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Abstract 

 

The purpose of this study was to analyze the use of the K-Nearest Neighbors (KNN) method to anticipate slope 

failures in open-pit mining, using the geotechnical parameters of each slope. The assessment of landslide 

hazards in open-pit mine slopes can be described as the evaluation of the potential collapse risk of these 

structures, which is essential to ensure operational safety. To achieve this, continuous monitoring of the slopes 

and the evaluation of all variables that may influence their stability are imperative. A quantitative approach 

was applied, evaluating the factor of safety classified as stable (ST), moderately stable (OF), and unstable 

(FSB), considering a distance of K = 11 nearest neighbors. The geomechanical relationships among the slope 

parameters significantly contributed to improving the prediction of slope stability conditions. With the 

implementation of the KNN algorithm, highly effective results were obtained for slope stability prediction, 

achieving a precision of 0.90, sensitivity (recall) of 0.90, and F1-score of 0.90 for stable slopes (ST), as well 

as an overall accuracy of 83.33%. Finally, the KNN method is a reliable alternative for predicting stable slope 

conditions in open-pit mining. The selected k-value demonstrated a prediction efficiency of 73.73%, 

facilitating technical decision-making and contributing to the reduction of slope failure risks through a 

systematic analysis of slope variables. 

 

Keywords: K-Nearest Neighbors (KNN), Slope stability, Open-pit mining, Slope failure prediction, 

Geotechnics. 

1. Introduction 

Data mining constitutes a process that employs various analysis tools in order to identify patterns, models, and 

relationships within large sets of information, which can later be used to make reliable predictions. 

In the mining field, multiple disciplines intervene to ensure that operations are carried out safely and 

efficiently. One of the essential areas is geotechnics, whose purpose is to study, interpret, and anticipate the 

behavior of soils and rocks, so that mining works and activities can be executed without landslides or structural 

failures [1]. 

Within this discipline, slope stability in surface mining operations is a fundamental aspect, as it is linked to the 

analysis of the geotechnical characteristics of the materials that make up the pit, considering its three scales: 

bench, inter-ramp, and global. A slope is considered to have failed when it reaches a displacement that 

compromises its operational safety or when it no longer adequately fulfills the function for which it was 

designed. In such situations, it is necessary to modify the initial configuration and design established by 

engineering. 

One of the most used algorithms in the field of machine learning for the generation of predictive models is 

(KNN). This method learns by identifying similarities between a new data point and other nearby data points 
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within the multidimensional space. The KNN algorithm is part of the classification techniques commonly used 

in data mining processes [2]. 

The problem faced by miners is the construction of slopes with good stability, which motivates the formulation 

of the following question: How is the (KNN) algorithm applied to predict collapse in open-pit mine slopes? 

The general objective of this article is to examine the application of K-Nearest Neighbor (KNN) to anticipate 

slope failure in surface mining. As specific objectives, the following are proposed: Analyze the relationship 

between various geotechnical characteristics through KNN to anticipate landslides; evaluate the effectiveness 

of the KNN model using classification accuracy measures and the confusion matrix; analyze how data is 

distributed in relation to the training and testing datasets using K-Nearest Neighbor to anticipate slope failures. 

This research article contributes to the knowledge about the prediction of mining events, specifically slope 

failures, through the application of an algorithmic method based on data collected in the field and processed 

using the Python programming language. 

2. Materials and methodology 

The purpose of this research is to demonstrate the reality of the information with due scientific rigor, which 

will allow obtaining valid and efficient results through the application of the (KNN) algorithm for predicting 

slope collapse in surface mining. Mining operations must be carried out based on geotechnical studies of the 

rock mass, in order to determine the condition of the soils and rocks. In open-pit operations, knowing the 

physical properties of the rocks is always an essential requirement [3]. 

 

2.1. Parts of a slope 

 
Figure 1. Slope components 

 

In Figure 1, the slope and its corresponding parts can be observed, showing how a slope occurs in surface 

mining. There are two different variables classified on the x and y axes, and there is an unknown in the middle 

for which the safety factor must be: FS ≥ 1.5 stable, 1.20 ≤ FS < 1.5 marginally stable, FS ≤ 1.20 unstable.  

At the beginning, the separation between this unknown location and the other points is determined by the value 

of K, which limits the number of data points examined. This indicates how many nearby neighbors should be 

considered when analyzing according to the established parameters [4]. 

The safety, functional efficiency, and profitability of mining activities largely depend on the stability of slopes 

in open-pit mines. Over time, various strategies have been developed and implemented to measure and ensure 

the stability of these slopes. One of the most common approaches is the limit equilibrium method, known for 

its ease of use and effectiveness in various geotechnical situations [5]. 

 

2.2. Rock quality designation (RQD) 

This analysis examined the consistency of such slopes using geomechanical techniques based on RQD. The 

strategy included field investigations for geological and geotechnical identification [6]. 
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Table 1. Rock quality (RQD) 

 

 

 

 

 

 

 

2.3. Barton’s Q index 

The Barton Q Index helps to predict the support and stress in rock-excavated slopes by providing guidelines 

on a safe slope angle. The Q value is calculated using the following parameters: rock quality (RQD), number 

of joint sets (Jn), joint roughness index (Jr), joint alteration index (Ja), geological condition factor (Jwice), and 

the slope-strength reduction factor [7]. 

Table 2.  art n’s Q in ex 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Geological strength index (GSI) 

The simplicity of the GSI system proves to be its main disadvantage, as it only measures the fracturing level 

of the rock mass and the condition of discontinuity surfaces [8]. 

 

2.5. K-Nearest Neighbors (KNN) 

KNN is described as a prediction technique in the field of supervised learning that is based on the distance 

between the current sample and the nearest neighbors, which are determined by a value of k. This determines 

the outcome of the prediction made [9]. 
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Figure 2. Geological strength index (GSI) 
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Figure 3. K-Nearest Neighbors (KNN) 

 

In Figure 3, it is shown that K equals 3. Taking the dataset into account, it is possible to identify the category 

of a particular data point by measuring its closeness to other samples. There are several approaches to calculate 

this closeness, with Euclidean distance being the most used method to evaluate the separation between two 

locations [10]. 

 

𝐷(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2+. . +(𝑥𝑛 − 𝑦𝑛)2                                                                 (1) 

 

Where  

𝐷(𝑥, 𝑦) - metric distance between 2 points 

x, y – specific variables,  

n – number of dimensions. 

After the value of k was established and the KNN model was trained, this method was used to predict the risk 

of slope collapse with varying characteristics, by comparing the attributes of the new data point only with those 

in the training dataset [11]. 

2.5.1. Confusion matrix 

The confusion matrix was used to assess the specific performance of each model in relation to different rock 

classes. This table compiles the correct predictions versus incorrect ones, facilitating the detection of 

classification bias, confusion between similar lithologies, and systematic recurring errors [12]. 

2.5.2. Performance metrics 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 

 

(2) 

 

Where: 

TP – True positives 

TN – True negatives 

FP – False positives 

FN – False negatives 

 

Positive precision =
TP

TP + FP
 

                         (3) 
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Recall =
TP

TP + FN
 

(4) 

 

F1 − Score = 2 ∗
Precision ∗  Recall

Precision +  Recall
 

(5) 

 

2.6. Description of the data and how it will be processed in KNN 

 
Figure 4. Data flowchart 

2.7. Instrumentation and data collection techniques 

The instruments used for handling data from the open-pit mine were: compass, clinometer, hammer, and 

geotechnical forms, which were analyzed in tables containing authentic information that helps to detail the 

properties of slopes across various rock samples. The applied methodologies are based on technical references 

and multiple documents related to slope failure analysis [2]. The variables used for the database are: 

H0: Discontinuity persistence length (m) 

H1: Discontinuity spacing (mm) 

H2: Discontinuity roughness grade 

H3: Discontinuity orientation 

H4: Weathered rock 

H5: Groundwater presence 

H6: Total slope elevation (m) 

H7: Global slope inclination (°) 
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Table 3. Slopes with FSB Status – 0 (Inter-ramp failure) 

H0 H1 H2 H3 H4 H5 H6 H7 STATUS 

12.86 3.08 3.91 3.18 1.99 4.01 193 38.81 FSB 

11.54 2.9 4.29 3.8 2.78 3.8 241.16 41.83 FSB 

18.11 3.03 3.24 3.21 3.83 4.29 590.74 36.38 FSB 

17.49 2.9 3.17 4.2 3.98 4.12 803.71 34.94 FSB 

14.74 3.03 3.94 3.05 2.11 4.02 482.7 35.37 FSB 

1.26 3.06 3.81 3.99 2.09 2.84 182.52 40.18 FSB 

0.42 0.51 3.07 3.81 3.21 2.82 179.47 51.73 FSB 

2.6 2.91 2.88 3.16 2.08 2.98 323.14 52.85 FSB 

2.4 0.55 2.9 3.12 2 2.81 285.79 67.09 FSB 

8.37 3.14 4.14 5.17 4.26 5.04 725.92 41.43 FSB 

23.55 2.97 2.79 4.65 3.93 2.94 317.19 53.42 FSB 

26.49 3.21 2.8 4.84 3.18 1.85 308.54 57.82 FSB 

12.82 2.81 1.86 4.17 3.18 2.78 346.12 59.06 FSB 

21.32 2.97 3.15 3.77 3.9 3.04 337.51 53.24 FSB 

21.28 2.92 3.96 2.96 2.85 4.16 314.9 47.19 FSB 

5.18 2.93 3.14 3.74 3.23 2.87 530.77 49.1 FSB 

10.02 3.16 2.9 4.27 3.17 3.84 232.53 44.92 FSB 

5.07 3.02 4.32 4.24 3.95 4.22 154.29 57.67 FSB 

6.79 0.53 3.73 3.08 3.2 4.07 637.25 38.06 FSB 

6.83 0.54 2.09 5.39 2.81 3.09 770.32 31.25 FSB 

8.1 0.56 3.14 3 3.85 4.21 222.46 29.68 FSB 

6.46 3.07 3.96 4.13 2.97 4.77 156.37 44.53 FSB 

9.95 4.89 4.13 3.17 2.95 3.89 327.55 52.81 FSB 

5.52 3.03 3.16 2.1 4.25 3.97 452.57 25.92 FSB 

6.21 0.52 2.09 3.14 0.93 3.91 48.18 44.24 FSB 

11.13 0.31 1.89 1.91 4.26 4 19.21 49.94 FSB 

9.34 2.15 1.85 1.92 2.09 4.16 20.18 48.64 FSB 

Table 4. Slopes with OF Status – 1 (Global failure) 

H0 H1 H2 H3 H4 H5 H6 H7 STATUS 

11.97 3.06 2.1 3.93 2.12 5.13 173.24 31.7 OF 

25.91 6.58 3.23 5.06 2.08 3.81 199.4 39.51 OF 

0.86 3.03 2.78 4.64 2.94 3.03 92.41 54.78 OF 

0.66 2.84 2.94 5.22 1.91 2.05 169.17 46.29 OF 

6.83 2.82 2.79 4.16 2.15 2.9 226.22 35.36 OF 

7.05 3.19 2 3.75 2.03 1.93 18.82 44.45 OF 

6.15 2.76 3.09 5.36 2.97 3.87 757.8 32.62 OF 

6.17 2.84 1.97 5.01 3.09 3.12 730.55 40.94 OF 

7.79 3.01 2.98 5.21 2.79 2.89 733.17 34.51 OF 

10.47 3.09 3.08 3.76 2.88 2.96 209.34 32.69 OF 

9.77 3.1 2.93 4.76 3.73 2.98 193.93 34.96 OF 

14.41 3.15 2.03 3.69 3.07 3.88 194.94 31.43 OF 

16.14 3.04 3.9 2.9 1.89 2.06 272.11 45.46 OF 

18.54 3.01 3.03 3.06 2.8 3.05 454.51 29.89 OF 
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17.09 4.8 3.11 5.28 2.08 2.02 272.47 36.32 OF 

18.02 4.76 2.84 4.07 2.15 3.1 593.75 35.22 OF 

19.68 2.76 3.22 4.01 4.21 4.06 95.7 42.91 OF 

5.46 3.09 3 4.26 3.14 3.01 267.51 32.94 OF 

11.68 0.49 2.05 3.88 1.05 3.96 53.99 51.74 OF 
 

Table 5. Slopes with ST Status – 2 (Stable) 

H0 H1 H2 H3 H4 H5 H6 H7 STATUS 

29.62 3.01 3.07 3.75 3.86 4.63 195.21 52.33 ST 

21.19 2.99 3.81 0.98 3.04 5.22 206.07 34.99 ST 

10.63 0.98 3.02 3.85 4.63 4.92 195.69 57.68 ST 

9.9 1.11 3.17 4 4.87 4.95 216.99 59.08 ST 

24.05 3.23 2.79 4.22 4.24 5.07 214.5 46.83 ST 

22.75 0.98 3.98 2.82 3.76 5.37 202.68 45.29 ST 

7.78 2.91 2.78 4.04 2.8 5.02 164.43 48.5 ST 

2.38 1.26 3 2.93 4.16 4.64 185.61 47.66 ST 

1.62 0.75 4.08 2.14 3.05 5.23 157.6 39.21 ST 

1.66 1.52 3.85 3.19 3.03 5.01 166.75 42.59 ST 

2.08 1.16 3.15 2.84 4.22 4.84 174.93 42.61 ST 

6.74 3.06 4.07 2.14 3.94 5.18 427.23 34.56 ST 

11.52 2.91 3.83 3.72 4.07 4.84 595.05 36.03 ST 

13.81 3.08 3.21 1.94 3.17 5.17 443.64 37.58 ST 

6.61 5.56 3.83 3.04 4.01 3.88 299.53 36.26 ST 

12.76 2.82 3.86 3.19 2.82 3.7 361.48 32.25 ST 

0.51 3.13 4.01 1.98 3.15 4.32 193.16 52.73 ST 

0.71 0.56 3.73 3.21 2.84 3.98 95.51 51.89 ST 

0.98 3.04 3.2 2.82 3.76 3.94 93.21 59.81 ST 

6.48 2.77 4.18 2.95 2.87 4.14 237.66 38.5 ST 

5.62 0.54 2.91 2.78 4.23 4.8 719.54 28.95 ST 

4.16 0.56 1.84 3.82 2.99 4.85 715.32 33.95 ST 

2.6 0.51 3.92 2.88 3.22 5.32 730.02 32.08 ST 

1.84 0.52 3.71 1.94 3.94 4.86 309.78 51.53 ST 

6.21 0.56 4.23 2.92 3.84 4.9 517.86 54.63 ST 

3.09 2.83 5.1 2.08 4.09 4.08 464.84 57.3 ST 

4.68 0.59 4.21 4.1 3.94 5.27 491.75 42.77 ST 

4.48 3.01 4.14 3.02 3.75 4.8 509.84 58.35 ST 

3.09 0.56 3.92 3.01 5.38 5.28 249.34 52.99 ST 

3.29 0.57 3.97 3.22 4.14 4.9 331.28 52.83 ST 

2.3 0.09 3.86 2.09 3.74 5.21 321.66 45.17 ST 

2.24 0.52 3.17 1.93 4.26 3.89 118.05 41.86 ST 

3.76 0.59 4.27 1.94 4.17 4.05 721.38 40.66 ST 

3.32 0.58 3.88 2.05 3.2 3.98 713.13 37.76 ST 

3.77 0.52 3.16 2.84 3.72 3.95 725.57 43.15 ST 

2.97 0.1 4.21 1.84 4.02 4.69 237.7 33.74 ST 

4.24 0.53 3.96 2.05 3.8 3.82 251.93 25.06 ST 
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3.71 3.01 4.05 2.82 3.98 4.72 104.27 41.82 ST 

7.63 0.57 4.17 3.06 3.74 4.17 282.6 52.78 ST 

 

2.7.1. Data handling method 

The information collected and evaluated regarding slopes in open-pit mining will be analyzed through the 

application of the KNN method. 

2.7.2. Procedure 

To use the KNN approach in predicting slope collapse, a dataset was employed that incorporates details about 

the geotechnical properties of the slope and the terrain. With this information, the KNN method was trained 

with the objective of assessing the risk of landslides, taking into account the characteristics of the ground and 

the type of failure that could occur on the slope [13]. 

3. Results 

Persistence refers to the increase in the dimensions of the discontinuity, and aperture is the measurement of 

the distance between them. 

 
Figure 5. Relationship between aperture and persistence parameters 

Sele ti n  f t e   timal K using all t e  ariables fr m  ur  ataset,  al ulate  in Pyt  n. 

 
Figure 6. Value of K = 11, Average Accuracy = 73.73% 
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3.1. Examine the relationship between various geotechnical characteristics using KNN to anticipate 

landslides 

 

 
Figure 7. Aperture vs persistence and their predictions 

In Figure 7, it is shown that stable slopes (ST) tend to cluster in areas with lower aperture and moderate 

persistence, while unstable slopes (FSB) are distributed at higher persistence levels or in critical combinations 

of aperture. Moderately stable slopes (OF) are positioned between these two groups, which explains their 

intermediate location on the model’s boundary. 

These areas are generated by the algorithm, which is based on the proximity of points, considering the 11 

nearest neighbors in a two-dimensional space. 

Empty blue circle = Predicted ST 

Empty red circle = Predicted OF 

Empty green circle = Predicted FSB 

 

 
Figure 8. Water condition vs weathered rock 
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In general, Figure 8 shows that the KNN model correctly identifies the areas where slopes are stable, partially 

stable, or unstable, effectively distinguishing between categories based on the combination of rock 

weatherability and groundwater condition. The relationship between actual and estimated data indicates that 

the model performs well in classifying these two variables. 

Upper right (low weatherability and low groundwater level): ST (stable) 

Central area (high weatherability and medium groundwater levels): FSB (unstable), OF (intermediate stability) 

 

 
Figure 9. Inclination vs elevation and their predictions 

In Figure 9, it is illustrated that the combination of total elevation and slope inclination effectively distinguishes 

the various categories of slope stability. Slopes with low elevation and steep inclination are often classified as 

unstable (FSB), while those with higher elevation and moderate slopes are primarily classified as stable (ST). 

Low elevation slopes (0 – 150 m): OF (medium stability), some FSB (unstable) → L  er sl  es  it  stee  

inclinations tend to be considered as having intermediate stability. Medium elevation slopes (200 – 400 m): 

FSB (unstable), OF (medium), ST (stable) →  t me ium  eig ts, in linati n is   nsi ere  t e m st  e isi e 

factor in stability. High elevation slopes (400 – 800 m): ST (stable) 

 

3.2. Evaluate the effectiveness of the KNN model using classification accuracy metrics and the confusion 

matrix 
 

3.2.1. The confusion matrix obtained for the KNN model with k = 11 

𝟓 𝟏 𝟏
𝟎 𝟏 𝟎
𝟏 𝟎 𝟗

 (1) 

 

3.2.1.1. FSB category (unstable) — Row 1 

5 instances were correctly identified as FSB 

1 instance was incorrectly labeled as OF 

1 instance was wrongly labeled as ST 

3.2.1.2. OF Category (medium stability) — Row 2 

1 actual instance of OF was correctly identified as OF 

There were no misclassifications in this category 

ST Category (Stable) — Row 3 

9 instances were correctly identified as ST 

1 instance was misclassified as FSB 
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3.2.2. Optimal slope status report 

Table 6. Optimal classification report 
 Precision Recall F1 - Score Support 

FSB 0.83 0.71 0.77 7 

OF 0.50 1.00 0.67 1 

ST 0.90 0.90 0.90 10 

 

 
Figure 10. Precision and recall report 

 

 n Figure 10, t e m  el’s  erf rman e is s   n t  be ex ellent. 

 

3.2.2.1. Precision 

Measures the correct predictions made by the model: 

FSB: 0.83 

OF: 0.50 

ST: 0.90 

3.2.2.2. Recall (Sensitivity) 

Measures the percentage of actual cases correctly detected by the model: 

FSB: 0.71 

OF: 1.00 

ST: 0.90 

3.2.2.3. F1-Score 

Balances precision and recall: 

FSB: 0.77 

OF: 0.67 

ST: 0.90 
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3.2.3. Global metric measurements 

Table 7 Accuracy, macro average, and weighted average scores 

 Precision Recall F1 - Score Support 

Accuracy   0.83 18 

Macro average 0.74 0.87 0.78 18 

Weighted average 0.85 0.83 0.84 18 

 

 

 
Figure 11. Precision, recall, and F1-Score for K = 11 

3.2.3.1. Macro Average. 

Precision: 0.74 

Recall: 0.87 

F1: 0.78 

3.2.3.2. Weighted Average 

Precision: 0.85 

Recall: 0.83 

F1: 0.84 

3.2.3.3. Accuracy: 83.33% 

The matrix provides a dataset indicating that the KNN model with k equal to 11 performs satisfactorily in 

classifying slopes (ST). This model correctly categorizes most of the FSB (unstable) and ST (stable) class 

cases, showing high values for both precision and recall, especially in the ST class (0.90). 

3.3. Analyze how the data are distributed in relation to the model fitting and testing using the K-Nearest 

Neighbor (KNN) algorithm to anticipate slope collapse 

 

In Figure 12, the data distribution illustrates the behavior of all geotechnical variables analyzed through the 

training dataset samples. Each line in the graph represents a variable, facilitating the visualization of its 

variability, range, and its connection with other parameters. Persistence spans the widest range of values, while 

most variables cluster between 2 and 5 units. The line corresponding to the target allows identifying class 

transitions (FSB, OF, and ST) and examining how slope conditions change at those points. Overall, this chart 

validates that the variables exhibit an adequate distribution, without significant outliers and with sufficient 

variability, which is essential for the functioning of the KNN algorithm that is based on distances. 
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Figure 12. Data distribution 

 
Figure 13. Test data distribution 

In Figure 13, the test group is shown, demonstrating how the geomechanical parameters used by the KNN 

algorithm to assess slope stability vary. It can be observed that the variables follow patterns similar to those in 

the training group, suggesting that the model was tested with characteristic data. Furthermore, changes in the 

target class (stable, moderately stable, and unstable) are related to changes in persistence, aperture, weathering, 

and discontinuity direction, confirming the model's relevance in anticipating slope behavior in real situations. 
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Table 8. Predictions with the KNN Model developed 

 

 

 

 

 

 

 

 

 

 

 

In Table 8, the predictions made by the KNN algorithm indicate that, out of 10 slopes with the given 

parameters, the model predicts greater stability for 7 slopes based on the 11 nearest neighbors (k = 11), showing 

good performance. 

4. Conclusions 

Geotechnical and geometric data such as persistence, aperture, roughness, discontinuity orientation, weathered 

rock, groundwater condition, slope height, and slope inclination were used to identify the stability states: stable 

(ST), intermediate (OF), and unstable (FSB). The predictions made using K-Nearest Neighbor (KNN) with K 

= 11 and an accuracy of 73.73% were developed through the relationships of slope parameters to determine 

whether a slope would remain stable or experience landslides. 

The performance of the (KNN) model was evaluated in the prediction of landslides using classification metrics 

such as precision (0.90), recall (0.90), and F1-score (0.90) for stable slopes (ST), and an accuracy of 83.33%, 

determining the model's capability to correctly classify slopes. 

The speed of the KNN method must be related to the number of input data and the number of nearest neighbors. 

The analysis of data distribution with K = 11 was very helpful in assigning the data to build and train the 

model, later validating its performance with the reserved test data. It should be noted that the training data 

represented 83.33%, and also indicates that with new parameters from 10 slopes, 7 slopes (ST and OF) showed 

greater stability according to their 11 nearest neighbors. 

 

5. Conflict of interest 

 

The author declares that there is no conflict of interest. 

6.  References 

[1] V. Hanna Castro, «Evaluación de tecnologías hiperespectrales en la caracterización mineral de yacimientos para 

aplicaciones geometalúrgicas: Caso aplicado a Mina Florida, Distrito Minero Alhué, Región Metropolitana, Chile», 2017.  

https://repositorio.uchile.cl/handle/2250/149764 

 

[2] V. M. Cangussu, «Proposta de modelo de predição da condição de estabilidade de taludes de mina com uso do 

algoritmo K-Nearest Neighbors.», 2022. http://www.monografias.ufop.br/handle/35400000/4105 

 

[3] F. M. P. Reis, «Aplicação de técnicas de aprendizado de máquina para análise da condição de estabilidade de 

taludes de mina: redes neurais artificiais.», 2022.  http://www.monografias.ufop.br/handle/35400000/4525 

 

[4] P. P. Catari Colque et al., «Optimización del diseño de talud en minería superficial mediante el método de 

elementos finitos», Rev. Digit. Novasinergia, vol. 8, n.o 1, pp. 33-51, jun. 2025, doi: 10.37135/ns.01.15.09. 

 

[5] G. B. Frainz, «Análise da estabilidade de talude ferroviário sob influência de cargas e vibrações utilizando 

modelos de aprendizado de máquina», ago. 2024.  https://hdl.handle.net/1843/78421 

 

[6] G. X. Mesquita, «Classificação geomecânica de taludes dos cânios do rio Poty segundo os sistemas RQD, Q, 

RMR e SMR», 2025. http://repositorio.ufc.br/handle/riufc/80103 

Parameters Results 

12.1, 2.2, 2, 4.1, 2, 5.2, 168, 48 0 (FSB) 

12.3, 3,1, 4, 3, 2.2, 4, 188, 92 0 (FSB) 

12.3, 3, 2.1, 4, 2, 5.3, 168, 31 1 (OF) 

14, 1, 2, 6, 2, 5.1, 25.1, 26 2 (ST) 

11.1, 3, 4.2, 1, 3, 5.2, 401, 36 2 (ST) 

22.3, 3, 2, 1.2, 3, 5, 800, 42 0 (FSB) 

17, 6.3, 2, 1, 2, 5, 501, 22 1 (OF) 

13, 0.55, 3.1, 1, 3, 4, 503, 22 2 (ST) 

20.1, 1, 4, 2.3, 3, 5, 401, 21 2 (ST) 

18.1, 3, 5.2, 4, 3.1, 5, 661, 30.2 1 (OF) 



 

Rodríguez A. Journal of Advanced Mining Modeling, Publicado en línea 

 
 

[7] D. B. Yánez Borja y L. Jordá Bordehore, «Aplicación de la metodología de análisis empírico Q Slope para 

evaluación de taludes en la provincia Bolívar, caso de estudio vía Guaranda - Echeandía», Thesis, ESPOL. FICT, 2021.  

http://www.dspace.espol.edu.ec/handle/123456789/53899 

 

[8] «Modificación del Sistema GSI en función de la Escala de Análisis de Estabilidad de Taludes en Macizos 

Rocosos - ProQuest». https://www.proquest.com/openview/d9d74ee783443d85b05bc6228d82d58a/1?pq-

origsite=gscholar&cbl=2026366&diss=y 

 

[9] S. Zhang, «Challenges in KNN Classification», IEEE Trans. Knowl. Data Eng., vol. 34, n.o 10, pp. 4663-4675, 

oct. 2022, doi: 10.1109/TKDE.2021.3049250. 

 

[10] F. C. Canales Soto, «Aplicación y evaluación de modelos de machine learning y deep learning en la predicción 

de consumo energético en molienda SAG», 2024,  https://repositorio.uchile.cl/handle/2250/202615 

 

[11] J. A. Pinedo Ramirez y F. J. Grados Acosta, «Modelo predictivo de planificación operativa bajo el enfoque de 

machine learning para gestionar los tiempos de ciclo del volquete en una mina subterránea», Univ. Peru. Cienc. Apl. UPC, 

nov. 2023, https://repositorioacademico.upc.edu.pe/handle/10757/670723 

 

[12] N. Arcila Quintero, «Predicción de alertas de falla para planes de monitoreo geotécnico aplicando el método del 

inverso de la velocidad acoplado con algoritmos de aprendizaje supervisado», nov. 2022.  

https://repositorio.unal.edu.co/handle/unal/82998 

 

[13] L. R. C. Silveira, M. S. Lana, y T. B. dos Santos, «Machine learning applied to the prediction of rockfall slope 

probability», Res. Soc. Dev., vol. 11, n.o 10, pp. e89111032603-e89111032603, jul. 2022, doi: 10.33448/rsd-

v11i10.32603. 

 

 

 

 
 

 

  


