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Abstract

This study addresses the optimization and training of a convolutional neural network (CNN) aimed at the detection and
segmentation of unstable zones in rock masses through digital image processing. To achieve this, YOLO v8 architecture
was implemented using the Python programming language, leveraging its deep learning capabilities. The main objective
was to develop a fast and effective tool to identify potentially dangerous areas in mining operations, especially in
underground environments, to strengthen safety in the sector. The methodology included training the CNN with an image
database collected in the surroundings of Huamachuco, complemented by a review of previous research that applied
YOLO-based solutions to similar problems. The results show that the proposed procedure is suitable for achieving
effective detection and segmentation of unstable zones in rock masses. In conclusion, the proposed solution has the
potential to significantly improve mining safety by offering a reliable tool for identifying risk areas.

Keywords: Convolutional neural network (CNN); digital image processing; rock mass; unstable zones; optimization;
deep learning; training; YOLO v8.

1. Introduction

In recent decades, artificial intelligence has demonstrated a remarkable impact on image processing across
various fields. For example, in pavement analysis, fuzzy systems and neural networks have been used to
classify mixtures and detect cracks [1,2]. In the medical field, deep learning has been employed for melanoma
detection in dermoscopic images, yielding promising results in diagnostic accuracy [3]. Likewise,
convolutional neural networks (CNNs) have proven effective in shape segmentation and object detection tasks
[4,5].

In this context, Song, Gao, and Chen [6] proposed a hybrid network called MSFFN, based on YOLO-v3, which
achieved superior performance compared to Faster-RCNN in multispectral image detection. Similarly, recent
studies have trained artificial intelligence models to predict landslides in the Ancash region, achieving an Area
Under the Curve (AUC) of 90.5%, outperforming other architectures [7].

These advances highlight the versatility of CNNs and their potential in identifying complex patterns. The
growing digitalization and automation of processes in the mining industry have opened new opportunities to
improve the precision and speed of risk detection without compromising result quality [8]. Detecting unstable
zones in rock masses is a critical challenge for safety in underground operations. In this regard, digital image
processing and deep learning have emerged as effective tools for identifying potentially hazardous areas.

The purpose of this study was to train and optimize a convolutional neural network based on the YOLO v8
architecture, implemented in Python, for the detection and segmentation of unstable zones in rock masses. The
main objective was to provide a fast and reliable tool that contributes to improving safety and efficiency in the
mining sector. To achieve this, specific objectives were proposed, including: (a) tuning the neural network
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through transformations of the image dataset and two training stages; (b) optimizing the model using the
Stochastic Gradient Descent algorithm; (c) creating comparative tables with relevant accuracy and loss metrics;
(d) graphing training and validation values to identify possible adjustments or overfitting; and (e) performing
estimations on a set of test images collected around Huamachuco.

In summary, this work aimed to demonstrate that the application of CNNs optimized through YOLO v8
constitutes an effective solution for detecting unstable zones in underground mining, offering a significant
advancement in risk prevention and worker protection.

2. Materials and methods

2.1 Population
The population for this study is in the Sanchez Carrion province of the La Libertad region, consisting of
photographs of rock masses found around the city of Huamachuco.
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Figure 1. Province of Sanchez Carrion
2.2 Sample
Photographic captures were taken of rock masses in the surroundings of the city of Huamachuco — La Libertad
(specifically along the Huamachuco—Sanagoran road and the El Potrerillo sector on the way to Yanasara), with
a total of 1324 photographs collected.
2.3 Sample size
The images have an average resolution of 4000x5000 pixels and are mostly in JPEG format.
2.4 Type of research
The research is Applied — Experimental in image recognition and segmentation, as its goal is to solve real-
world problems through the development of algorithms and systems that interpret and understand visual
content in images, particularly in the mining field, such as recognizing the degree of fracturing that rock masses
may exhibit.
2.5 Artificial Neural Network
A TLU (Threshold Logic Unit) is an artificial neuron that processes multiple inputs and produces an output. It
works by computing a weighted sum of its inputs with associated weights and then activates if this weighted
sum exceeds a threshold. The output may be 1 or -1, depending on the activation function used.
Perceptrons are layers composed of TLUs, with each one connected to all inputs. In a sequence of TLUs, the
output layer is fully connected to the inputs. In a multilayer neural network (MLP), there is an input layer,
hidden layers, and an output layer. The connections between the hidden layers and the output layer become
more abstract as the network deepens.
In convolutional neural networks (CNNs) for object recognition, the focus is on image processing. CNNs use
input pixels and take advantage of the hierarchical structure of real-world images. The first convolutional layer
connects only to pixel regions in the image, extracting small features. These features are then merged with
larger features in subsequent hidden layers. This hierarchical structure is key to the success of CNNs in image
recognition.
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Figure 2. Structure of a TLU or threshold logic unit
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Figure 4. Diagram of how a convolutional neural network operates
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y= y(Z(Wi X))+ Wo)

=1

(1)

Where:

y: Activation function

W;: Weights associated with each input

X;: Input values or data received by the artificial neuron
Wy: Threshold weight or bias term
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The function produces a binary output known as the all-or-nothing function, equivalent to the sign function.
There is also a unit step function [9]:

1, siz=0
v =sgn(2) = {—1, 5iZ <0 2)
1, siZz=0
r=v@={; zzo 3)

Where:
U: Produces an output of 1 if the value is greater than or equal to zero, or 0 if it is less than zero.
Z: The amount of "excitation" the neuron receives.

During the training of a neural network, connections are established based on input images, and weights are
adjusted to achieve accurate results. Prior training is essential for effective analysis. The neural architecture is
built, weights are assigned and adjusted through modeling to minimize error and meet objectives [10].

Wi (t + 1) = W;(t) + AW;;(t) ‘ 4) ‘

In supervised learning, a supervisor checks the network's output and, ifit is not as expected, adjusts the weights
to correct it. This process is known as error-correction learning. In this approach, weight adjustments are made
based on the difference between the actual and expected results [11].

P M
) )=’ )

k=1 j=1

Global mean error =

N| =

Calculation of the relative variation of the error:

0 E + [W;]

AW;; = —a * 3 W, (6)

Calculation of the accumulated relative variation of the error for all patterns:

d*E x|W;;
AWL-]- = —q * L[U] = aZ(t]y — y}‘) * x]?* (7)

It is essential that a neural network be capable of generating new and unseen responses during training. This
highlights the importance of an effective training process with low error, indicating that the network has
learned the necessary patterns [10].

However, there is a risk of overfitting, where adjustments to reduce error result in increased error due to
excessive memorization. To prevent this, cross-validation is used to identify the optimal point where the
network has learned sufficiently [10].
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Figure 5. Analysis of the neural network “overfitting” phenomenon

2.6 Convolutional neural network

A Convolutional Neural Network (CNN) is an artificial network designed to detect and classify objects such
as images by identifying spatial and temporal features. It contains convolutional layers that extract initial
features like edges and corners, which are then used to recognize shapes in deeper layers. The final fully
connected layer makes predictions based on these extracted features [12].

The Softmax activation function is used in the output layer for multi-class classification, scaling the inputs to
arange between 0 and 1 and normalizing the output:

eZi
= Sl ®
ReLU (Rectified Linear Unit) is commonly used and is defined as f(x) = max(0, x) .
‘ (ReLu, R(x)) = max (0,x)) ‘ 9) ‘
The convolution operation applies a kernel to an image to produce a new output [25][13]:
SGf) = KDE) =Y > =10mm)K(i=m,j—n) (10)

In a Convolutional Neural Network (CNN), the convolutional layer is the core component where most of the
computation takes place. It takes a color image as input with three dimensions height, width, and depth
corresponding to RGB channels. A filter or kernel acts as a feature detector, sliding over the image to determine
the presence of specific features [14].

The convolution operation allows the network to focus on specific regions of the image, learning spatial
hierarchies from local patterns such as contours, edges, color blobs, and lines [15].

A 2D filter represents a small region of the image and is typically a 3x3 matrix. The product between the input
pixels and the filter is computed by applying the filter over sections of the image. This process is repeated until
the filter has scanned the entire image, producing a feature map or convolved activation map as the final output
[14].
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Figure 6. Convolutional layer

(a) Defines the fundamental goal to be achieved, (b) Describes the process, tools, data, and technical steps
followed to obtain the results, (c) These are the direct findings from the experiment or study, and (d) It is the
interpretation of the results.

The reduction of layers and the pooling operation are strategies used to reduce the amount of input data in a
neural network by employing different methods to select or average values within a window [16][15].

The classification layer in a convolutional neural network (CNN) uses the features extracted by the previous
layers and their filters to perform the classification task. Fully connected layers (FC) often use the softmax
activation function to classify inputs, generating probabilities between 0 and 1. Meanwhile, convolutional
and pooling layers commonly use ReLU functions.

In the visual representation of a CNN, the process starts with convolution, where filters multiply pixels and
sum them to create a feature map. Then, the ReL U function is applied, modeling relationships between
inputs and outputs by truncating negative values. Next, the pooling layer reduces the map size to speed up
computation and prevent overfitting.

Finally, the fully connected layers act as classifiers in the convolutional network. They use techniques such
as dropout, which deactivates neurons to prevent overfitting. In summary, a CNN extracts features, applies
nonlinear functions, reduces redundant information, and performs the final classification [12].
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Figure 7. Convolutional neural network
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2.7 YOLO-v8

YOLO (You Only Look Once) approaches object detection as a single regression problem, simultaneously
predicting bounding boxes and class probabilities [17]. Unlike previous approaches, it does not reuse classifiers
[17]. YOLOVS, released in 2023 by Ultralytics (the creators of YOLOVS), uses PyTorch and has no restrictions,
reducing bounding box predictions and accelerating the Non-Maximum Suppression (NMS) technique. It

offers five scaled versions, from nano to extra-large, and its architecture includes 1x1 reduction layers followed
by 3x3 convolutions [17][18].
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2.8 Stochastic gradient descent (SGD) optimizer
Stochastic Gradient Descent (SGD) is an optimization algorithm used in convolutional neural networks to
update the network’s weights during training [19]. SGD is computationally efficient and can be improved with

momentum to accelerate the model’s convergence [20]. It is the basic optimization method, and the weight
update step is defined as follows:

| W=W—ax*AW | (11) |

In this case, the learning rate is fixed, meaning it does not change during training.
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3. Results

Once the neural network model is defined, some transformations will be applied to the collected image dataset
to reduce training time and increase performance. New augmented versions of each image in the training
dataset will be added, enabling the model to learn from more information.

Furthermore, the optimizer will be implemented and compiled with multiple epochs (in 2 stages) to properly
regulate the neural network.

After researching various optimizers, it has been concluded that the most suitable one for the characteristics of
our database due to its efficiency and strong results is SGD (Stochastic Gradient Descent). Although there are
other options such as RMSprop, Adam, and more, SGD was selected for this study.

3.1Database description

The image dataset consists of photographs showing fractures in rocks and rock masses from the surroundings
of the city of Huamachuco — La Libertad. A total of 1,324 images were collected. To reduce processing time,
only the most suitable and relevant images were selected, resulting in a final dataset of 226 images, which
were divided into the following subsets:

Table 1.Initial image dataset

Training Validation Testing
159 46 23

3.2Labeling, transformation, and creation of new image sets

Labeling was carried out by identifying visible fractures in the images and attempting to frame the entire
corresponding area. This is a labor-intensive and crucial process. The quality of the labels determines how well
the neural network learns to identify and successfully segment the fractures.

Figure 10. Example of image labeling

For the image transformations (before training and model compilation), which include cropping, resizing,
rotation, and more, only two preprocessing techniques were applied due to their unique benefits for the dataset:
—  Resizing: Reduce the image size to 650x650 pixels.
— Auto-orientation: Standardize the pixel ordering.
Additionally, the following augmentation parameters were used to generate new sets of images:
—  Flip: Add horizontal or vertical flips to make the model insensitive to the subject’s orientation.
—  90° Rotation: Add 90-degree rotations to help the model be insensitive to camera orientation.
— Rotation: Add rotation variability to help the model be more robust to camera roll.
—  Shear: Add perspective variability to help the model be more robust to subject pitch and yaw.
—  Blur: Add random Gaussian blur to improve robustness to camera focus.
— Noise: Add noise to make the model more resilient to camera artifacts.
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Table 2. Image transformation values

Parameter Transformation

Flip Horizontal and vertical

90° rotation Clockwise, counterclockwise, and upside down
Rotation Between -45° and +45°

Shear +25° Horizontal and +25° Vertical

Blur Up to one pixel

Noise Up to 5% of the pixels

For the bounding box, some additional parameters were also applied:

Table 3. Boulding box transformation values

Parameter Transformation
Flip Horizontal and Vertical
90° rotation Clockwise, counterclockwise, and upside down
Rotation Between -45° and +45°
Shear +25° Horizontal and +25° Vertical

After applying the various parameters, the dataset increased to 546 images, with the following distribution:

Table 4. Final image dataset

Training Validation Test
435 61 22

3.3SGD optimizer metrics
For the optimizer parameters, standard values will be used, as they have yielded good results in similar
research.

Table 5. SGD optimizer values

Parameter Stage 1 Stage 2
Learning rate 0.001 0.001
Decay le-5 le-5
Momentum 0.9 0.9

3.4 Training and regularization details

The network training will consist of 2 stages of weak epoch training and one stage of strong epoch training.
This is done to regulate the network and prevent overfitting and underfitting. The SGD optimizer (Stochastic
Gradient Descent) will be used in all stages with the parameters previously mentioned. This algorithm is
preferred because it avoids getting stuck in local minimum of the optimization function. The number of epochs
is set at 55 and 80, respectively, for the corresponding training stages.

3.5 Evaluation metrics

Precision (Pres) is defined as the proportion of retrieved cases that are considered relevant. Meanwhile, Recall
(Rec) refers to the fraction of relevant cases that have been identified relative to the total number of relevant
cases [21].

TP
_ 12
Press TP+ FP (12)
TP
Rec = —— 13
*“TTP+FN (13)

The Average Precision (AP) metric was introduced in the VOC2007 challenge [10] as a standard way to
evaluate detector performance. AP corresponds to the area under the precision-recall (P-R) curve for a given
class. Furthermore, the mean Average Precision (mAP) is calculated as the average of the AP scores across all
classes.
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To evaluate the metrics accurately, a reference metric is needed to identify correct predictions. In this case, the
Intersection-over-Union (IoU) is used. This metric establishes the ratio between the areas of overlapping
regions (true positives, TP) and non-overlapping regions (false positives, FP), using the following formula

[21]:

Area(Bget N Byt)

- Area(Bget U By;)

(14)

In this context, where Bgt represents the ground truth region and Bdet is the detected region, a prediction is
considered a true positive (TP) if the IoU > 0.5; otherwise, it is a false positive (FP). Based on this, you can
then calculate the values for equations (12) and (13) accordingly [21].

3.6 Stage 1 results

It can be observed that in the first training stage, promising results have been obtained in terms of precision
and mAP50, especially for both bounding box detection and segmentation. The precision values are quite high,
indicating that the model is successfully identifying and segmenting with moderately acceptable performance.
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Figure 11. Confusion matrix for the training-validation set, for bounding box and segmentation — Stage 1

Table 6. Summary of relevant results from training — stage 1

Variables Box Segmentation
Precision 0.872 0.776
recall 0.639 0.663
mAP50 0.782 0.695
mAP95 0.497 0.336

In the table showing the top 5 results for both bounding box detection and segmentation, it is observed that
training set precision is high in the early epochs and remains consistently good in the middle and later epochs,
indicating a good fit of the model to the training data. However, in the validation set, precision slightly
decreases, which may suggest initial signs of overfitting.

Table 7. Top 5 training results — bounding box (stage 1)

Epoch Loss-train Precision-train Loss-val
7 1.0132 0.88663 1.2686
30 0.87902 0.87902 1.1341
19 0.87861 0.87382 1.2145
53 0.68747 0.87044 1.1086
31 0.82581 0.86708 1.1235
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Table 8. Training results — segmentation (stage 1)

Epoch Loss-train Precision-train Loss-val
7 3.2814 0.77319 3.6052
30 2.8387 0.71371 3.3618
19 3.0591 0.79444 3.0767
53 2.7419 0.79013 3.1671
31 29162 0.77074 3.273

Additionally, it can be seen in the graphs that as epochs progress, losses decrease in both cases (bounding box
detection and segmentation), which is a positive sign that the model is learning and adjusting correctly to the
training data. However, some spikes in loss during the final epochs may be an early indicator of overfitting.
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Figure 12. Results obtained for the training and validation sets — bounding box and segmentation — Stage
1(a) Results obtained for the bounding box training and validation set (b) Results obtained for the
segmentation training and validation set — Stage 1

For the validation process results, bounding box estimation is quite accurate in almost all cases. However,
segmentation results are weaker but still acceptable, considering the metrics and existing challenges, such as
the dataset size and manual labeling process.
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Figure 13. Validation process results — stage 1
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For the test process results, with 22 images that the network had not previously interacted with, it is observed
that bounding box estimations remain fairly accurate. Although, due to the aforementioned limitations and
deficiencies, segmentation results are average yet in some cases, notably good.
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Figure 14. Image test pfocss.results — stage 1 ‘

In the summary charts, which show the most relevant metric results, the performance and good fit of the model
to the training data are more clearly demonstrated.
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Figura 15. Results of the Most Relevant Training Metrics for Bounding Box and Segmentation — Stage 1.
(a) Results of the most relevant training metrics for bounding box. (b) Results of the most relevant training
metrics for segmentation — Stage 1

3.7 Stage 2 results

The results in the second training stage are very promising, showing a moderately significant increase in both
precision and mAP50 for bounding box detection and segmentation. Precision has improved in both tasks,
recall has significantly increased, and mAP50 has also shown improvement.
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Figure 16. Confusion matrix for the training-validation set, for bounding box and segmentation — Stage 2

Table 9. Summary of key training results — stage 2

Variable Bounding box Segmentation
Precision 0.885 0.743

Recall 0.743 0.699

mAP50 0.826 0.71

mAP95 0.521 0.36

In the table of the top 5 results for bounding box detection and segmentation, it is observed that precision is
high during early epochs and remains consistently good throughout mid and later epochs. This indicates a solid
fit of the model to the training data. However, on the validation set, precision slightly decreases, which could
be a sign of the onset of overfitting.

Table 10. Top 5 highlighted training values for bounding box — stage 2

Epoch | Train loss Train precision | Validation loss
42 0.74145 0.92994 1.122

59 0.71418 0.90587 1.1341

54 0.76185 0.90476 1.1531

45 0.74168 0.90378 1.1521

72 0.72744 0.89877 1.1236

Table 11. Top 5 highlighted training values for segmentation — stage 2

Epoch | Train loss Train precision | Validation loss
54 2.5476 0.83792 3.4276
51 2.5253 0.83451 3.4341
59 2.4381 0.83152 3.4662
50 2.6359 0.82744 3.4834
78 2415 0.82464 3.3269

Moreover, the graphs show that as the epochs progress, training loss decreases in both cases (bounding box
and segmentation), but in the final epochs, validation loss spikes, diverging from training loss especially in
segmentation, suggesting the model begins overfitting in that range.
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Figure 17. Results for training and validation sets — bounding box and segmentation — Stage 2. (a) Training
and validation results for bounding box. (b) Training and validation results for segmentation

For the validation process results, the bounding box estimation is quite accurate in nearly all cases, similar to
Stage 1. However, in terms of segmentation, the performance is weaker, and signs of overfitting can be
observed. Even so, the estimations remain acceptable.
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In the summary graphs, where the most relevant metric results are displayed, the improvement achieved in
Stage 2 becomes clearer. However, signs of overfitting affecting the segmentation parameters are also
noticeable.
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Figure 19. Test image results — stage 2

In the summary charts, which show the most relevant training metrics, the results and the model's good fit to

the training data are more clearly evident.
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Figure 20. Most Relevant Training Metrics for Bounding Box and Segmentation — Stage 2. (a) Most
relevant training metrics for bounding box. (b) Most relevant training metrics for segmentation in Stage 2

4. Conclusions

The regulation process of the convolutional neural network, based on data augmentation techniques such as
90° rotation and shearing, allowed for an increase in the training set from 218 to 518 images. By defining two
training stages—one "weak epoch" of 55 cycles and one “strong epoch” of 80 and applying the Stochastic
Gradient Descent (SGD) optimization algorithm with a learning rate of 0.001 and a momentum of 0.9, superior
convergence and optimized performance were achieved. These methodological adjustments were crucial for
enabling the network to reach greater generalization capacity in identifying complex patterns in the rock mass.
Quantitative results confirm the superiority of the second training stage, especially in bounding box detection,
where precision increased from 0.872 to 0.885 and recall significantly improved from 0.639 to 0.743, raising
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the mAP50 to 0.826. In the area of segmentation, although precision slightly decreased (from 0.776 to 0.743),
the mAP50 rose from 0.695 to 0.71. However, the analysis of the loss curves revealed the emergence of
instability spikes during validation, indicating a more pronounced overfitting phenomenon in segmentation
during Stage 2, slightly affecting the clarity of final estimations on the test images.
As a main limitation, it was found that the observed overfitting restricts the network’s ability to maintain
consistent accuracy in environments with extreme variations in lighting or textures not present in the training
dataset. Therefore, for future work, it is recommended to implement stricter regularization techniques such as
Dropout or Early Stopping, and to expand the dataset by incorporating a wider variety of geological samples.
Additionally, integrating this model into real-time monitoring systems for geomechanical risk prevention is
proposed, allowing for immediate response to signs of instability in mining operations.
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