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Abstract 

This study addresses the optimization and training of a convolutional neural network (CNN) aimed at the detection and 

segmentation of unstable zones in rock masses through digital image processing. To achieve this, YOLO v8 architecture 

was implemented using the Python programming language, leveraging its deep learning capabilities. The main objective 

was to develop a fast and effective tool to identify potentially dangerous areas in mining operations, especially in 

underground environments, to strengthen safety in the sector. The methodology included training the CNN with an image 

database collected in the surroundings of Huamachuco, complemented by a review of previous research that applied 

YOLO-based solutions to similar problems. The results show that the proposed procedure is suitable for achieving 

effective detection and segmentation of unstable zones in rock masses. In conclusion, the proposed solution has the 

potential to significantly improve mining safety by offering a reliable tool for identifying risk areas. 

Keywords: Convolutional neural network (CNN); digital image processing; rock mass; unstable zones; optimization; 

deep learning; training; YOLO v8.  

1. Introduction 

In recent decades, artificial intelligence has demonstrated a remarkable impact on image processing across 

various fields. For example, in pavement analysis, fuzzy systems and neural networks have been used to 

classify mixtures and detect cracks [1,2]. In the medical field, deep learning has been employed for melanoma 

detection in dermoscopic images, yielding promising results in diagnostic accuracy [3]. Likewise, 

convolutional neural networks (CNNs) have proven effective in shape segmentation and object detection tasks 

[4,5]. 

In this context, Song, Gao, and Chen [6] proposed a hybrid network called MSFFN, based on YOLO-v3, which 

achieved superior performance compared to Faster-RCNN in multispectral image detection. Similarly, recent 

studies have trained artificial intelligence models to predict landslides in the Ancash region, achieving an Area 

Under the Curve (AUC) of 90.5%, outperforming other architectures [7]. 

These advances highlight the versatility of CNNs and their potential in identifying complex patterns. The 

growing digitalization and automation of processes in the mining industry have opened new opportunities to 

improve the precision and speed of risk detection without compromising result quality [8]. Detecting unstable 

zones in rock masses is a critical challenge for safety in underground operations. In this regard, digital image 

processing and deep learning have emerged as effective tools for identifying potentially hazardous areas. 

The purpose of this study was to train and optimize a convolutional neural network based on the YOLO v8 

architecture, implemented in Python, for the detection and segmentation of unstable zones in rock masses. The 

main objective was to provide a fast and reliable tool that contributes to improving safety and efficiency in the 

mining sector. To achieve this, specific objectives were proposed, including: (a) tuning the neural network 
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through transformations of the image dataset and two training stages; (b) optimizing the model using the 

Stochastic Gradient Descent algorithm; (c) creating comparative tables with relevant accuracy and loss metrics; 

(d) graphing training and validation values to identify possible adjustments or overfitting; and (e) performing 

estimations on a set of test images collected around Huamachuco. 

In summary, this work aimed to demonstrate that the application of CNNs optimized through YOLO v8 

constitutes an effective solution for detecting unstable zones in underground mining, offering a significant 

advancement in risk prevention and worker protection. 

2. Materials and methods 

 

2.1 Population 

The population for this study is in the Sánchez Carrión province of the La Libertad region, consisting of 

photographs of rock masses found around the city of Huamachuco. 

 
Figure  1. Province of Sanchez Carrion 

2.2 Sample 

Photographic captures were taken of rock masses in the surroundings of the city of Huamachuco – La Libertad 

(specifically along the Huamachuco–Sanagoran road and the El Potrerillo sector on the way to Yanasara), with 

a total of 1324 photographs collected. 

2.3 Sample size 

The images have an average resolution of 4000x5000 pixels and are mostly in JPEG format. 

2.4 Type of research 

The research is Applied – Experimental in image recognition and segmentation, as its goal is to solve real-

world problems through the development of algorithms and systems that interpret and understand visual 

content in images, particularly in the mining field, such as recognizing the degree of fracturing that rock masses 

may exhibit. 

2.5 Artificial Neural Network 

A TLU (Threshold Logic Unit) is an artificial neuron that processes multiple inputs and produces an output. It 

works by computing a weighted sum of its inputs with associated weights and then activates if this weighted 

sum exceeds a threshold. The output may be 1 or -1, depending on the activation function used. 

Perceptrons are layers composed of TLUs, with each one connected to all inputs. In a sequence of TLUs, the 

output layer is fully connected to the inputs. In a multilayer neural network (MLP), there is an input layer, 

hidden layers, and an output layer. The connections between the hidden layers and the output layer become 

more abstract as the network deepens. 

In convolutional neural networks (CNNs) for object recognition, the focus is on image processing. CNNs use 

input pixels and take advantage of the hierarchical structure of real-world images. The first convolutional layer 

connects only to pixel regions in the image, extracting small features. These features are then merged with 

larger features in subsequent hidden layers. This hierarchical structure is key to the success of CNNs in image 

recognition. 
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Figure  2. Structure of a TLU or threshold logic unit 

 

 
Figure  3. Composition of a perceptron 

 

  
Figure  4. Diagram of how a convolutional neural network operates 

Abstract model of an artificial neuron 

 

𝑦 = 𝛾 (∑(𝑊𝑖 ∗ 𝑋𝑖)

𝑚

𝑖=1

+ 𝑊0) (1) 

 

Where: 

𝛾: Activation function 

𝑊𝑖: Weights associated with each input 

𝑋𝑖: Input values or data received by the artificial neuron 

𝑊0: Threshold weight or bias term 
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The function produces a binary output known as the all-or-nothing function, equivalent to the sign function. 

There is also a unit step function [9]: 

 

𝛾 = 𝑠𝑔𝑛(𝒵) = {
1, 𝑠𝑖 𝒵 ≥ 0

−1, 𝑠𝑖 𝒵 < 0
 

 
(2) 

𝛾 = 𝑈(𝒵) = {
1, 𝑠𝑖 𝒵 ≥ 0
0, 𝑠𝑖 𝒵 < 0

 

 
(3) 

 

Where: 

𝑈: Produces an output of 1 if the value is greater than or equal to zero, or 0 if it is less than zero. 

𝒵: The amount of "excitation" the neuron receives. 

 

During the training of a neural network, connections are established based on input images, and weights are 

adjusted to achieve accurate results. Prior training is essential for effective analysis. The neural architecture is 

built, weights are assigned and adjusted through modeling to minimize error and meet objectives [10]. 

 

𝑊𝑖𝑗(𝑡 + 1) = 𝑊𝑖𝑗(𝑡) + ∆𝑊𝑖𝑗(𝑡) (4) 

 

In supervised learning, a supervisor checks the network's output and, if it is not as expected, adjusts the weights 

to correct it. This process is known as error-correction learning. In this approach, weight adjustments are made 

based on the difference between the actual and expected results [11]. 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 =
1

2
∗ ∑ ∑(𝑦𝑗

𝑘 − 𝑡𝑗
𝑘)

2
𝑀

𝑗=1

𝑃

𝑘=1

 (5) 

 

Calculation of the relative variation of the error: 

 

∆𝑊𝑖𝑗 = −𝛼 ∗
𝜕 ∗ 𝐸 ∗ [𝑊𝑖𝑗]

𝜕 ∗ 𝑊𝑖𝑗
 (6) 

 

Calculation of the accumulated relative variation of the error for all patterns: 

 

∆𝑊𝑖𝑗 = −𝛼 ∗
𝜕 ∗ 𝐸 ∗ [𝑊𝑖𝑗]

𝜕 ∗ 𝑊𝑖𝑗
 = 𝛼 ∑(𝑡𝑗

𝑢 − 𝑦𝑗
𝑢)

𝑃

𝑘=1

∗ 𝑥𝑗
𝑢 (7) 

 

It is essential that a neural network be capable of generating new and unseen responses during training. This 

highlights the importance of an effective training process with low error, indicating that the network has 

learned the necessary patterns [10]. 

However, there is a risk of overfitting, where adjustments to reduce error result in increased error due to 

excessive memorization. To prevent this, cross-validation is used to identify the optimal point where the 

network has learned sufficiently [10]. 
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Figure  5. Analysis of the neural network “overfitting” phenomenon 

 

2.6 Convolutional neural network 

A Convolutional Neural Network (CNN) is an artificial network designed to detect and classify objects such 

as images by identifying spatial and temporal features. It contains convolutional layers that extract initial 

features like edges and corners, which are then used to recognize shapes in deeper layers. The final fully 

connected layer makes predictions based on these extracted features [12]. 

The Softmax activation function is used in the output layer for multi-class classification, scaling the inputs to 

a range between 0 and 1 and normalizing the output: 

 

𝑦𝑗 =
𝑒𝒵𝑖

∑ 𝑒𝒵𝑖𝑗∈𝑔𝑟𝑜𝑢𝑝
 (8) 

 

ReLU (Rectified Linear Unit) is commonly used and is defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) .  

 

(𝑅𝑒𝐿𝑢, 𝑅(𝑥)) = max (0, 𝑥)) (9) 

 

The convolution operation applies a kernel to an image to produce a new output [25][13]: 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ =

𝑛

𝐼(𝑚, 𝑛)

𝑚

𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (10) 

 

In a Convolutional Neural Network (CNN), the convolutional layer is the core component where most of the 

computation takes place. It takes a color image as input with three dimensions height, width, and depth 

corresponding to RGB channels. A filter or kernel acts as a feature detector, sliding over the image to determine 

the presence of specific features [14]. 

The convolution operation allows the network to focus on specific regions of the image, learning spatial 

hierarchies from local patterns such as contours, edges, color blobs, and lines [15]. 

A 2D filter represents a small region of the image and is typically a 3x3 matrix. The product between the input 

pixels and the filter is computed by applying the filter over sections of the image. This process is repeated until 

the filter has scanned the entire image, producing a feature map or convolved activation map as the final output 

[14]. 

 rror

Test error

Training 

error

 inimum

generalization error

 o. of

iterations
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Figure  6. Convolutional layer 

 

(a) Defines the fundamental goal to be achieved, (b) Describes the process, tools, data, and technical steps 

followed to obtain the results, (c) These are the direct findings from the experiment or study, and (d) It is the 

interpretation of the results.  

The reduction of layers and the pooling operation are strategies used to reduce the amount of input data in a 

neural network by employing different methods to select or average values within a window [16][15]. 

The classification layer in a convolutional neural network (CNN) uses the features extracted by the previous 

layers and their filters to perform the classification task. Fully connected layers (FC) often use the softmax 

activation function to classify inputs, generating probabilities between 0 and 1. Meanwhile, convolutional 

and pooling layers commonly use ReLU functions. 

In the visual representation of a CNN, the process starts with convolution, where filters multiply pixels and 

sum them to create a feature map. Then, the ReLU function is applied, modeling relationships between 

inputs and outputs by truncating negative values. Next, the pooling layer reduces the map size to speed up 

computation and prevent overfitting. 

Finally, the fully connected layers act as classifiers in the convolutional network. They use techniques such 

as dropout, which deactivates neurons to prevent overfitting. In summary, a CNN extracts features, applies 

nonlinear functions, reduces redundant information, and performs the final classification [12]. 

 
Figure  7. Convolutional neural network 
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2.7 YOLO-v8 

YOLO (You Only Look Once) approaches object detection as a single regression problem, simultaneously 

predicting bounding boxes and class probabilities [17]. Unlike previous approaches, it does not reuse classifiers 

[17]. YOLOv8, released in 2023 by Ultralytics (the creators of YOLOv5), uses PyTorch and has no restrictions, 

reducing bounding box predictions and accelerating the Non-Maximum Suppression (NMS) technique. It 

offers five scaled versions, from nano to extra-large, and its architecture includes 1x1 reduction layers followed 

by 3x3 convolutions [17][18]. 

 

 
Figure  8. YOLO v8 architecture 

 
Figure  9. Number of parameters in YOLO v8 for Its different versions 

 

2.8 Stochastic gradient descent (SGD) optimizer 

Stochastic Gradient Descent (SGD) is an optimization algorithm used in convolutional neural networks to 

update the network’s weights during training [19]. SGD is computationally efficient and can be improved with 

momentum to accelerate the model’s convergence [20]. It is the basic optimization method, and the weight 

update step is defined as follows: 

 

𝑊 = 𝑊 − 𝛼 ∗ ∆𝑊 (11) 

 

In this case, the learning rate is fixed, meaning it does not change during training. 

 

 

 



 

Vasquez V. Journal of Advanced Mining Modeling, Publicado en línea 

 

3. Results 

Once the neural network model is defined, some transformations will be applied to the collected image dataset 

to reduce training time and increase performance. New augmented versions of each image in the training 

dataset will be added, enabling the model to learn from more information. 

Furthermore, the optimizer will be implemented and compiled with multiple epochs (in 2 stages) to properly 

regulate the neural network. 

After researching various optimizers, it has been concluded that the most suitable one for the characteristics of 

our database due to its efficiency and strong results is SGD (Stochastic Gradient Descent). Although there are 

other options such as RMSprop, Adam, and more, SGD was selected for this study. 

 

3.1 Database description 

The image dataset consists of photographs showing fractures in rocks and rock masses from the surroundings 

of the city of Huamachuco – La Libertad. A total of 1,324 images were collected. To reduce processing time, 

only the most suitable and relevant images were selected, resulting in a final dataset of 226 images, which 

were divided into the following subsets: 

 
Table 1.Initial image dataset 

Training  Validation Testing 

159 46 23 

3.2 Labeling, transformation, and creation of new image sets 

Labeling was carried out by identifying visible fractures in the images and attempting to frame the entire 

corresponding area. This is a labor-intensive and crucial process. The quality of the labels determines how well 

the neural network learns to identify and successfully segment the fractures. 

 

 
Figure  10. Example of image labeling 

 

For the image transformations (before training and model compilation), which include cropping, resizing, 

rotation, and more, only two preprocessing techniques were applied due to their unique benefits for the dataset: 

− Resizing: Reduce the image size to 650x650 pixels. 

− Auto-orientation: Standardize the pixel ordering. 

Additionally, the following augmentation parameters were used to generate new sets of images: 

− Flip: Add horizontal or vertical flips to make the model insensitive to the subject’s orientation. 

− 90° Rotation: Add 90-degree rotations to help the model be insensitive to camera orientation. 

− Rotation: Add rotation variability to help the model be more robust to camera roll. 

− Shear: Add perspective variability to help the model be more robust to subject pitch and yaw. 

− Blur: Add random Gaussian blur to improve robustness to camera focus. 

− Noise: Add noise to make the model more resilient to camera artifacts. 
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Table 2. Image transformation values 

Parameter Transformation 

Flip Horizontal and vertical 

90° rotation Clockwise, counterclockwise, and upside down 

Rotation Between -45° and +45° 

Shear ±25° Horizontal and ±25° Vertical 

Blur Up to one pixel 

Noise Up to 5% of the pixels 

 

For the bounding box, some additional parameters were also applied: 

 
Table 3. Boulding box transformation values 

Parameter Transformation 

Flip Horizontal and Vertical 

90° rotation Clockwise, counterclockwise, and upside down 

Rotation Between -45° and +45° 

Shear ±25° Horizontal and ±25° Vertical 

 

After applying the various parameters, the dataset increased to 546 images, with the following distribution: 

 
Table 4. Final image dataset 

Training Validation Test 

435 61 22 

 

3.3 SGD optimizer metrics 

For the optimizer parameters, standard values will be used, as they have yielded good results in similar 

research. 

 
Table 5. SGD optimizer values 

Parameter Stage 1 Stage 2 

Learning rate 0.001 0.001 

Decay 1e-5 1e-5 

Momentum 0.9 0.9 

 

3.4 Training and regularization details 

The network training will consist of 2 stages of weak epoch training and one stage of strong epoch training. 

This is done to regulate the network and prevent overfitting and underfitting. The SGD optimizer (Stochastic 

Gradient Descent) will be used in all stages with the parameters previously mentioned. This algorithm is 

preferred because it avoids getting stuck in local minimum of the optimization function. The number of epochs 

is set at 55 and 80, respectively, for the corresponding training stages. 

 

3.5 Evaluation metrics 

Precision (Pres) is defined as the proportion of retrieved cases that are considered relevant. Meanwhile, Recall 

(Rec) refers to the fraction of relevant cases that have been identified relative to the total number of relevant 

cases [21]. 

 

𝑃𝑟𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

 

The Average Precision (AP) metric was introduced in the VOC2007 challenge [10] as a standard way to 

evaluate detector performance. AP corresponds to the area under the precision-recall (P-R) curve for a given 

class. Furthermore, the mean Average Precision (mAP) is calculated as the average of the AP scores across all 

classes. 

 



 

Vasquez V. Journal of Advanced Mining Modeling, Publicado en línea 

 

To evaluate the metrics accurately, a reference metric is needed to identify correct predictions. In this case, the 

Intersection-over-Union (IoU) is used. This metric establishes the ratio between the areas of overlapping 

regions (true positives, TP) and non-overlapping regions (false positives, FP), using the following formula 

[21]: 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐵𝑑𝑒𝑡 ∩ 𝐵𝑔𝑡)

𝐴𝑟𝑒𝑎(𝐵𝑑𝑒𝑡 ∪ 𝐵𝑔𝑡)
 (14) 

 

In this context, where Bgt represents the ground truth region and Bdet is the detected region, a prediction is 

considered a true positive (TP) if the IoU > 0.5; otherwise, it is a false positive (FP). Based on this, you can 

then calculate the values for equations (12) and (13) accordingly [21]. 

 

3.6 Stage 1 results 

It can be observed that in the first training stage, promising results have been obtained in terms of precision 

and mAP50, especially for both bounding box detection and segmentation. The precision values are quite high, 

indicating that the model is successfully identifying and segmenting with moderately acceptable performance. 

 
Figure  11. Confusion matrix for the training-validation set, for bounding box and segmentation – Stage 1 

Table 6. Summary of relevant results from training – stage 1 

Variables Box Segmentation 

Precision 0.872 0.776 

recall 0.639 0.663 

mAP50 0.782 0.695 

mAP95 0.497 0.336 

In the table showing the top 5 results for both bounding box detection and segmentation, it is observed that 

training set precision is high in the early epochs and remains consistently good in the middle and later epochs, 

indicating a good fit of the model to the training data. However, in the validation set, precision slightly 

decreases, which may suggest initial signs of overfitting. 

 
Table 7. Top 5 training results – bounding box (stage 1) 

Epoch Loss-train Precision-train Loss-val 

7 1.0132 0.88663 1.2686 

30 0.87902 0.87902 1.1341 

19 0.87861 0.87382 1.2145 

53 0.68747 0.87044 1.1086 

31 0.82581 0.86708 1.1235 
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Table 8. Training results – segmentation (stage 1) 

Epoch Loss-train Precision-train Loss-val 

7 3.2814 0.77319 3.6052 

30 2.8387 0.71371 3.3618 

19 3.0591 0.79444 3.0767 

53 2.7419 0.79013 3.1671 

31 2.9162 0.77074 3.273 

 

Additionally, it can be seen in the graphs that as epochs progress, losses decrease in both cases (bounding box 

detection and segmentation), which is a positive sign that the model is learning and adjusting correctly to the 

training data. However, some spikes in loss during the final epochs may be an early indicator of overfitting. 
 

 
(a) 

 
(b) 

Figure  12. Results obtained for the training and validation sets – bounding box and segmentation – Stage 

1(a) Results obtained for the bounding box training and validation set (b) Results obtained for the 

segmentation training and validation set – Stage 1 

 

For the validation process results, bounding box estimation is quite accurate in almost all cases. However, 

segmentation results are weaker but still acceptable, considering the metrics and existing challenges, such as 

the dataset size and manual labeling process.  

 

 
Figure  13. Validation process results – stage 1 
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For the test process results, with 22 images that the network had not previously interacted with, it is observed 

that bounding box estimations remain fairly accurate. Although, due to the aforementioned limitations and 

deficiencies, segmentation results are average yet in some cases, notably good. 

 

 
Figure  14. Image test process results – stage 1 

 

In the summary charts, which show the most relevant metric results, the performance and good fit of the model 

to the training data are more clearly demonstrated. 

 

 
(a) 

 
(b) 

 

Figura  15. Results of the Most Relevant Training Metrics for Bounding Box and Segmentation – Stage 1. 

(a) Results of the most relevant training metrics for bounding box. (b) Results of the most relevant training 

metrics for segmentation – Stage 1 

 

3.7 Stage 2 results 

The results in the second training stage are very promising, showing a moderately significant increase in both 

precision and mAP50 for bounding box detection and segmentation. Precision has improved in both tasks, 

recall has significantly increased, and mAP50 has also shown improvement. 
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Figure  16. Confusion matrix for the training-validation set, for bounding box and segmentation – Stage 2 

 

Table 9. Summary of key training results – stage 2 
Variable Bounding box Segmentation 

Precision 0.885 0.743 

Recall 0.743 0.699 

mAP50 0.826 0.71 

mAP95 0.521 0.36 

 

In the table of the top 5 results for bounding box detection and segmentation, it is observed that precision is 

high during early epochs and remains consistently good throughout mid and later epochs. This indicates a solid 

fit of the model to the training data. However, on the validation set, precision slightly decreases, which could 

be a sign of the onset of overfitting. 

 
Table 10. Top 5 highlighted training values for bounding box – stage 2 

Epoch Train loss Train precision Validation loss 

42 0.74145 0.92994 1.122 

59 0.71418 0.90587 1.1341 

54 0.76185 0.90476 1.1531 

45 0.74168 0.90378 1.1521 

72 0.72744 0.89877 1.1236 

 

Table 11. Top 5 highlighted training values for segmentation – stage 2 

Epoch Train loss Train precision Validation loss 

54 2.5476 0.83792 3.4276 

51 2.5253 0.83451 3.4341 

59 2.4381 0.83152 3.4662 

50 2.6359 0.82744 3.4834 

78 2.415 0.82464 3.3269 

 

Moreover, the graphs show that as the epochs progress, training loss decreases in both cases (bounding box 

and segmentation), but in the final epochs, validation loss spikes, diverging from training loss especially in 

segmentation, suggesting the model begins overfitting in that range. 
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(a) 

 
(b) 

Figure  17. Results for training and validation sets – bounding box and segmentation – Stage 2. (a) Training 

and validation results for bounding box. (b) Training and validation results for segmentation 
 

For the validation process results, the bounding box estimation is quite accurate in nearly all cases, similar to 

Stage 1. However, in terms of segmentation, the performance is weaker, and signs of overfitting can be 

observed. Even so, the estimations remain acceptable. 

 

 
Figure  18. Validation image results – stage 2 

 

In the summary graphs, where the most relevant metric results are displayed, the improvement achieved in 

Stage 2 becomes clearer. However, signs of overfitting affecting the segmentation parameters are also 

noticeable. 
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Figure  19. Test image results – stage 2 

 

In the summary charts, which show the most relevant training metrics, the results and the model's good fit to 

the training data are more clearly evident. 

 
(a) 

 
(b) 

 

Figure  20. Most Relevant Training Metrics for Bounding Box and Segmentation – Stage 2. (a) Most 

relevant training metrics for bounding box. (b) Most relevant training metrics for segmentation in Stage 2 

4. Conclusions 

The regulation process of the convolutional neural network, based on data augmentation techniques such as 

90° rotation and shearing, allowed for an increase in the training set from 218 to 518 images. By defining two 

training stages—one "weak epoch" of 55 cycles and one “strong epoch” of 80 and applying the Stochastic 

Gradient Descent (SGD) optimization algorithm with a learning rate of 0.001 and a momentum of 0.9, superior 

convergence and optimized performance were achieved. These methodological adjustments were crucial for 

enabling the network to reach greater generalization capacity in identifying complex patterns in the rock mass. 

Quantitative results confirm the superiority of the second training stage, especially in bounding box detection, 

where precision increased from 0.872 to 0.885 and recall significantly improved from 0.639 to 0.743, raising 
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the mAP50 to 0.826. In the area of segmentation, although precision slightly decreased (from 0.776 to 0.743), 

the mAP50 rose from 0.695 to 0.71. However, the analysis of the loss curves revealed the emergence of 

instability spikes during validation, indicating a more pronounced overfitting phenomenon in segmentation 

during Stage 2, slightly affecting the clarity of final estimations on the test images. 

As a main limitation, it was found that the observed overfitting restricts the network’s ability to maintain 

consistent accuracy in environments with extreme variations in lighting or textures not present in the training 

dataset. Therefore, for future work, it is recommended to implement stricter regularization techniques such as 

Dropout or Early Stopping, and to expand the dataset by incorporating a wider variety of geological samples. 

Additionally, integrating this model into real-time monitoring systems for geomechanical risk prevention is 

proposed, allowing for immediate response to signs of instability in mining operations. 
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