
-23- 

 
 
 
 
 

 

 

Postharvest respiration of fruits and environmental factors 
interaction: An approach by dynamic regression models 
 

Artemio Pérez-López1,* ; Martha Elva Ramírez-Guzmán2 ; Teodoro Espinosa-

Solares1 ; Eleazar Aguirre-Mandujano3 ; Carlos Alberto Villaseñor-Perea4
 

 

1 Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, 56230, Texcoco, Mexico. 
2 Colegio de Postgraduados, Campus Montecillo. 56230, Montecillo, Texcoco, Mexico. 
3 Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, 56230, Texcoco, Mexico. 
4 Departamento de Ingeniería Mecánica Agrícola, Universidad Autónoma Chapingo, 56230, Texcoco, Mexico. 

 
Received October 19, 2019. Accepted February 25, 2020. 
 
 

 

Abstract 
The respiratory metabolism of fruits is affected by multiple internal (product) and external 
(environmental) factors that often interact with each other. Among the external factors that have the 
greatest influence on respiration are temperature, air composition, moisture content, and illumination. 
This paper aims to elucidate the influence of environmental factors on the respiration rate of peach fruits 
based on transfer models obtained by dynamic regression modelling (ARIMAX). The fitted ARIMA models 
met the criteria of parsimony and white noise in residuals. The estimated coefficients of each model were 
statistically significant under the Durbin-Watson (DW), Akaike (AIC) and Schwarz (SBC) criteria. 
Transfer functions revealed 0.15% and 1.9% increase, and 0.001% decrease in the respiration rate of the 
peach fruit for each unit of change in temperature, relative humidity, and the illumination of the storage 
environment, respectively. The respiration rate response took place 1-8 minutes after the change in 
environmental variables had occurred. It was concluded that the dynamic regression modelling is 
reliable for predicting the physiological response of fruits the effect of external factors imposed 
continuously during postharvest handling. 
 

Keywords: respiration rate; time series, dynamic regression model; exogenous variables; transfer 
function. 
 

  

1. Introduction 
Respiration is the mechanism by which 
energy stored in carbohydrates provided by 
photosynthesis in plants is released. As part 
of the normal metabolism, the loss of this 
biomolecule results in a loss of fresh weight 
and visual quality of edible tissue of fruit in 
postharvest. There are multiple internal 
(product) and external (environmental) fac-
tors that promote a stress situation on the 
fruit, which will give rise to a wide range of 
physiological, biochemical and biophysical 
events that modify the respiration rate. 
External factors include temperature, air 
composition, moisture content, illumination, 
and mechanical damage  
The temperature has been considered the 
most influential since at extreme values it 
leads to the denaturation of enzymes or 
physical lesions, which significantly modify 

the respiration rate (Saltveit, 2016a). 
Perception and signalling probably occur 
within seconds of an injury, whereas the 
induction and response by cellular 
components may take minutes to hours 
(Bowles, 1993). Therefore, optimal storage 
temperatures are expected to minimize the 
development of disorders or deterioration in 
stored fruits. The water vapour content in 
the ambient air, the parameter of which is 
expressed in the concept of relative 
humidity, is another variable that can modify 
the metabolism of the tissue of fruit, through 
the phenomenon of water diffusion (Saltveit, 
2016b). Whitelock et al. (1999) verified that 
there is a significant decrease in the value of 
the mass transfer coefficient on the surface 
of peach fruits as a result of the increase in 
relative humidity and air velocity, and a 
decrease in the temperature of the surroun-
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ding air. The effect of light is another 
environmental factor that has been studied 
to understand the metabolism of edible plant 
tissues after harvest, to preserve quality 
during storage. In banana fruits, it 
accelerates natural ripening and reduces 
the pre-climacteric period (Özdemir, 2016), 
in tomato, an increase in lycopene content is 
reported (Liu et al., 2009). Gong et al. (2015) 
reported that blue light exposure induced 
peach fruit ripening, which was associated 
with an increase in ethylene production. In 
leafy vegetables, prolonged exposure to 
light is reported to cause excessive water 
loss and surface fissures (Xiao et al., 2014). 
Therefore, the magnitude of the 
physiological response of fruit in 
postharvest is linked to this multifactorial 
effect. 
The respiration rate of horticultural pro-
ducts, as a time-dependent phenomenon, 
has been extensively studied with determi-
nistic mathematical modelling to calculate 
the exact value of their future behaviour. 
However, probably no natural phenomenon 
is entirely deterministic due to the presence 
of unknown events that can modify this 
behaviour. In such a situation, it is possible 
to derive other types of models that can be 
used to calculate the probability of their 
future value with a certain level of reliability 
(Ho et al., 2016). These models are known as 
probability models or stochastic models 
(Box et al., 2015). Constructing such models 
requires a dataset known as a time series, 
whose characteristic is the chronological 
order and uniform spacing between its data 
over time. Thus, the data of the series are 
considered to be highly dependent on each 
other. 
The wide variety of uses that time series 
modelling can have is mentioned in the 
classic text of Box and Jenkins; however, in 
recent years its application has focused on 
the areas of environmental sciences, 
mathematics, and medicine, which together 
account for 31% of the total number of 
papers published concerning this topic in 
scientific journals, compared to only 8% in 
the area of agricultural and biological 
sciences (Maçaira et al., 2018). The advan-
tage of using this modelling procedure is 
that it enables working with complex 
phenomena where a stochastic component 
is present in the series with the possibility of 
incorporating the effect of one or more 
external variables into it.  
Stochastic models derived from time series 
are based on the stationarity assumption of 
the series, which holds that the process 
remains in statistical equilibrium with 
probabilistic properties that do not change 

over time (Box et al., 2015). However, time 
series in certain areas have nonstationary 
behaviour, so it is necessary to apply diffe-
rencing to achieve it. The stochastic models 
with the greatest application are the 
Autoregressive Integrated Moving Average 
(ARIMA) models, which base their cons-
truction on the methodology established by 
Box-Jenkins. ARIMA models are quite flexi-
ble because they can represent a time 
series as a pure Autoregressive (AR), pure 
Moving Average (MA) or combined Autore-
gressive-Moving Average (ARMA) compo-
nent (Li et al., 2020). These models are 
classified as ARIMA (p,d,q), where p indi-
cates number of autoregressive terms, d  
the degree of integration and q the number 
of moving average terms. The structure of a 
pure ARIMA model is represented in 
equation 1: 
 

∇𝑑𝑌𝑡 = 𝜇 +
𝜃(𝐵)

𝜑(𝐵)
𝑎𝑡                       (1) 

 

Where 𝑌𝑡 is the response series; ∇𝑑 the 

differencing operator; 𝑡 the time index; 𝜇 the 

process mean; 𝐵 the backshift operator; 

𝜃(𝐵) and 𝜑(𝐵) the moving average 
polynomials and autoregressive terms, 
respectively, and 𝑎𝑡 is the independent 

disturbance, also called the random error 
(Box et al., 2015). 
In complex systems where the response 
variable is influenced by multiple variables, 
it is necessary to incorporate them into the 
ARIMA model using transfer functions. This 
new generalized model is also known as a 
dynamic regression model or ARIMAX 
(Pankratz, 1991; Maçaira et al., 2018; Lin-Ya 
et al., 2019). The general structure of an 
ARIMAX model that includes the different 
disturbances (noise) is shown in equation 2. 
 

𝑌𝑡 = 𝜇 + ∑
𝜔𝑖(𝐵)

𝛿𝑖(𝐵)
𝐵𝑘𝑖𝑋𝑖,𝑡

𝑝
𝑖 +

𝜃(𝐵)

𝜑(𝐵)
𝑎𝑡                    (2) 

 

Where 𝜔𝑖(𝐵) and 𝛿𝑖(𝐵) are polynomials of 

degree s and r, respectively, for 𝑖 = 1, … , 𝑝 

explanatory series. The first polynomial 
represents the magnitude of the effect that 
the input series has on the output series and 
the second model the duration of the 
transferred impact (e.g. temporary or 

permanent). The operator 𝐵𝑘𝑖 represents the 

delay or dead time before a change in the 
input variable begins to take effect in the 
output series (Ramírez-Guzmán, 1993). A 
compact way of representing this expres-
sion is observed in equation 3. 
 

𝑌𝑡 = 𝜇 + ∑ 𝜗𝑖(𝐵)𝑋𝑖,𝑡
𝑝
𝑖 + 𝑁𝑡                      (3) 

 

Where 𝜗𝑖(𝐵) = 𝜗0 + 𝜗1𝐵 + 𝜗2𝐵2 + ⋯ is a signal 
or transfer function of the filter of the i th 
input series 𝑋𝑖,𝑡. The weights 𝜗0, 𝜗1, 𝜗2 form 
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the impulse response function of the system 
and represent the impact on 𝑌𝑡 of a unit 

change in 𝑋𝑖,𝑡. The noise term 𝑁𝑡 is assumed 

to be independent of the level of 𝑋𝑖,𝑡 and 

allows it to be modelled with an ARIMA 
process (p,d,q), where 𝑎𝑡 is reduced to white 
noise (Box et al., 2015). 
Ruby-Figueroa et al. (2017) report that 
ARIMA models showed good accuracy for 
flux prediction in the ultrafiltration of fruit 
juices. Qureshi et al. (2014) developed 
ARIMAX models to predict mango produc-
tion based on three exogenous variables, 
concluding that these variables have 
significant overall variation control over the 
obtained model, so the model is suitable for 
prediction purposes. On the other hand, 
Jalalkamali et al. (2015) demonstrated that 
the ARIMAX model has greater precision 
than other artificial intelligence models for 
predicting a dependent variable in a 
meteorological phenomenon.   
The stochastic behaviour of the respiration 
rate variables of fruit and the environmental 
factors that affect it allows modelling their 
joint behaviour using time series theory. 
This work aims to elucidate the influence of 
temperature, relative humidity, and envi-
ronmental illumination on the respiration 
rate of peach fruits based on the transfer 
models obtained by dynamic regression 
modelling. The magnitude of the impulse or 
gain will serve to quantitative evaluate the 
influence of environmental storage con-
ditions on fruit respiration under unsteady 
state conditions. 

 
2. Materials and methods 
 

2.1 Experimental tests 
Peach (Prunus persica L.) cv Diamante fruits 
were obtained from an experimental 
orchard located in the community of 

Coatepec Harinas (18°55′29.32″N 
99°46′07.98″W), State of Mexico, Mexico. 
Fruits were harvested at physiological 
maturity with uniform colouring. Before 
harvesting, fruits were visually inspected to 
rule out any specimens with any type of 
damage to their surface. During the transfer 
to the laboratory, the fruits were placed in 
corrugated cardboard boxes to avoid 
mechanical damage during transit. 
A continuous airflow measurement system 
was used for respiration rate evaluation. 
That device was designed by Pérez-López et 
al. (2014), consisting of a stainless-steel 
cylinder connected to a 1 HP air compressor 
through a pressure switch and a ball valve 
connected to the top of the cylinder. The 
airflow coming out of the cylinder passes 
through a board-mounted system consisting 
of a differential pressure manometer, a 
metering valve, and a flow meter. The air 
enters through the bottom of the 
respirometer, which consists of a 
hermetically sealed cylindrical container. A 
steel wire mesh basket was placed inside 
the container, inside which peach fruits of 
known weight were placed (Figure 1). 
A Telaire® carbon dioxide sensor (model 
7001, General Electric Company, CA, USA) 
connected to an external channel of a 
HOBO® data logger system (model U12-012, 
Onset Computer Corporation, MA, USA) was 
placed in the free space between the 
container and the wire mesh. The data 
acquisition system was programmed into a 
personal computer using HOBOware® Lite v. 
3.1.0 software (Onset Computer 
Corporation, MA, USA) to record CO2, 
temperature, relative humidity and 
illumination data every minute. Equation 4 
proposed by Pérez-López et al. (2014) was 
used to calculate the respiration rate. 

 
 

compressor cylindrical 
container

manometer

valve

valve

valve

air + CO2 
outlet    

presure 
switch

air flow
P

board-mounted system respirometer

sensor CO2 + data 
logger system 

 
 

Figure 1. Diagram of the setup of the fruit respiration measurement system.
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𝑅𝑟 =
(𝐶𝑂2)𝑜−(𝐶𝑂2)𝑖

100
 (

𝐹

𝑃
)                         (4) 

 

Where, Rr is the respiration rate, F is the 
airflow passing through the board-mounted 
system, P is the weight of the fruits inside the 
container and the subscripts “i” and “o” are 
the CO2 concentration, measured in the air 
before and after passing over the fruits 
inside the respirometer, respectively. 
 

2.2 Modelling 
The model with the structure of Equation 2 
were defined dynamic regression model, 
better known as ARIMAX model. To build this 
model, the theoretical information of the 
study phenomena was used to select the 
interest variable (output variable) and its 
affectations (input variables). This theory 
may also suggest the form of a relationship 
between these variables. The ARIMAX 
modelling assume that if both output [𝑌𝑡] and 

input [𝑋𝑡] time series is stationary, then the 
linear combination of stationary time series 
is stationary and the residuals are stationary 
also (Jere and Moyo, 2016; Lin-Ya et al., 
2019). 
The procedure for constructing ARIMAX 
models is described in the book of Box et al. 
(2015). The modelling strategy has three 
parts: (1) model identification, (2) model 
estimation, and (3) verification of 
parameters. If a satisfactory model is found, 
the output variables can be forecasted and, 
thus, to evaluate the performance of the 
model. Firstly, stationarity tests of the 
output [𝑌𝑡] and input [𝑋𝑖,𝑡] time series were 

carried out through graphical inspection 
and unit root tests; if the condition was not 
fulfilled, differencing operations were 
applied to transform it into a stationary 
series. Secondly, order proposals were 
developed in the AR and MA terms of the 
stationary input and output time series, 
trying to reduce the residuals in white noise 
series (uncorrelated, normal distribution 
and homoscedastic) (Hipel and McLeod, 
1994). The autocorrelation (ACF) and partial 
autocorrelation (PACF) functions served as 
a reference to find the appropriate order 
(p,q) for the proposed model. According to 
the procedure called pre-whitening and 
cross-correlation functions (CCF), 
emphasized by Box and Jenkins, the 
structure of the ARIMAX model was obtained 
(Pankratz, 1991). The coefficients of the 
selected model were estimated using the 
maximum likelihood (ML) method. To 
corroborate the statistical significance of 
the estimated coefficients of the ARIMAX 
model, the Durbin-Watson (DW), Akaike 
information criterion (AIC) and Schwarz 
information criterion (SBC) tests were used. 

Efforts were made at all times to find 
parsimony in the proposed model. 
 

3. Results and discussion 
 

The ARIMA and ARIMAX models were 
constructed using the PROC ARIMA 
procedure of the Statistical Analysis System 
for Windows release 9.4 Statistical Software 
(SAS Institute Inc., 2018). The descriptive 
statistics of the series show the location and 
variability statistics of the series considered 
(Table 1).  
 
Table 1 
Descriptive statistics of the original output [Yt] and input 
[Xt1, Xt2, Xt3] variable time series 
 

Time series average variance 

Yt: respiration rate [mg CO2 
kg-1 h-1] 

125.02 259.20 

Xt1: temperature [°C] 26.53 1.82 

Xt2: relative humidity [%] 83.64 26.67 

Xt3: illumination [lux] 84.22 4772.76 
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Figure 2. Original time series of the output variable 
(respiration rate) and the input variables or predictors 
(temperature, relative humidity, and illumination). 

 
Visual inspection of the graphs (Figure 2) 
and the Augmented Dickey-Fuller (ADF) unit 
root tests served to verify that the four 
original time series had a nonstationary 
behaviour pattern, i.e. the data did not show 
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constant fluctuation around the mean over 
time. The stationarity in mean and variance 
of the four series were corrected with the 
first difference (integrated order I). 
The stationary output series [Yt] was fitted to 
an ARIMA model (1,1,2); that is, the 
autoregressive term was of the first order 
and the moving average of the second 

order. The estimated coefficients of AR (1) 
and MA (2) were significant for the model (> 
t value) (Table 2). With this model, the Akaike 
(AIC) and Schwarz (SBC) criteria values 
were the smallest, so this model was the one 
that best fitted the data, without over 
parameterization (Box et al., 2015; Lin-Ya et 
al., 2019).

 
Table 2 
ARIMA and ARIMAX models of the output [Yt: respiration rate] and input [Xt1: temperature Xt2: relative humidity and Xt3: 
illumination] time series corresponding to the physiological process of respiration in peach fruits 
 

Type of model Fitted model 

Univariable (ARIMA)  

(1) Model for Yt 𝑌𝑡 = −0.00202 +
(1 − 0.52329𝐵 − 0.11027𝐵2)

(1 − 𝐵)(1 − 0.87868𝐵)
𝑎𝑡  

(2) Model for Xt1 𝑋𝑡1 = −0.00152 +
(1 − 1.71292𝐵 + 0.73307𝐵2)

(1 − 𝐵)(1 − 1.64903𝐵 + 0.6555𝐵2)
𝑎𝑡 

(3) Model for Xt2 𝑋𝑡2 = 0.020981 +
(1 − 0.29976𝐵 − 0.3523𝐵2)

(1 − 𝐵)(1 − 0.90261𝐵)
 𝑎𝑡  

(4) Model for Xt3 𝑙𝑜𝑔𝑋𝑡3 = −0.001 +
(1 − 2.30772𝐵 + 1.8384𝐵2 − 0.50444𝐵3)

(1 − 𝐵)(1 −  1.87716 B +  1.07329𝐵2 −  0.1374𝐵3)
 

 
Multivariable (ARIMAX) 

 

(5) 𝑌𝑡 explained by Xt1 𝑌𝑡 = 0.00011 +
(−0.4513𝐵3)

(1 − 0.95602𝐵)
𝑋𝑡1 +

(1 − 0.00127𝐵)

1
𝑎𝑡  

(6) 𝑌𝑡  explained by Xt2 𝑌𝑡 = 0.003023 +
(0.246998𝐵2)

(1 − 0.76831𝐵)
𝑋𝑡2 +

(1 − 0.01315𝐵)

1
𝑎𝑡  

(7) 𝑌𝑡  explained by Xt3 𝑌𝑡 = 0.000041 +
(−0.02579𝐵8)

(1 − 0.08836𝐵 + 0.97327𝐵2)
𝑙𝑜𝑔𝑋𝑡3 +

(1 − 0.000041𝐵)

1
𝑎𝑡 

(8) 𝑌𝑡  explained by Xt1, Xt2, Xt3 

𝑌𝑡 = 0.007706 +
(0.218803𝐵)

(1 − 0.70683𝐵 + 0.91527𝐵2)
𝑋𝑡1 +

(0.786424𝐵2)

(1 − 0.67343𝐵)
𝑋𝑡2

+
(−0.02432𝐵8)

(1 + 0.09054𝐵 + 0.97428𝐵2)
𝑙𝑜𝑔𝑋𝑡3 +

(1 − 0.03669𝐵)

1
𝑎𝑡 

     

     
Figure 3. ARIMA models of the output series Yt (A) and input series Xt1 (B), Xt2 (C) and Xt3 (D). 
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The data in the prediction curve had a good 
fit concerning the original series (Figure 
3A). The autocorrelation check of residuals 
showed a series with white noise, which 
indicates that the residuals are 
uncorrelated, and they also presented 
normal distribution and homoscedasticity 
(Hipel and McLeod, 1994). 
The stationary input series of temperature 
[Xt1], relative humidity [Xt2] and illumination 
[Xt3] were better fitted to the ARIMA (2,1,2), 
(1,1,2) and (3,1,3) models respectively. The 
estimated coefficients of the AR and MA 
terms, showed in Table 2, in each model 
were significant. The low values of the AIC 
and SBC criteria allowed obtaining 
parsimonious models and residuals with 
white noise. The values estimated with the 
ARIMA model showed a good fit concerning 
the original series (Figures 3B, 3C, 3D). The 
multivariable ARIMAX model considers the 
joint effect of the three-input series on the 
respiration rate (Table 2). This model 
expresses the respiration rate as a 
combination of past values of the random 
shocks and past values of temperature, 
relative humidity, and illumination. 
The non-contemporary impact detected by 
the transfer function indicates that for each 
unit of increase in temperature and relative 
humidity, respiration increases by 0.181 and 
2.4 mg CO2 kg-1 h-1, respectively, while for 
each percent unit of increase in illumination, 
it decreases by 0.011 mg CO2 kg-1 h-1 (Table 
3).  
 
Table 3 
The gain of the transfer function models of the 
physiological process of respiration rate in peach fruits 
 

Type of model Gain 

Yt  explained by Xt1,  

Yt  explained by Xt2,  
Yt  explained by Xt3 

0.181 

2.40 

-0.011 

 

This implies 0.15% and 1.9% increase, and 
0.001% decrease in the respiration rate of 
peach fruits because of changes in tempe-
rature, relative humidity, and illumination, 
respectively. The effects were observed 
between one and eight minutes of delay time 
after the change in environmental variables 
had occurred. 

 
4. Conclusions 
 

The transfer function revealed that a change 
in temperature, relative humidity, and the 
illumination of the storage environment 
causes an increase or decrease in the 
respiration rate of peach fruits. The effects 
on respiration were observed between one 
and eight minutes after the change in 
environmental variables had occurred. This 

modelling tool can be used to predict and 
explain the physiological response of fruits 
by the effect of external factors imposed 
continuously during postharvest handling. 
Better control of external factors and 
response pathways to these could make a 
major contribution to preserve the shelf life 
of fruits. 
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