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Abstract

The purpose of this study was to analyze the use of the K-Nearest Neighbors (KNN) method to anticipate slope
failures in open-pit mining, using the geotechnical parameters of each slope. The assessment of landslide
hazards in open-pit mine slopes can be described as the evaluation of the potential collapse risk of these
structures, which is essential to ensure operational safety. To achieve this, continuous monitoring of the slopes
and the evaluation of all variables that may influence their stability are imperative. A quantitative approach
was applied, evaluating the factor of safety classified as stable (ST), moderately stable (OF), and unstable
(FSB), considering a distance of K = 11 nearest neighbors. The geomechanical relationships among the slope
parameters significantly contributed to improving the prediction of slope stability conditions. With the
implementation of the KNN algorithm, highly effective results were obtained for slope stability prediction,
achieving a precision of 0.90, sensitivity (recall) of 0.90, and F1-score of 0.90 for stable slopes (ST), as well
as an overall accuracy of 83.33%. Finally, the KNN method is a reliable alternative for predicting stable slope
conditions in open-pit mining. The selected k-value demonstrated a prediction efficiency of 73.73%,
facilitating technical decision-making and contributing to the reduction of slope failure risks through a
systematic analysis of slope variables.

Keywords: K-Nearest Neighbors (KNN), Slope stability, Open-pit mining, Slope failure prediction,
Geotechnics.

1. Introduction

Data mining constitutes a process that employs various analysis tools in order to identify patterns, models, and
relationships within large sets of information, which can later be used to make reliable predictions.

In the mining field, multiple disciplines intervene to ensure that operations are carried out safely and
efficiently. One of the essential areas is geotechnics, whose purpose is to study, interpret, and anticipate the
behavior of soils and rocks, so that mining works and activities can be executed without landslides or structural
failures [1].

Within this discipline, slope stability in surface mining operations is a fundamental aspect, as it is linked to the
analysis of the geotechnical characteristics of the materials that make up the pit, considering its three scales:
bench, inter-ramp, and global. A slope is considered to have failed when it reaches a displacement that
compromises its operational safety or when it no longer adequately fulfills the function for which it was
designed. In such situations, it is necessary to modify the initial configuration and design established by
engineering.

One of the most used algorithms in the field of machine learning for the generation of predictive models is
(KNN). This method learns by identifying similarities between a new data point and other nearby data points
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within the multidimensional space. The KNN algorithm is part of the classification techniques commonly used
in data mining processes [2].

The problem faced by miners is the construction of slopes with good stability, which motivates the formulation
of the following question: How is the (KNN) algorithm applied to predict collapse in open-pit mine slopes?
The general objective of this article is to examine the application of K-Nearest Neighbor (KNN) to anticipate
slope failure in surface mining. As specific objectives, the following are proposed: Analyze the relationship
between various geotechnical characteristics through KNN to anticipate landslides; evaluate the effectiveness
of the KNN model using classification accuracy measures and the confusion matrix; analyze how data is
distributed in relation to the training and testing datasets using K-Nearest Neighbor to anticipate slope failures.
This research article contributes to the knowledge about the prediction of mining events, specifically slope
failures, through the application of an algorithmic method based on data collected in the field and processed
using the Python programming language.

2. Materials and methodology

The purpose of this research is to demonstrate the reality of the information with due scientific rigor, which
will allow obtaining valid and efficient results through the application of the (KNN) algorithm for predicting
slope collapse in surface mining. Mining operations must be carried out based on geotechnical studies of the
rock mass, in order to determine the condition of the soils and rocks. In open-pit operations, knowing the
physical properties of the rocks is always an essential requirement [3].

2.1.Parts of a slope
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Figure 1. Slope components

In Figure 1, the slope and its corresponding parts can be observed, showing how a slope occurs in surface
mining. There are two different variables classified on the x and y axes, and there is an unknown in the middle
for which the safety factor must be: FS > 1.5 stable, 1.20 < FS < 1.5 marginally stable, FS < 1.20 unstable.
At the beginning, the separation between this unknown location and the other points is determined by the value
of K, which limits the number of data points examined. This indicates how many nearby neighbors should be
considered when analyzing according to the established parameters [4].

The safety, functional efficiency, and profitability of mining activities largely depend on the stability of slopes
in open-pit mines. Over time, various strategies have been developed and implemented to measure and ensure
the stability of these slopes. One of the most common approaches is the limit equilibrium method, known for
its ease of use and effectiveness in various geotechnical situations [5].

2.2.Rock quality designation (RQD)
This analysis examined the consistency of such slopes using geomechanical techniques based on RQD. The
strategy included field investigations for geological and geotechnical identification [6].
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Table 1. Rock quality (RQD)

Rock quality RQD (%)
Poor <25
Low 25-50
Fair 50-175

Good 75-90
Excellent 90 - 100

2.3.Barton’s Q index
The Barton Q Index helps to predict the support and stress in rock-excavated slopes by providing guidelines
on a safe slope angle. The Q value is calculated using the following parameters: rock quality (RQD), number

of joint sets (Jn), joint roughness index (Jr), joint alteration index (Ja), geological condition factor (Jwice), and
the slope-strength reduction factor [7].

Table 2. Barton’s Q index

Rock quality (Q) Rating
0.01 -0.01 Critically poor
0.01 -0.1 Very poor
0.1-1 Extremely poor
1-4 Poor
4-10 Fair
10-40 Good
40 - 100 Very Good
100 — 400 Excellent
400 - 1000 Exceptionally good

2.4.Geological strength index (GSI)

The simplicity of the GSI system proves to be its main disadvantage, as it only measures the fracturing level
of the rock mass and the condition of discontinuity surfaces [8].

2.5.K-Nearest Neighbors (KNN)

KNN is described as a prediction technique in the field of supervised learning that is based on the distance
between the current sample and the nearest neighbors, which are determined by a value of k. This determines
the outcome of the prediction made [9].
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Figure 3. K-Nearest Neighbors (KNN)

In Figure 3, it is shown that K equals 3. Taking the dataset into account, it is possible to identify the category
of a particular data point by measuring its closeness to other samples. There are several approaches to calculate
this closeness, with Euclidean distance being the most used method to evaluate the separation between two
locations [10].

D(x,y) = \/(xl —y1)2 + (x2 — y2)?+..+(xn — yn)? (1)

Where

D(x,y) - metric distance between 2 points

X, y — specific variables,

n — number of dimensions.

After the value of k was established and the KNN model was trained, this method was used to predict the risk
of slope collapse with varying characteristics, by comparing the attributes of the new data point only with those
in the training dataset [11].

2.5.1. Confusion matrix

The confusion matrix was used to assess the specific performance of each model in relation to different rock
classes. This table compiles the correct predictions versus incorrect ones, facilitating the detection of
classification bias, confusion between similar lithologies, and systematic recurring errors [12].

2.5.2. Performance metrics

TP + TN Q)
TP + TN + FP + FN

Accuracy =

Where:

TP — True positives
TN — True negatives
FP — False positives
FN — False negatives

TP 3)

Positi . s —
ositive precision —TP TFP
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TP 4)
Recall = ———
e = TP F FN
Precision * Recall 4)
F1 — Score = 2 % —
Precision + Recall

2.6.Description of the data and how it will be processed in KNN
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Figure 4. Data flowchart

2.7.Instrumentation and data collection techniques

The instruments used for handling data from the open-pit mine were: compass, clinometer, hammer, and
geotechnical forms, which were analyzed in tables containing authentic information that helps to detail the
properties of slopes across various rock samples. The applied methodologies are based on technical references
and multiple documents related to slope failure analysis [2]. The variables used for the database are:

HO: Discontinuity persistence length (m)

H1: Discontinuity spacing (mm)

H2: Discontinuity roughness grade

H3: Discontinuity orientation

H4: Weathered rock

HS5: Groundwater presence

H6: Total slope elevation (m)

H7: Global slope inclination (°)
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Table 3. Slopes with FSB Status — 0 (Inter-ramp failure)

HO H1 H2 H3 H4 HS Heé H7 STATUS
12.86 3.08 391 3.18 1.99 4.01 193 38.81 FSB
11.54 2.9 4.29 3.8 2.78 3.8 241.16  41.83 FSB
18.11 3.03 3.24 3.21 3.83 4.29 590.74 36.38 FSB
17.49 2.9 3.17 4.2 3.98 4.12 803.71 34.94 FSB
14.74 3.03 3.94 3.05 2.11 4.02 482.7 35.37 FSB
1.26 3.06 3.81 3.99 2.09 2.84 182.52  40.18 FSB
0.42 0.51 3.07 3.81 3.21 2.82 179.47 51.73 FSB

2.6 291 2.88 3.16 2.08 2.98 323.14  52.85 FSB

2.4 0.55 2.9 3.12 2 2.81 285.79  67.09 FSB
8.37 3.14 4.14 5.17 4.26 5.04 72592  41.43 FSB
23.55 2.97 2.79 4.65 3.93 2.94 317.19 5342 FSB
26.49 3.21 2.8 4.84 3.18 1.85 308.54 57.82 FSB
12.82 2.81 1.86 4.17 3.18 2.78 346.12  59.06 FSB
21.32 2.97 3.15 3.77 3.9 3.04 337.51 53.24 FSB
21.28 2.92 3.96 2.96 2.85 4.16 3149 47.19 FSB
5.18 2.93 3.14 3.74 3.23 2.87 530.77 49.1 FSB
10.02 3.16 2.9 4.27 3.17 3.84 232.53 4492 FSB
5.07 3.02 4.32 4.24 3.95 4.22 154.29 57.67 FSB
6.79 0.53 3.73 3.08 3.2 4.07 637.25 38.06 FSB
6.83 0.54 2.09 5.39 2.81 3.09 770.32 31.25 FSB

8.1 0.56 3.14 3 3.85 4.21 22246  29.68 FSB
6.46 3.07 3.96 4.13 2.97 4.77 15637  44.53 FSB
9.95 4.89 4.13 3.17 2.95 3.89 327.55 52.81 FSB

5.52 3.03 3.16 2.1 4.25 3.97 45257  25.92 FSB
6.21 0.52 2.09 3.14 0.93 391 48.18 44.24 FSB
11.13 0.31 1.89 1.91 4.26 4 19.21 49.94 FSB

9.34 2.15 1.85 1.92 2.09 4.16 20.18 48.64 FSB

Table 4. Slopes with OF Status — 1 (Global failure)

HO H1 H2 H3 H4 H5 Hé6 H7 STATUS
11.97 3.06 2.1 3.93 2.12 5.13 173.24 31.7 OF
2591 6.58 3.23 5.06 2.08 3.81 199.4 39.51 OF
0.86 3.03 2.78 4.64 2.94 3.03 92.41 54.78 OF
0.66 2.84 2.94 5.22 1.91 2.05 169.17 46.29 OF
6.83 2.82 2.79 4.16 2.15 2.9 226.22 35.36 OF
7.05 3.19 2 3.75 2.03 1.93 18.82 44.45 OF
6.15 2.76 3.09 5.36 2.97 3.87 757.8 32.62 OF
6.17 2.84 1.97 5.01 3.09 3.12 730.55 40.94 OF
7.79 3.01 2.98 5.21 2.79 2.89 733.17 34.51 OF
10.47 3.09 3.08 3.76 2.88 2.96 209.34 32.69 OF
9.77 3.1 2.93 4.76 3.73 2.98 193.93 34.96 OF
14.41 3.15 2.03 3.69 3.07 3.88 194.94 31.43 OF
16.14 3.04 3.9 2.9 1.89 2.06 272.11 45.46 OF

18.54 3.01 3.03 3.06 2.8 3.05 45451 29.89 OF
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17.09 4.8 3.11 5.28 2.08 2.02 272.47 36.32 OF
18.02 4.76 2.84 4.07 2.15 3.1 593.75 35.22 OF
19.68 2.76 3.22 4.01 4.21 4.06 95.7 42.91 OF
5.46 3.09 3 4.26 3.14 3.01 267.51 32.94 OF
11.68 0.49 2.05 3.88 1.05 3.96 53.99 51.74 OF

Table 5. Slopes with ST Status — 2 (Stable)

HO H1 H2 H3 H4 H5 Hé6 H7 STATUS
29.62 3.01 3.07 3.75 3.86 4.63 195.21 52.33 ST
21.19 2.99 3.81 0.98 3.04 5.22 206.07 34.99 ST
10.63 0.98 3.02 3.85 4.63 4.92 195.69 57.68 ST

9.9 1.11 3.17 4 4.87 4.95 216.99 59.08 ST
24.05 3.23 2.79 4.22 4.24 5.07 214.5 46.83 ST
22.75 0.98 3.98 2.82 3.76 5.37 202.68 45.29 ST
7.78 291 2.78 4.04 2.8 5.02 164.43 48.5 ST
2.38 1.26 3 2.93 4.16 4.64 185.61 47.66 ST

1.62 0.75 4.08 2.14 3.05 5.23 157.6 39.21 ST

1.66 1.52 3.85 3.19 3.03 5.01 166.75 42.59 ST
2.08 1.16 3.15 2.84 4.22 4.84 174.93 42.61 ST
6.74 3.06 4.07 2.14 3.94 5.18 427.23 34.56 ST
11.52 291 3.83 3.72 4.07 4.84 595.05 36.03 ST
13.81 3.08 3.21 1.94 3.17 5.17 443.64 37.58 ST
6.61 5.56 3.83 3.04 4.01 3.88 299.53 36.26 ST
12.76 2.82 3.86 3.19 2.82 3.7 361.48 32.25 ST
0.51 3.13 4.01 1.98 3.15 4.32 193.16 52.73 ST
0.71 0.56 3.73 3.21 2.84 3.98 95.51 51.89 ST
0.98 3.04 3.2 2.82 3.76 3.94 93.21 59.81 ST
6.48 2.77 4.18 2.95 2.87 4.14 237.66 38.5 ST
5.62 0.54 2.91 2.78 4.23 4.8 719.54 28.95 ST
4.16 0.56 1.84 3.82 2.99 4.85 715.32 33.95 ST

2.6 0.51 3.92 2.88 3.22 5.32 730.02 32.08 ST

1.84 0.52 3.71 1.94 3.94 4.86 309.78 51.53 ST
6.21 0.56 4.23 2.92 3.84 4.9 517.86 54.63 ST
3.09 2.83 5.1 2.08 4.09 4.08 464.84 573 ST
4.68 0.59 4.21 4.1 3.94 5.27 491.75 42.77 ST
4.48 3.01 4.14 3.02 3.75 4.8 509.84 58.35 ST
3.09 0.56 3.92 3.01 5.38 5.28 249.34 52.99 ST
3.29 0.57 3.97 3.22 4.14 4.9 331.28 52.83 ST

23 0.09 3.86 2.09 3.74 5.21 321.66 45.17 ST
2.24 0.52 3.17 1.93 4.26 3.89 118.05 41.86 ST
3.76 0.59 4.27 1.94 4.17 4.05 721.38 40.66 ST
3.32 0.58 3.88 2.05 3.2 3.98 713.13 37.76 ST
3.77 0.52 3.16 2.84 3.72 3.95 725.57 43.15 ST
2.97 0.1 4.21 1.84 4.02 4.69 2377 33.74 ST

4.24 0.53 3.96 2.05 3.8 3.82 251.93 25.06 ST
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3.71 3.01 4.05 2.82 3.98 4.72 104.27 41.82 ST
7.63 0.57 4.17 3.06 3.74 4.17 282.6 52.78 ST

2.7.1. Data handling method

The information collected and evaluated regarding slopes in open-pit mining will be analyzed through the
application of the KNN method.

2.7.2. Procedure

To use the KNN approach in predicting slope collapse, a dataset was employed that incorporates details about
the geotechnical properties of the slope and the terrain. With this information, the KNN method was trained
with the objective of assessing the risk of landslides, taking into account the characteristics of the ground and
the type of failure that could occur on the slope [13].

3. Results

Persistence refers to the increase in the dimensions of the discontinuity, and aperture is the measurement of
the distance between them.
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Figure 5. Relationship between aperture and persistence parameters

Selection of the optimal K using all the variables from our dataset, calculated in Python.
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Figure 6. Value of K = 11, Average Accuracy = 73.73%
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3.1. Examine the relationship between various geotechnical characteristics using KNN to anticipate
landslides
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Figure 7. Aperture vs persistence and their predictions

In Figure 7, it is shown that stable slopes (ST) tend to cluster in areas with lower aperture and moderate
persistence, while unstable slopes (FSB) are distributed at higher persistence levels or in critical combinations
of aperture. Moderately stable slopes (OF) are positioned between these two groups, which explains their
intermediate location on the model’s boundary.

These areas are generated by the algorithm, which is based on the proximity of points, considering the 11
nearest neighbors in a two-dimensional space.
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Figure 8. Water condition vs weathered rock
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In general, Figure 8 shows that the KNN model correctly identifies the areas where slopes are stable, partially
stable, or unstable, effectively distinguishing between categories based on the combination of rock
weatherability and groundwater condition. The relationship between actual and estimated data indicates that
the model performs well in classifying these two variables.

Upper right (low weatherability and low groundwater level): ST (stable)

Central area (high weatherability and medium groundwater levels): FSB (unstable), OF (intermediate stability)
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Figure 9. Inclination vs elevation and their predictions

In Figure 9, it is illustrated that the combination of total elevation and slope inclination effectively distinguishes
the various categories of slope stability. Slopes with low elevation and steep inclination are often classified as
unstable (FSB), while those with higher elevation and moderate slopes are primarily classified as stable (ST).
Low elevation slopes (0 — 150 m): OF (medium stability), some FSB (unstable) — Lower slopes with steep
inclinations tend to be considered as having intermediate stability. Medium elevation slopes (200 — 400 m):
FSB (unstable), OF (medium), ST (stable) — At medium heights, inclination is considered the most decisive
factor in stability. High elevation slopes (400 — 800 m): ST (stable)

3.2. Evaluate the effectiveness of the KNN model using classification accuracy metrics and the confusion
matrix

3.2.1. The confusion matrix obtained for the KNN model with k=11
51 1
0
1

1 0 (1)
0 9

3.2.1.1. FSB category (unstable) — Row 1

5 instances were correctly identified as FSB

1 instance was incorrectly labeled as OF

1 instance was wrongly labeled as ST

3.2.1.2. OF Category (medium stability) — Row 2
1 actual instance of OF was correctly identified as OF
There were no misclassifications in this category

ST Category (Stable) — Row 3

9 instances were correctly identified as ST

1 instance was misclassified as FSB
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3.2.2. Optimal slope status report

Table 6. Optimal classification report

Precision Recall F1 - Score Support
FSB 0.83 0.71 0.77 7
OF 0.50 1.00 0.67 1
ST 0.90 0.90 0.90 10
1.2
1
1
0.9 0.9
0.83
08 0.71
0.6
0.5
0.4
0.2
0

Precision Recall F1 - Score

EMFSB WOF mST

Figure 10. Precision and recall report

In Figure 10, the model’s performance is shown to be excellent.

3.2.2.1. Precision

Measures the correct predictions made by the model:
FSB: 0.83

OF: 0.50

ST: 0.90

3.2.2.2. Recall (Sensitivity)

Measures the percentage of actual cases correctly detected by the model:
FSB: 0.71

OF: 1.00

ST: 0.90

3.2.2.3. F1-Score

Balances precision and recall:

FSB: 0.77

OF: 0.67

ST: 0.90
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3.2.3. Global metric measurements

Table 7 Accuracy, macro average, and weighted average scores

Precision Recall F1 - Score Support

Accuracy 0.83 18

Macro average 0.74 0.87 0.78 18

Weighted average 0.85 0.83 0.84 18
0.9
0.85
0.8
0.75
0.7
0.65

Precision Recall F1 - Score
B Accuracy B Macro average Weighted average

Figure 11. Precision, recall, and F1-Score for K =11

3.2.3.1. Macro Average.

Precision: 0.74

Recall: 0.87

F1:0.78

3.2.3.2. Weighted Average

Precision: 0.85

Recall: 0.83

F1:0.84

3.2.3.3. Accuracy: 83.33%

The matrix provides a dataset indicating that the KNN model with k equal to 11 performs satisfactorily in
classifying slopes (ST). This model correctly categorizes most of the FSB (unstable) and ST (stable) class
cases, showing high values for both precision and recall, especially in the ST class (0.90).

3.3. Analyze how the data are distributed in relation to the model fitting and testing using the K-Nearest
Neighbor (KNN) algorithm to anticipate slope collapse

In Figure 12, the data distribution illustrates the behavior of all geotechnical variables analyzed through the
training dataset samples. Each line in the graph represents a variable, facilitating the visualization of its
variability, range, and its connection with other parameters. Persistence spans the widest range of values, while
most variables cluster between 2 and 5 units. The line corresponding to the target allows identifying class
transitions (FSB, OF, and ST) and examining how slope conditions change at those points. Overall, this chart
validates that the variables exhibit an adequate distribution, without significant outliers and with sufficient
variability, which is essential for the functioning of the KNN algorithm that is based on distances.
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Figure 12. Data distribution
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Figure 13. Test data distribution

In Figure 13, the test group is shown, demonstrating how the geomechanical parameters used by the KNN
algorithm to assess slope stability vary. It can be observed that the variables follow patterns similar to those in
the training group, suggesting that the model was tested with characteristic data. Furthermore, changes in the
target class (stable, moderately stable, and unstable) are related to changes in persistence, aperture, weathering,
and discontinuity direction, confirming the model's relevance in anticipating slope behavior in real situations.
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Table 8. Predictions with the KNN Model developed

Parameters Results
12.1,2.2,2,4.1,2,5.2, 168, 48 0 (FSB)
12.3,3,1,4,3,2.2,4,188,92 0 (FSB)
12.3,3,2.1,4,2,5.3,168, 31 1 (OF)
14,1,2,6,2,5.1,25.1,26 2 (ST)
11.1,3,4.2,1,3,5.2,401, 36 2 (ST)
22.3,3,2,1.2,3,5,800,42 0 (FSB)
17,6.3,2,1,2,5,501, 22 1 (OF)
13,0.55,3.1, 1, 3, 4,503, 22 2 (ST)
20.1,1,4,2.3,3,5,401, 21 2 (ST)
18.1,3,5.2,4,3.1, 5,661, 30.2 1 (OF)

In Table 8, the predictions made by the KNN algorithm indicate that, out of 10 slopes with the given
parameters, the model predicts greater stability for 7 slopes based on the 11 nearest neighbors (k= 11), showing
good performance.

4. Conclusions

Geotechnical and geometric data such as persistence, aperture, roughness, discontinuity orientation, weathered
rock, groundwater condition, slope height, and slope inclination were used to identify the stability states: stable
(ST), intermediate (OF), and unstable (FSB). The predictions made using K-Nearest Neighbor (KNN) with K
= 11 and an accuracy of 73.73% were developed through the relationships of slope parameters to determine
whether a slope would remain stable or experience landslides.

The performance of the (KNN) model was evaluated in the prediction of landslides using classification metrics
such as precision (0.90), recall (0.90), and F1-score (0.90) for stable slopes (ST), and an accuracy of 83.33%,
determining the model's capability to correctly classify slopes.

The speed of the KNN method must be related to the number of input data and the number of nearest neighbors.
The analysis of data distribution with K = 11 was very helpful in assigning the data to build and train the
model, later validating its performance with the reserved test data. It should be noted that the training data
represented 83.33%, and also indicates that with new parameters from 10 slopes, 7 slopes (ST and OF) showed
greater stability according to their 11 nearest neighbors.
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