SVM, and logistic regression (Khudri et al., 2021). To 

effectively detect, manage, and forecast emerging 

insect outbreaks, it is crucial to have a current 

understanding of the extent and severity of pest im-

pacts (Andrew, 1993). However, detecting changes 

in insect populations over time can be challenging 

(Senf et al., 2017), particularly when it comes to 

quantifying these changes through modeling and 

analysis of conditional singularities (Breiman, 2001). 

The aim of analyzing a time series dataset is to 

develop a mathematical model that can explain the 

underlying process that generated it. Therefore, this 

study aims to investigate the use of the 

Autoregressive Integrated Moving Average 

(ARIMA) in analyzing non-stationary time series 

(NSTS) data of insect occurrences and its suitability 

for tracking insect data at a regional level. The 

ARIMA model combines three components, namely 

auto regressive, integrated, and moving average, 

which makes it useful for revealing both intra- and 

inter-annual variations in the data. It is important to 

note that the means, variances, and covariances of 

NSTS data can change over time, making it difficult 

to model. Thus, our study aims to contribute to the 

existing literature by exploring the use of ARIMA 

analysis for NSTS data of insect occurrences and 

explaining why this method is preferred over other 

models.  

 
2. Materials and methods 
 

2.1.  Data collection 

This study utilizes data collected by Guamani-

Quimis et al. (2022) over a period of five growing 

seasons (2016-2020) from a commercial oil palm 

farm located (55.3 N, 79408.6 W) in Quinindé City 

(55.3 N, 79408.6 W), Esmeraldas Province, Ecuador. 

Data were collected weekly using trap counts to 

monitor the occurrence of BW. The distribution and 

classical Fourier spectrum of the data were 

calculated to describe the time series, with a total of 

2410 observations. The data were then aggregated 

and treated as a monthly time series, as shown in 

Figure 1. 

 

2.2. Stationary time series scale, and trend analysis 

To prepare the data for modeling, we initially 

decomposed the time series into its seasonal, trend, 

and cyclical components. These innate components 

effectively capture the chronological information of 

the data and allow for better model fitting. 
 

Y = St + Tt + Et 

Y = St ∗ Tt ∗ Et  (1) 
 

where St is the seasonal component, T is the trend 

and cycle, and E is the remaining error. 

For sequential modeling to be undertaken, the time 

series must be stable, with constant mean, variance, 

and covariance over time. To evaluate this, the 

Dickey-Fuller test of stationarity was used 

(Charemza & Syczewska, 1998; Stadnytska, 2010). 

The next step in selecting an ARIMA model for the 

time series is to determine the need for autoregres-

sion (AR) and moving average (MA) terms to 

accurately correct for any autocorrelation present in 

the differenced series. The Autocorrelation Function 

(ACF) plot is represented by a bar chart showing the 

coefficients of correlation between the time series 

and its lags. The Partial Autocorrelation Function 

(PACF) plot is represented by the partial correlation 

coefficient between the time series and its lags 

(Francq & Zakoïan, 2005). The Autocorrelation 

Function (ACF) was calculated using the 

autocorrelation equation as follows: 
 

    (2) 
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where yt is the historical value in period i, yt−k is the 

historical value in period t-k, ӯ is the mean value, t, 

is the number of months, and T is the number of 

years in the time series. ACF and PACF were 

calculated using the ACPACP and APCF function of 

the R stats package (R Core Team, 2021). 

Under the premise that y is the response variable 

and x1, x2, and x3 are predictor variables in a regres-

sion context, PACF was determined. The correlation 

between the variables calculated considering how 

both y and x3 are related to x1 and x2 is known as 

the partial correlation between y and x3: 
 

y = β0 + β1x
2    (3) 

y = β0 + β1x + β2x
2    (4) 

 

in the first model, β1 can be interpreted as the linear 

dependency between x2 and y. In the second 

model, β2 would be interpreted as the linear 

dependency between x2 and y with the dependency 

between x and y already accounted for. 

The partial autocorrelation between a time series xt 

and xt−h is defined as the conditional correlation 

between xt and xt−h, conditional on xt−h+1, ..., xt−1, the 

set of observations that come between the time 

points t and t − h. 

 

2.3.  ARIMA modeling 
 

The ARIMA model was tested using different 

combinations of its three components p, q, and d. 

The parameters p and q can be expressed as: 
 

Wt = ø1Wt−1 + .... + øpWt−p + et − ø1et−1− ... − øqet−q (5) 
 

where ø is a number between -1 and +1, p is the 

order of the autoregressive model, and q is the 

order of the moving average model. The integrated 

component of the model is defined in (2), with d 

values often set into 0, 1, or 2. 
 

if d = 0, Wt = Yt if d = 1, Wt = Yt − Yt−1 

if d = 2, Wt = (Yt − Yt−1) − (Yt−1− Yt−2)  (6) 
 

The forecast package was used to conduct all 

computations (Hyndman & Khandakar, 2008). The 

Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion were used to choose the 

components; d is the degree of differentiation and 

q is the order of the moving average model.) 

components using the Arima function (BIC). The 

maximal likelihood estimation (MLE) is the 

foundation of AIC, as illustrated in: 
 

AIC = −2/N ∗ LL + 2k/N   (7) 
 

where N is the number of examples in the training 

data set, LL denotes the model's logarithmic 

likelihood on the training data set, and k denotes 

the model's parameter count. If a constant or 

intercept is present in the model, then k = p + q + 

1; otherwise, k = p + q (Cryer, 2008). Based on the 

lowest AIC values discovered for various values of 

p, q, and d, the best values are chosen. 

BIC was estimated using: 
 

BIC = −2 ∗ LL + log (N) ∗ k   (8) 
 

where log ( ) has the base called the natural loga-

rithm, LL is the loglikelihood of the model, N is the 

number of examples in the training data set, and k 

is the number of parameters in the model. 

To facilitate finding model components (p, q, and d) 

we used the auto. Arima function based on 

Hyndman & Khandakar (2008), which returns the 

best ARIMA model according to either AIC or BIC 

value. 

 

3. Results and discussion 
 

Time series decomposition into seasonal, trend, and 

residual components using an additive decomposi-

tion method showed a seasonal component with a 

clear repeating pattern throughout the year, with 

negative values in the first half of the year and pos-

itive values in the second half (Figure 1). This pattern 

is consistent across all years, suggesting that the 

seasonality does not change over time. The range 

of the seasonal component is from -2.6333435 to 

3.1492433, with the highest value in September and 

the lowest in February. This indicates that there is a 

significant seasonal effect in the data, likely due to 

some sort of cyclical behavior. The trend compo-

nent shows an overall upward trend for most years, 

with the value increasing from January to 

December. 

However, in 2020, the trend component appears to 

be decreasing from January to September. The 

range of the trend component is from 10.69562 to 

16.49194, with an average growth rate of around 1.5. 

This indicates that there is a clear upward trend in 

the data, likely due to some sort of underlying 

growth or change. Lastly, the residual component 

appears to have random fluctuations without any 

clear pattern, indicating that the seasonal and trend 

components have captured most of the underlying 

structure in the data. The range of the residual 

component is from -3.73269821 to 6.95013166, with 

no clear pattern of behavior. This suggests that the 

residual component is likely due to random errors 

or noise in the data.  

The seasonal, trend, and residual components are 

shown in Figure 2, which provides a visual 

representation of the decomposition results. 

Overall, the decomposition results suggest that 

there is a strong seasonal effect and a clear upward 

trend in the data, with random fluctuations 

accounting for the remaining variability.  
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Figure 1. Heat map representation of black weevil (Rhynchophorus palmarum L.) occurrence from 2016 to 2020. The color scale indicates 

the level of occurrence, with darker colors representing higher levels. The heat map illustrates the temporal and seasonal variations in black 

weevil occurrence over the five-year period. 

 

 
 

Figure 2. Decomposition of additive time series for black weevil (Rhynchophorus palmarum L.) occurrence. Panels showing the observed 

data (Panel A), trend component (Panel B), seasonal component (Panel C) and random component (Panel D) of the time series data. The 

x-axis represents the time period (years) and the y-axis represents the number of black weevil trap captures. 

 

This indicates that ecological studies that rank R. 

palmarum as a high-risk pest, such as examinations 

of its biology, reproductive systems, and behavior 

during infestations, are effective tools for prevent-

ing the spread of this important agricultural pest 

(Camargo et al., 2010). Phenological parameters 

can be established in models that can be used to 

forecast the risks of establishment and the capacity 

for a growing population of R. palmarum, which 

include environmental, development, reproduction, 

and survival variables (Sporleder et al., 2013). 

The results of the ACF and PACF analysis showed 

that there was a significant spike only at lag 1, 

indicating that the time series is correlated with the 

immediately previous observation.  

Furthermore, the test showed that the variation was 

within the confidence interval, suggesting that it is 

a first-order ACF (Figure 3). The ACF by lags was 
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used to understand the structure of the residuals of 

the model. The results of the ACF revealed that the 

series was not white noise, as there were several 

lags that were significantly different from zero. This 

pattern suggests that there may be a seasonality or 

trend in the time series data. A common method 

for modeling this pattern is by using an ARIMA (p, 

d, and q) model, where p represents the order of 

the autoregressive component, d represents the 

degree of differencing, and q represents the order 

of the moving average component. In this case, we 

observed high autocorrelation for the first lag 

(0.677) which suggests a strong relationship be-

tween the current value of the series and the lag 

value. The autocorrelation then decreases as the lag 

increases. This implies that there is no need to add 

AR (p) or MA (q) terms in the model. As stated by 

Mgaya (2019) in his study about the application of 

ARIMA models in forecasting livestock products 

consumption, the use of autocorrelation can 

provide valuable insights into the underlying 

patterns of the data and aid in the selection of an 

appropriate model for forecasting. 

Based on the outcomes of ACF and PACF, we tried 

4 distinct models prior to employing the auto-

Arima algorithm (Figure 4). The bias-adjusted max-

imum likelihood estimator for variance (MLE) (2) for 

the first model (0,0,1) was 7.83, with a maximum 

log-likelihood (LL) of -146. The AIC and BIC were, 

respectively, -6.86 and -4.32. The MLE and LL for 

Model 2 (2,1,2) were 7.101 and 14.1, respectively, with 

an AIC and BIC of -8.7 and -6.3, in that order. Model 

3 (3,1,1) displayed a 6.631 MLE, a -13.8 LL, and -4.82 

and 2.97 AIC and BIC values. When model 4 (2,0,1) 

was finally evaluated, it displayed an MLE of 6.394, 

LL of 13.91, and AIC and BIC of 2.88 and 2.98, 

respectively (Figure 4). Model (2,1,2) performs best 

with the lowest AIC and BIC values. Other authors 

revealed that the effectiveness of the forecast tech-

niques' prognostication relied heavily on the 

outcomes of the method for breaking down the 

original data and combining linear and nonlinear 

models via the crossing operation (Büyükşahin & 

Ertekin, 2019).  

 

 
Figure 3. Auto-correlation (ACF) and partial auto-correlation (PACF) functions of the black weevil (Rhynchophorus palmarum L.) occurrence 

data. The x-axis represents the lag and the y-axis represents the correlation coefficient. The ACF plot shows the correlation between the 

black weevil occurrence data and lags of itself, and the PACF plot shows the correlation between the black weevil occurrence data and its 

own residuals after removing the correlation due to the lags.  

 

 
 

Figure 4: Fit of an Autoregressive Integrated Moving Average (ARIMA) model to univariate time series of black weevil (Rhynchophorus 

palmarum L.) occurrence data. The left panel shows the results of fitting a (0,0,1) model, and the right panel shows the results of fitting a 

(2,1,2) model. In both panels, the black line represents the original data, the blue line represents the forecasted data, and the shaded area 

represents the forecasted uncertainty. A forecasting was performed to forecast 48 months.  
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Several scientists have used ARIMA and other time 

series decomposition models to estimate future 

disease outbreaks (de Oliveira et al., 2017), crop 

yield (Adebiyi et al., 2014), and stock market 

outcome predictions (Adebayo et al., 2014). The use 

of auto-Arima algorithm is an important tool for 

identifying the best model among the different 

options, which is important for achieving accurate 

predictions. The model that we chose, the ARIMA 

(2,1,2), is a suitable model for forecasting the 

population of BW in oil palm crops. 

The ARIMA (0,0,1) with non-zero mean model was 

fit to the BW time-series data (BWTS), resulting in 

coefficients of 0.5509 and 13.0781 for the moving 

average term and the mean, respectively, with 

standard errors of 0.0867 and 0.5479. The resulting 

model had a sigma squared value of 7.839 and a 

log likelihood of -146.07, leading to Akaike Infor-

mation Criterion (AIC), AIC with a correction for 

small sample sizes (AICc), and Bayesian Information 

Criterion (BIC) values of 298.15, 298.58, and 304.43, 

respectively. This indicates that while performing 

prediction modeling for BW over the next two to 

three years, the ARIMA model's predicted 

outcomes are closer to the mean original historical 

trap data. Many academics have utilized the ARIMA 

model to predict the frequency and presence of 

pests. According to our current analysis, the BW 

population will decline between January and Sep-

tember 2021 before increasing steadily from early 

October 2021 to June 2023. Additionally, biological 

characteristics of the species, such as distinctive 

activity windows, flight ranges, and geographic dis-

tribution, might strengthen these models. However, 

because R. palmarum is adaptable and may easily 

spread far and have serious negative consequences 

in a range of conditions, some of these characteris-

tics (such as geographic location) do not affect the 

capacity for infestation (Dalbon et al., 2021). 

An ARIMA (2,1,2) model, which considers the pres-

ence of autoregressive terms and moving average 

terms of order 2, was also used to analyze BWTSD. 

The coefficients of the model, including the ar1 and 

ar2 autoregressive terms and the ma1 and ma2 

moving average terms, were found to be -1.5862, -

0.9977, 1.5716, and 0.9993, respectively, with 

standard errors of 0.0265, 0.0098, 0.0801, and 

0.0927. The resulting model had a sigma squared 

value of 7.103 and a log likelihood of -141.15, leading 

to AIC, AICc, and BIC values of 292.29, 293.42, and 

302.68, respectively. As observed in other studies, 

ARIMA models have been used to predict 

occurrence with significant and non-significant 

predictors for different pests, including Helicoverpa 

armigera (Noctuidae: Lepidoptera) (Narava et al., 

2022), Greenhouse whitefly (Trialeurodes 

vaporariorum) (Chiu et al., 2019), Aphis craccivora 

Koch; jassids, Empoasca fabae (Harris); pod borer 

(Kannan et al., 2022), dengue(Lima & Laporta, 

2020), rugose spiraling whitefly (Elango et al., 2020) 

and Black weevil (BW) in this case. 

The results of the auto.arima function applied to the 

time series indicate that the best model found is an 

model (0,0,0) with a zero mean (Figure 5). This 

model has no autoregressive, no differencing and 

no moving average terms. The sigma^2 (variance 

of the errors) is 0.04702 and the log likelihood of 

the model is 6.47, which indicates a good fit of the 

model to the data.  

 

 
 

Figure 5. Time series plot of the black weevil (Rhynchophorus palmarum L.) occurrence data with the best fit ARIMA model. The x-axis 

represents the time period (years) and the y-axis represents the number of black weevil trap captures. The black line shows the original 

data, the blue line shows the forecasted data generated by the ARIMA (0,0,0) model. The shaded area represents the forecasted 

uncertainty.  
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The AIC, AICc and BIC values are -10.93, -10.86 and 

-8.86 respectively. These values are lower than the 

one from the previous models, indicating that this 

model is a better fit for the data. It's important to 

note that the time series has been differenced and 

logged before fitting the model, which is a common 

technique for making a time series stationary, and 

therefore, suitable for an ARIMA model. 

Time series forecasting is a crucial task in various 

fields of science, including economics, finance, en-

gineering, health sciences, meteorology, and agri-

culture. To model different social, natural, ecologi-

cal, and financial phenomena, various forecasting 

systems have been developed. However, achieving 

accurate forecasting systems that can effectively 

model various temporal phenomena remains a sig-

nificant challenge. Among the most used 

forecasting models are ARIMA models, which have 

proven to be effective due to their ability to handle 

non-stationary and seasonal patterns. Additionally, 

ARIMA models are often used as benchmark 

methods due to their superior performance 

(Montero-Manso et al., 2020). 

In our study, we presented a time series model for 

the accurate prediction of population dynamics of 

the insect R. palmarum. The results of this study can 

be used to establish a benchmark for months with 

high trap captures, which can be beneficial for field 

pest management and decision making. While the 

ARIMA (0,0,0) with non-zero mean model used in 

this study has shown promising results. It is 

important to investigate the use of other types of 

models to forecast the BWTSD and compare their 

performance. Recent studies have shown that 

hybrid models combining ARIMA with artificial 

intelligence (AI) algorithms have produced superior 

results in predicting insect populations (Chen et al., 

2023; Zhao et al., 2023). In addition, it would be 

worthwhile to compare the performance of ARIMA 

models with other time series forecasting 

techniques such as exponential smoothing or 

seasonal decomposition (Svetunkov et al., 2023). 

This would provide a more comprehensive 

understanding of the strengths and limitations of 

various forecasting methods for this type of time 

series data. Future research in this area could 

significantly contribute to the development of 

effective pest management strategies. 

 
4. Conclusions 
 

In our study, we investigated the use of ARIMA 

models for forecasting BWTSD population in a 

specific area. Our results indicate that the ARIMA 

model is a powerful tool for analyzing and 

forecasting time series data, particularly data that 

exhibits temporal dependencies such as trends and 

seasonality. The analysis of the observed BWTSD 

revealed a consistent year-over-year pattern, with a 

peak in population numbers in 2017, and a decline 

until July 2019. By using the trained model, we were 

able to make forecasts for the next 24 months, 

providing point forecasts for each month, along with 

corresponding confidence intervals at the 80% and 

95% levels. The forecasts were reasonable and 

accurately captured the underlying dynamics of the 

time series data. Among the four models tested, the 

model (0,0,0) with zero mean was found to be the 

best fit for the observed BWTSD. This model had no 

autoregressive, no differencing and no moving 

average terms, and had a good fit to the data as 

indicated by the low AIC, AICc and BIC values. Over-

all, our results suggest that ARIMA models can be a 

useful tool for forecasting time series data. They are 

able to capture temporal dependencies in the data 

and provide accurate forecasts for future periods. 

Future research could explore the use of ARIMA 

models for forecasting other types of time series 

data and compare their performance with other 

forecasting methods. Additionally, incorporating 

other factors such as temperature and rainfall could 

provide more insights into the population dynamics 

of R. palmarum. 
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