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Abstract 
Peru is the second-largest rice producer in Latin America, with 406166 ha grown annually, 
predominately on the Peruvian north coast. However, rice is primarily irrigated by flooding (93%), which 
demands high water use (15000-18000 m3 ha−1) owing to low water-use efficiency. Additionally, the 
intensification of climate change is of great concern as it causes high variability as well as a decreasing 
trend in water resource availability. Alternate wetting and drying (AWD) irrigation technique reportedly 
reduce the irrigation volumes while maintaining conventional yield rates. The AquaCrop model was 
calibrated and assessed to simulate rice yield response to the AWD technique under water shortage 
conditions on the Peruvian central coast. The AquaCrop model exhibited a “very good” to “good” 
performance in predicting canopy cover development, soil water content, aerial biomass, and grain yield 
using performance indicators, such as the Nash-Sutcliffe efficiency coefficient, the RMSE observations 
standard deviation ratio (RSR), Willmott index, and determination coefficient. The calibrated model 
showed a good performance of rice under AWD irrigation, indicating that this technique can be used to 
assess rice production under Peruvian arid conditions. 
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1. Introduction 
 

Rice (Oryza sativa L.) is the second most- 
produced grain in the world and plays an 
essential portant role in the food security for 
the global population (Khan et al., 2019; 
Asibi et al., 2019). Asian countries are 
responsible for over 90% of the 769 million 
tons of rice produced worldwide (FAOSTAT, 
2018). Peru is the second most significant 
producer in Latin America, with the highest 
yield rates worldwide (7.3 kg ha-1). Rice is an 
essential component of the basic diet of the 
Peruvian population, with an annual per cap-
ita consumption of 63.5 kg (Heros et al., 
2014). Besides, 93% of the rice paddy in 

Peru is submerged and maintains flooded in 
most of the phenological phases; 62% of this 
rice cultivation is concentrated in the 
coastal plains (Heros et al., 2014), where ir-
rigation is necessary to ensure productivity 
because the average annual rainfall is less 
than 90 mm (Rau et al., 2017). In such 
circumstances, flood irrigation remains a 
concern. Consequently, the current chal-
lenge is improving the water-use efficiency 
(WUE) to increase rice production using the 
least amount of water possible, reducing 
deep percolation, considering the low and 
unsteady water availability. According to 
Bouman and Tuong (2001), the irrigation 
depth applied to the rice crops can be re-
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duced by eliminating flooding and maintain-
ing low soil saturation conditions, thereby 
applying a water deficit via alternate wet-
ting, and drying (AWD) technique. However, 
this AWD technique can reduce yield rates if 
not correctly applied and validated (Carrijo 
et al., 2017), particularly during the pheno-
logical stages with higher sensitivity to wa-
ter stress. Crop modelling can be used to 
quantify the effects of water stress on crop 
yield (Pereira et al., 2009; Geerts et al., 
2009; Shafiei et al., 2014). For rice, which 
might be cultivated under various water 
management practices, AquaCrop model 
was used, under drying-wetting cycles, per-
forming well in simulating rice development, 
biomass and yield (Amiri, 2016; Amiri et al., 
2014; Maniruzzaman et al., 2015; Xu et al., 
2019; Pirmoradian and Davatgar, 2019). 
Simulation models are fundamental tools to 
improve different management approaches 
in arid and semi‐arid zones for achieving 

maximal production with WUE (Toumi et al., 
2016). The FAO AquaCrop simulation model 
develops in its manuals the methodology to 
investigate the response of crop yields 
(Raes et al., 2018). This model has success-
fully simulated the growth and yield of crops 
under different climate, soil, and irrigation 
management conditions for rice cultivation 
(Greaves and Wang, 2016). The AquaCrop 
model has been calibrated and evaluated for 
simulating rice development and yields 
under flood conditions in some areas of the 
world (Abdul-Ganiyu et al., 2018; Lin et al., 
2012), and under drying and wetting cycles 
condition has been reported by Xu et al. 
(2019a), Amiri (2016), and Maniruzzaman et 
al. (2015). However, most AquaCrop studies 
have been based on calendar days to 
simulate crop development and have not 
been validated under irrigation manage-
ment and climatic conditions of Peruvian 
cost. As reported by Singh et al. (2013), the 
application of biophysical models requires 
local calibration using experimental data. 
Consequently, the calibration of the 
AquaCrop model for applying the AWD 
technique for the coastal plains of Peru is 
crucial because most rice farmers use flood 
irrigation, with high water consumption 
ranging from 12000 to 20000 m3 ha-1, 
according to Heros et al. (2014). The present 
study aimed to calibrate and validate the 
AquaCrop model to simulate the response of 
rice yield to AWD irrigation under various 
water deficits in the central coast of Peru. 
The parameterization was also analyzed rel-
ative to the canopy cover development, soil 
water content, aerial biomass, and grain 
yield based on cumulative Growing Degree 
Days. 

2. Materials and methods 
Research area 
The study was conducted in La Molina, Lima 
(12∘S; 76,9∘W at an altitude of 244 meters), 

during summer (December) 2017 and fall 
(April) 2018, on the central coastal plains of 
Peru. The climate in the coastal plains of 
Peru is characterized as dry, with an aver-
age monthly minimum air temperature of 
12.8 °C. The average monthly maximum air 
temperature is 31 °C, and the average an-
nual air temperature is 21.9 °C. The average 
annual precipitation is 15.5 mm. 
 

The AquaCrop model 
The AquaCrop model is based on biophysi-
cal processes (Steduto et al., 2009), consid-
ering a continuous structure of soil, plant, 
and atmosphere (Raes et al., 2018). The ap-
plication of this model mainly includes the 
following four parts: Canopy cover (CC) 
development, biomass accumulation, SWC 
changes during the crop growth period, and 
final yield. The growth simulation models 
can significantly reduce the experiment 
duration and costs and enable better layout 
conditions; these attributes are suitable for 
the simulation of most factors and levels of 
the experimental plan (Zhai et al., 2019). One 
of the most important characteristics of the 
AquaCrop model is the simulation of CC. It 
simulates the green CC and uses reference 
evapotranspiration (ETo) and the crop 
transpiration coefficient (KcTr) values, 
which in turn determine the quantity of 
biomass produced (Singh et al., 2013; 
Zeleke, 2019). The AquaCrop model 
calculates crop transpiration (Tr) by 
multiplying ETo with KcTr. Tr is expressed 
using the following equation: 

 

Tr = CC* KcTr *ETo (1) 
 

The AquaCrop model uses a standardized 
crop water productivity rate (WP*) to calcu-
late the daily production of aerial biomass, 
which is considered constant for a climate 
and crop (Steduto et al., 2009; Hsiao et al., 
2009). 
 

  (2) 

Y BxHI=    (3) 
 

In the AquaCrop model, two types of crop 
parameters were included: conservative 
and non-conservative. Conservative param-
eters are determined by the crop type and 
do not change with location, crop manage-
ment method, climate, and time; therefore, 
predetermined values can be directly used 
for these parameters (Raes et al., 2009). Al-
ternatively, non-conservative parameters 
are locally calibrated and validated before 
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the model application. The model focuses on 
the contribution of water as the most limiting 
factor of the crop (Raes et al., 2009; Steduto 
et al., 2009). particularly in dry and semi-dry 
areas where water stress can vary in inten-
sity, duration, and time of occurrence 
(Raoufi et al., 2018). 
 

The AWD Irrigation Method 
AWD irrigation management is a technique 
that has been applied to rice paddy fields 
and has demonstrated a reduction in the wa-
ter used for irrigation. With this technique, 
rice paddy fields are intermittently sub-
merged or saturated, causing upper soil lay-
ers to change from anaerobic to aerobic 
conditions several times during the growing 
season. To prevent yield reductions owing 
to drought stress, the field is typically re-
submerged before the soil water potential 
(Ψw) values in the rooting area decrease to 

below −20 kPa (Carrijo et al., 2017; Orasen 
et al., 2019). Depending on the soil drying 
severity and duration, the farming method 
adopted, and local weather conditions, the 
number of wetting–drying cycles varies 
throughout the growing season. Orasen et 
al. (2019) reported that the AWD technique 
did not affect and may even increase crop 
yields in comparison with the flooding irriga-
tion system. Various studies have shown 
that AWD could result in a 60% improvement 
in WUE (Carrijo et al., 2017) and up to 23% 
reduction in the volume of water applied via 
continuous flood irrigation systems 
(Bouman and Tuong, 2001) Although soil wa-
ter condition during rice growth can affect 
the grain quality and associated features 
(Cheng et al., 2003), a recent study (Xu et al., 
2019b) has reported the advantages of AWD 
in grain quality and nutritional value. 
 

Experimental Treatment Procedures 
A completely randomized experimental de-
sign was applied using four different AWD ir-
rigation regimes applied under drip irriga-
tion, with three replicates. The treatments 
applied were as follows: 
T0. Daily irrigation, maintaining the SWC be-
tween field capacity (FC) and saturation dur-
ing the growth stages of tillering (V4), pri-
mordial (V9), flowering (R4), and harvest 
(R9) stages (reference treatment proce-
dure). 
T1. Daily irrigation was omitted via AWD cy-
cles, allowing the soil to dry until the thresh-
old of SWC decrease below to −10 kPa dur-
ing the V4 stage and maintaining the SWC 
close to saturation during the V9, R4, and R9 
stages. 
T2. Daily irrigation was omitted via AWD cy-
cles, allowing the soil to dry until the thresh-

old of SWC decrease below to −20 kPa dur-
ing the V4 stage and maintaining the SWC 
close to saturation during the V9, R4, and R9 
stages. 
T3. Daily irrigation was omitted via AWD cy-
cles, allowing the soil to dry until the thresh-
old of SWC decrease below to −30 kPa dur-
ing the V4 stage and maintaining the SWC 
close to saturation during the V9, R4, and R9 
stages. 
The experiment was conducted in 12 plots (3 
× 5 m) during the summer agricultural sea-
son, with a sowing date of December 14, 
2017, and a season duration of 138 days af-
ter transplantation using the IR71706 rice 
genotype, which exhibits high adoption po-
tential in Peru owing to its high production 
yield (Heros et al., 2014). Rice crops were 
cultivated via transplantation, with 20-cm 
spacing between rows and a density equiva-
lent to 20000 pl ha−1. Irrigation was applied 
with the surface drip method, using drippers 
with a separation of 25 cm with a discharge 
of 3.7 L h−1, and an optimum fertilization 
dose of N, P, and K (240, 0, and 60 kg ha−1, 
respectively), as recommended by Heros et 
al. (2014). 
Canopy Cover Development Measurements 
CC was monitored weekly at 6 points per 
replicate via aerial photographs captured 
from above the canopy using a digital cam-
era, as suggested by Liu and Pattey (2010). 
The images were analyzed using the maxi-
mum likelihood method, as described by 
Otukei and Blaschke (2010). In the physio-
logical crop ripening stage, the grain yield 
and aerial biomass were determined for 
each treatment procedure following the pro-
cedures defined by Mondal et al. (2015). The 
biomass sample (1 m2 per plot) was obtained 
during the physiological ripening stage in 
each treatment and dried in an oven (at 70 
°C) to evaluate the final biomass. The final 
yield was determined by harvesting 1 m2 per 
replicate. 
 

Soil Water Content Measurements 
SWC was measured every 30 min using a soil 
moisture capacitance sensor (FDR GS1, 
Campbell Scientific Inc., Logan, UT) placed 
at a depth of 20 cm in the soil in each plot 
used for the four treatment procedures. A 
frequency-domain reflectometer calibration 
was performed at the experimental site to 
measure SWC. The capacitance sensors 
provided proper soil moisture measure-
ments without specific site calibration (3% – 
4% precision) (Cobos et al., 2010; Leib et al., 
2003). The sensors were then connected to 
an EM50 data recorder (Decagon Devices, 
Pullman, WA) to store data throughout the 
crop’s phenological cycle. Soil moisture 
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was measured from December 30, 2017, to 

April 30, 2018. The Soil water potential (Ψw) 

value was obtained using the watermark 
granular matrix sensor (200SS, Irrometer 
Company, Inc., Riverside, CA) before and 
after each irrigation event during the AWD 
cycles. The readings were recorded by 
connecting a sensor meter that calculates 
soil stress within a range of 0 – 200 kPa. 
 
AquaCrop Input 
The weather input data required by the 
AquaCrop model, including minimum and 
maximum air temperatures, rainfall, wind 
speed, relative humidity, solar radiation, 
and reference crop evapotranspiration 
(ETo) calculated using the Penman-Monteith 
equation, as recommended by Allen et al. 
(1998), were obtained from a weather 
station (Davis VantagePro2, USA) located at 
the site of study. The data were collected 
during the rainy season (December 14, 
2017, to April 31, 2018). The accumulated 
precipitation was 6,8 mm, and the average 
temperature was 23.44 °C. The maximum 
daily reference evapotranspiration (ETo) 
was calculated as 5.19 mm per day, the 
minimum as 1.76 mm per day, and the mean 
as 3.70 mm per day, is shown in Figure 1. 
 

Growing Degree Days 
For growing degree days (GDD) calculation, 
which is a useful index for crop growth and 
phenological stage (Djaman et al., 2018), the 
AquaCrop model used daily maximum and 
minimum temperatures (Raes et al., 2009) 
GDD were calculated using the following 
equations described by McMaster and 
Wilhelm (1997): 
 

min min

min

,

0

a c a C

C

GDD T T T T

GDD T

− −

−

= − 

= 
  (4) 

 

Average temperature (Ta) was estimated 
using the method 3 of the AquaCrop model 
with the following equations: 
 

max

max
max

min
min

,
2

,
2

,
2

X n
X C

C n
a C

C n
X C

T T
Ta T T

T T
Ta T T

T T
Ta T T

−

−

−

−

−

+
= 

+
= 

+
= 

  (5) 
 

where Tc-min and Tc-max are the base and upper 
air temperatures of the field in which the crop 
develops, and Tx and Tn are the maximum and 
minimum air temperatures of the day, 
recorded at a weather station. Although rice 
crop can survive under adverse temperatures 
between 8 °C and 30 °C (Nuruzzaman et al., 
2000), for rice cultivation, the AquaCrop 
model considers a reference value 10 °C and 
30 °C as Tc-min and Tc-max, respectively, for 
estimating GDD. However, most of the 
reported AquaCrop rice parameters are 
based on calendar days. Only Raes et al. 
(2018) reported a wide range of values for 
phenology parameters. In consequence, there 
is a gap in having calibrated AquaCrop 
parameters expressed in GDD. 
In rice cultivation, various research has been 
developed that describe the phenological 
development according to the cumulative 
GDD. The study employed the system 
proposed by Counce and Keisling (2000), 
which includes critical time (S0 to S3), the fully 
expanded leaf stages (V1 to V13), and 
reproductive stages (R0 to R9). 

 
 

Figure 1. (a) Daily minimum and maximum air temperatures; (b) Daily rainfall and reference evapotranspiration (ETo) 
during the study period from December 2017 to April 2018. 
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These were assigned to each phenological 
phase based on cummulative GDD accruals 
for the IR71706 rice genotype, as described 
in Figure 2. 
The IR71706 rice genotype is a highly appre-
ciated crop to its high tolerance to water 
stress, with a reported yield of ap-
proximately 8 t ha−1 (Heros et al., 2014). The 
optimum air temperature for flowering it was 
between 20 °C – 27 °C. 
 

Crop Parameters 
The AquaCrop model uses three crop pa-
rameter categories: a) conservative para-
meters (location, cultivation, or manage-
ment practices), which do not necessarily 
change with time, b) specific management 
and c) cultivation parameters, when cali-
brated for local conditions (Steduto et al., 
2012). 
 

Soil Data 
Soil texture was characterized as sandy loam 
soil (15% clay, 63% sand, 22% silt). The Soil 
Water Characteristics Hydraulic Properties 
Calculator 
(https://hrsl.ba.ars.usda.gov/soilwater/Index.
htm) was used to determine bulk density, 

SWC at saturation (SAT), Field capacity 
(FC), permanent wilting point (PMP), and 
saturated hydraulic conductivity, as de-
scribed in Table 1. 
 

Irrigation Data 
Irrigation management comprised four irri-
gation regimes that maintained AWD thresh-

old levels at Ψw = 0, −10, −15, and −20 kPa. 

Irrigation schedules and plans were main-
tained according to experimental treat-
ments applied. Irrigation was applied using 
a drip irrigation system, using an automatic 
drip discharge of 3.75 L h–1, a pressure of 1 
bar, and 95% emission uniformity. Irrigation 
applications were scheduled to guarantee 
that the level of SWC in the root zone was 
maintained between FC and SAT, except 
during the wetting–drying cycles when SWC 
decreased to a given AWD threshold level 
according to the treatments used. The 
amount of irrigation water applied, and the 
irrigation dates were monitored during the 
experimental periods. Because the 
recommended optimum fertilizer dose was 
applied to the study zone (Heros et al., 
2014), soil fertility was not considered a 
limitation. 

 
Table 1 
Hydraulic properties from soil 
 

Depth Bd FC SAT PWP (Ksat) 

(cm) (g cm−3) (cm3 cm−3) (cm3 cm−3) (cm3 cm−3) (mm day−1) 

0 – 30 1.54 0.225 0.445 0.100 225 
 

Bd: Bulk density; Ksat: saturated hydraulic conductivity; FC: field capacity; PWP: permanent wilting point; SAT: Saturation. 
 

  
 

 

 
 

Figure 2. Graphic representation of the rice crop phenology based on cummulative GDD. 
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Table 2 
Performance rating of statistical indicators 
 

Performance Rating EF RSR d 

Very good 0.75 < EF < 1.00 0.00 < RSR < 0.50 d > 0.9 
Good 0.65 < EF < 0.75 0.50 < RSR < 0.60 0.80 < d < 0.89 
Satisfactory 0.50 < EF < 0.65 0.60 < RSR ≤ 0.70 0.5 < d < 0.79 
Unsatisfactory EF < 0.50 RSR > 0.7 d < 0.50 

Source: Moriasi et al. (2017); Raes et al. (2018).  
 

AquaCrop Model Calibration 
Although the AquaCrop model recommends 
default growing characteristics and param-
eter values for rice crops, certain relevant 
model parameters should be locally ad-
justed. Basic model data was determined 
based on field observation data, including 
the meteorological data, soil data, applied 
irrigation, irrigation management, and initial 
SWC. Besides, model parameters were cali-
brated and validated to obtain the crop 
growth model applicable to the experi-
mental area (Zhai et al., 2019).  
The model was calibrated using field infor-
mation obtained from the experiment, such 
as CC variation and SWC, for the November 
2017–April 2018 growing season. 
Crop growth variables were measured, and 
the phenological stages were recorded. For 
certain parameters that were not easily 
measurable during the experiment, such as 
the KcTr, default model values were used 
(Raes et al., 2018). Further, non-conserva-
tive parameters associated with crops, soil, 
management, and phenological stages typi-
cally require an adjustment to consider local 
situations (Steduto et al., 2012). 
During calibration, some of the most sensi-
tive parameters of the AquaCrop model 
were adjusted for matching the simulation 
results and measured values, as reported by 
Geerts et al. (2008) and Salemi et al. (2011). 
For some of the parameters not measured 
during the experiment, default model values 
were used. Observations of phenological 
stages of the crop (transplantation to recov-
ery, days to maximum CC, and days to har-
vest) were used in the calibration. During 
the process, CC and soil water content 
(SWC) were calibrated. Besides, final 
biomass was adjusted during consecutive 
simulations until a reasonable adjustment 
between the measured and simulated 
biomass was obtained. Other parameters 
were adjusted similarly. 
 

Model Evaluation Criterion 
The performance evaluation of the 
AquaCrop model, field measurements 
(observed data) were compared with CC 
and SWC results generated by the model 
(simulated data). The goodness of fit was 
quantified using four statistical indicators: 
the Nash–Sutcliffe efficiency (EF), standard 
deviation ratio (RSR), Willmott index (d), and 

determination coefficient (R2). Because 
each statistical indicator has its limitations, 
the use of a set of indicators is more robust 
for sufficiently assessing model perfor-
mance to simulate crop growth. These 
indicators are shown in equations 6–9. 
Furthermore, Table 2 presents the perfor-
mance rating based on the statistical 
indicator values provided by Moriasi et al. 
(2017) and Raes et al. (2018). Equation (6, 7, 
8, 9). 
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 (9) 

 
In these equations, Yiobs and Yisim represent 
the observed values and the simulated 
values obtained with the AquaCrop model, 

respectively; Yi
ōbs and Yis

īm are their mean 

values, and n is the number of observations. 

 
3. Results and discussion 
 

Model Calibration 
Calibrated parameter values are presented 
in Table 3. The calibration was conducted 
using the data collected during the 
November 2017–April 2018 growing season. 
 
Canopy Cover Development 
After model calibration, the simulated 
values were strong correlated with the 
measured values. CC values under the four 
irrigation treatment procedures were 0.94; 
0.84; 0.88; and 0.83; thereby validating the 
model as applicable for simulating rice crop 
growth. 
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Table 3 
Default and calibrated parameter values used in the simulation of the IR71706 rice genotype under AWD for a soil water 
potential of T0: −10 kPa, T1: −15 kPa, and T0: −20 kPa 
 

Description Raes et al., 2018 Used 

Growth and Production    

Normalized water productivity WP* (g m-2) 19 18.5 C 
Reference harvest index HI (%) 35–50 43 M 

 

Phenology 
Upper temperature (°C) 30 30 L 
Base temperature (°C) 8 10 L 
Time from transplanting to recover (GDD) 35-100 50 C 
Time from transplanting to flowering (GDD) 100-1300 1150 C 
Time from transplanting to start senescence (GDD) 1000-1500 1300 C 
Time from transplanting to maturity (GDD) 1500-2000 1855 C 
Length of the flowering state (GDD) 300-400 350 C 
Time from Maximum effective rooting depth (GDD) 383 553 C 

 

Morphology 
Soil surface covered by an individual seedling at 90% recover 
(cm2/plant) 

3-8 6 C 

Number of plants per hectare 300000-1500000 200000 C 
Canopy growth coefficient CGC (% GDD-1) 6-8 7.9 C 

Maximum canopy cover CCx (%) 
Almost entirely 

covered 
98 M 

Canopy decline coefficient CDC (% GDD-1) 0.005 0.0046 C 
Maximum effective rooting depth (m) 0.6 0.289 M 
Crop transpiration coefficient (KcTr) 1.15 1.15 L 
Crop decrease coefficient (%/day) 0.15 0.15 L 
Effect of canopy cover on reducing soil evaporation in late season stage (%) 50 50 L 
Soil water depletion threshold for canopy expansion - Upper threshold 0 0 L 
Soil water depletion threshold for canopy expansion - Lower threshold 0.4 0.78 C 
Shape factor for Water stress coefficient for canopy expansion 3 0.5 C 
Soil water depletion threshold for stomatal control - Upper threshold 0.5 0.67 C 
Shape factor for Water stress coefficient for stomatal control 3 0.5 C 
Soil water depletion threshold for canopy senescence - Upper threshold 0.55 0.69 C 
Shape factor for Water stress coefficient for canopy senescence 3 0.5 C 

 

Parameters origin: Measured: M, Calibrated: C, Literature: L 

 
 

 
 

Figure 3. Canopy cover (%) measured and simulated under AWD irrigation management during the entire vegetative 
period of the crop, drying cycles during the vegetative tillering period, and beginning of primordial flowering (V4–V8 
and R0). EF: Nash–Sutcliffe efficiency; RSR: standard deviation ratio; d: Willmott index; R2: determination coefficient. 
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Figure 3 presents the CC development for the 
entire simulated and observed crop growing 
season. The model showed a tendency for 
underestimating the CC measured during the 
early growing and ripening seasons, with 
similar results being reported by Guo et al. 
(2018). Also, the deficient treatment proce-
dures (T1 and T2) exhibited CC reduction in 
the drying cycles during AWD irrigation, 
thereby miscalculating the maximum crop CC. 
In general, the model adequately simulated CC 
development (%) during the entire growing 
season, according to the classification 
provided by Moriasi et al. (2017) and Raes et 
al. (2018). The T0 treatment showed “very 
good” fitted yields at an EF of 0.94, whereas 
the deficit treatment procedures (T1, T2, and 
T3) all reported values at an EF > 80. 
According to Guo et al. (2018), these results 
indicated that model yields decrease owing to 
water stress. 
Similarly, the model provided a high value > 
0.94 and a low RSR index < 0.44 for all treat-
ment procedures, indicating that the model 
can be used to simulate canopy coverage 
under different irrigation management re-
gimes. The simulated CC significantly corre-
lated with the measured data with an R2 > 0.84. 
R2 values obtained were within the 0.77 – 0.98 
range; this result was consistent with that 
reported by Amiri et al. (2016) using the 
AquaCrop model to simulate rice CC in Iran. 
 

Soil Water Content 
The simulation of SWC depletion during crop 
development is presented in Figure 4. The T0 
treatment showed very good performance, 

with Ψw values of 0 kPa, unlike the T1, T2, and 

T3 treatment procedures, with Ψw values of 

−10, −15, and −20 kPa, respectively; the latter 
treatments presented satisfactory and good 
performances. Similar SWC depletion trends 
were noted between the observed and 
simulated data with slight overestimation 
tendencies. Amiri et al. (2014), Hussein et al. 
(2011), and Mkhabela et al. (2012) reported 
similar results and concluded that although 
the AquaCrop model properly simulated irri-
gation under AWD, it tended to overestimate 
SWC always. Similarly, statistical indicators 
provided high d values of > 0.79 and high EF of 
> 0.52 and low RSR index of < 0.7. Also, these 
values were significantly correlated (R2 > 
0.64); therefore, the overall performance of 
the model was satisfactory. Besides, SWC 
variations between observed and simulated 
data may be caused by three essential factors: 
soil heterogeneity, SWC monitoring at a depth 
of 20 cm, unlike the AquaCrop model, which 
integrates SWC at a topsoil depth of 100 cm, 
and the contrasting watering bulb located 
under each dripper. 
The coefficient of determination (R2) between 
the measured and simulated seasonal CC was 
relatively high between 0.94 and 0.83, as 
displayed by the one to one plot (Figure 5). 
The correlation for soil water content plot 
shown in Figure 6 indicates that the model 
closely simulated the grain yield with ac-
ceptable accuracy. The R2 between 0.72 and 
0.75 with showed a good agreement between 
the simulated and measured yield Overall. 

 

 
Figure 4. Soil water content (mm) measured and simulated under AWD irrigation during the entire vegetative period of the 
crop, drying cycles during the vegetative tillering period, and beginning of primordial flowering (V4–V8 and R0). The red dotted 
horizontal line indicates AWD threshold levels at treatments with soil water potential of 0, −10, −15, and –20 kPa. 

R. Porras-Jorge et al. / Scientia Agropecuaria 11(3): 309 – 321 (2020) 

https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12757#jawr12757-fig-0006


-317- 

 

 
 

Figure 5. Correlation between measured and simulated values for soil water potential of T0: −10 kPa, T1: −15 kPa, and 
T0: −20 kPa for canopy cover. CCs: Canopy cover simulated; CCm: Canopy cover measured. 
 

 
 

Figure 6. Correlation between measured and simulated values for soil water potential of T0: −10 kPa, T1: −15 kPa, and 
T0: −20 kPa for soil water content (mm).  
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The grain yields measured for the treat-
ments were 9.03; 6. 94; 5.94, and 4.68 t ha−1, 
which were similar to simulated results 
(9.05; 7.90; 5.94 and 4.68 t ha−1), with a devi-
ation between 0.06 and 0.84, as described in 
Table 4. 
 

Water-use Efficiency 
Table 5 shows the irrigation volume applied 
in each treatment. The volume applied for 

the T0 control treatment was 9189 m3 ha−1. 
The difference between the T0 treatment 
and the T3 treatment, which is the higher 
water deficit treatment, was 1034 m3 ha−1, 
representing a saving of 11%. According to 
Heros et al. (2014), water consumption 
under flood irrigation in the rice plantation 
areas of Peru (the Chancay–Lambayeque 
valleys and the upper part of the Chira–Piura 
valley) varies from 12000 to 20000 m3 ha−1.  

 
Table 4 
Biomass calibration results: final treatment procedure yield 
 

Variables 
T0 (0 kPa) T1 (−10 kPa) T2 (−15 kPa) T3 (−20 kPa) 

M S σ M S σ M S σ M S σ 

Biomass (tons ha−1) 20.9 21.07 0.06 20.46 19.26 0.84 17.87 17.42 0.32 15.6 15.13 0.33 
Yield (tons ha−1) 9.03 9.054 0.02 6.94 7.90 0.68 5.94 5.75 0.13 4.68 5.45 0.54 

M: measured; S: simulated; σ: standard deviation. 

 
Table 5 
Water-use efficiency 
 

Treatment 
Soil water potential) 

threshold (kPa) 
Yield  

(kg ha−1) 
Volume of water applied 

(m3 ha−1) 
Water-use efficiency 

(kg/m3) 

T0 0 10290 9189 1.12 
T1 −10 9370 8781 1.07 
T2 −15 6770 8481 0.80 
T3 −20 6650 8155 0.82 

 
Table 6 
Rice AquaCrop parameters reported in the literature and comparison with calibrated data in this study. The measured 
average values for: HI, yield, and CCx for all treatment from this study are shown 
 

Köppen-
Geiger 
climate 
classification 
Seasonal 
weather  

Irrigation 
Method 

Soil 
type 

Density 
(pl ha-1) 

Tbase / 
Tupper 

Days / 
GDD 
(T-M) 

HI 
(%) 

Yield 
(t ha-1) 

CCx 
(%) 

WP* 

(g m-2) 
Reference/ 

country 

Humid 

subtropical 
monsoon 
Average 
temp.: 25.1 °C  
Precipitation: 
335.1 mm  

AWD 
Silty 
Loam 

235294 
8 oC 

30 oC 
117 days 

 
42 6.6 97 19 

Xu et al., 2019/ 
China 

Tropical 
savanna  
Average 
temp.: 15.5°  
Precipitation: 
104 mm 

Flooding 

Silty 
Clay 

250000 
8 oC 

30 oC 

100 days 
 

42 5.7 93 

19 
Maniruzzaman 

et al., 2015 / 
Bangladesh 

Fixed 
irrigation 
interval 

(five days) 

98 days 
 

42 5.9 97 

Fixed 
irrigation 
interval 
(eight 
days) 

 

96 days 
 

41 5.4 92 

Mediterranea
n hot summer 
Average 
temp.: 16.4 °C  
Precipitation: 
1339 mm. 

Flooding 
Silty 
Clay 

250000 
8 oC 

30 oC 
86 days 

1410GDD 
40 4.52 90 - 

Pirmoradian 
and Davatgar, 

2019 / 
Iran 

Desert arid  
Average 
Temp.: 22.84 
°C  
Precipitation: 
7 mm. 

Saturado 
(0 kPa) 

Sandy 
Loam 

200000 
10 oC 
30 oC 

138 days 
1855GDD 

 
43 

10.29 98 

18.5 
This study/ 

Peru 

AWD 
(-10 kPa) 

9.37 97 

AWD 
(-15kPa) 

6.77 95 

AWD 
(-20kPa) 

6.65 90 

Notes: Maximum canopy growth: CCx, Normalized water productivity: WP*, Harvest index: HI. The base temperature 
(Tbase) and upper temperature (Tupper) indicate the rice temperature used to calculate GDD. Time from transplanting 
to maturity: (T-M). 
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Table 7 
Irrigation Schedule based on AquaCrop results 
 

Description Units December January February March April Total 

Days in month days 18 31 28 31 30 138 
Net depth mm 8.33 8.33 8.33 8.33 8.33  
Efficiency % 95.00 95.00 95.00 95.00 95.00  
Gross depth mm 8.77 8.77 8.77 8.77 8.77  
ETo (Penman–Monteith) mm day−1 3.28 3.82 3.66 4.00 3.54  
Kc (FAO)  1.10 1.13 1.19 1.19 1.11  
Crop evapotranspiration mm day−1 3.61 4.32 4.35 4.76 3.93  
Irrigation frequency day 2 2 2 2 2  
Total volume m3 ha−1 650 1339 1218 1476 1179 5862 

 
Therefore, if compared against drip irrigation 
under AWD, 23% – 54% of water savings 
obtained. T0 and T1 treatments reduced water 
consumption, maintained grain yield, and 
improved WUE in rice, with values of 1.07 and 
1.12 kg m−3, respectively. However, for the T2 
and T3 treatments, WUE and yields decreased 
with the decrease in the volume of water 
applied. 
The irrigation schedule optimization can 
effectively reduce the displacement of paddy 
fields and reduce the emission of paddy (Zhai 
et al. 2019). 
A comparison among rice AquaCrop 
parameters is shown in Table 6. HI was 
calibrated as 43%, using observed data for the 
unstressed treatment. CCx and WP* values 
were calibrated as 98 and 18.5 g m-2, 
respectively. Those values are similar to those 
reported by Xu et al. (2019a); Maniruzzaman et 
al. (2015); Pirmoradian and Davatgar (2019). A 
significant advantage of water-driven models 
over radiation-driven models is the 
opportunity to normalize the water 
productivity (WP*) parameter for climate, 
making these models widely applicable in 
different locations (Steduto and Albrizio, 
2005; Steduto et al., 2007). For the case of 
measured yields, those values are higher than 
those cited using less plant density. However, 
Heros et al. (2014) reported similar yields for 
local varieties under flooded irrigation in 
Peruvian coastal-plains conditions. Results 
show that rice has good environmental 
conditions to obtain high yield with proper 
irrigation and agronomical management. 
The Aquacrop model simulated the expected 
crop growth and the soil water content with for 
rice AWD conditions with reasonable 
performance. The FAO-recommended 
parameterization of the model appears to 
work well once the typical calibration 
parameters were calibrated to a local scale.  
Rice Irrigation Schedule Optimization 
According to the AquaCrop Model 
Following model calibration, an irrigation 
schedule was implemented under a controlled 
irrigation scenario to reduce irrigation depth. 
For these purposes, crop ETo (Table 6) was 
used to improve the applicability of the 
AquaCrop model based on controlled 

irrigation data collected throughout the rice 
growth period (December–April). The rice 
irrigation calendar was optimized according 
to rice growth data. Simulation results, 
considering an irrigation schedule based on 
crop ETo, provided the same grain yields and 
water savings of 36.24% compared with the T0 
treatment. The T0 treatment employed daily 
irrigation and used a volume of 9189 m3. 

 
4. Conclusions 
 

The results indicated that once calibrated and 
validated, the AquaCrop model can be used to 
simulate rice yields under the AWD technique, 
where the critical factors to be considered are 
the AWD threshold level and drying times 
applied during the phenological season. 
Irrigation management strategies under AWD 

with Ψw values between −10 and −20 kPa 

during the tillering stages and at the beginning 
of primordial and flowering stages (V4–V8 and 
R0) would increase both yields and WUE. 

However, the threshold of Ψw below to −20 

kPa would reduce yields and WUE. Therefore, 
if correctly implemented, the application of 
AWD irrigation management strategies would 
help improve WUE and rice availability in Peru. 
The framework used in the present study can 
be applied to validate the AquaCrop model to 
generate new irrigation schedules based on 
AWD irrigation management for rice 
cultivation and to develop local water 
management strategies. Environmental and 
economic impacts on WUE should be 
considered in further studies. 
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