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Resumen

La seguridad y estabilidad de los sistemas de soporte y revestimiento constituyen un aspecto critico en los proyectos de
ingenieria minera, debido a las altas exigencias estructurales impuestas por las condiciones operativas, especialmente en
mineria subterranea. El objetivo principal de este estudio fue evaluar la capacidad de modelos de regresion lineal multiple
(OLS) para predecir la resistencia a la compresion del hormigén, analizando el efecto de diferentes técnicas de
preprocesamiento de datos sobre su desempefio predictivo. La metodologia adoptd un enfoque cuantitativo y se baso en
el analisis de un conjunto de datos experimentales compuesto por mas de 1000 mezclas de hormigon, considerando
variables asociadas a la dosificacion de los materiales y a la edad de curado. Se desarrollaron y compararon tres
configuraciones de modelado: predictores sin transformacion, predictores estandarizados y predictores transformados
mediante la funcion log(x+1). El desempefio de los modelos se evalué utilizando el Error Cuadratico Medio (MSE) y el
coeficiente de determinacion R Los resultados obtenidos muestran que los modelos construidos con datos originales y
estandarizados presentaron un comportamiento similar, con valores de R? cercanos a 0.351 en el conjunto de prueba. En
contraste, la transformacion logaritmica permitié reducir el MSE de pruebaa aproximadamente 55 MPa? e incrementar
el R? hasta valores proximos a 0.750, evidenciando una mejora sustancial en la precision y capacidad de generalizacion
del modelo. El alcance de estosresultados se orientaal uso del modelo como una herramienta predictiva de apoyo de
controlde calidad del hormigon en aplicaciones mineras. En conclusion, la regresion lineal miltiple combinada con un
preprocesamiento adecuado mediante transformacion logaritmica constituye una alternativa eficiente y confiable para la
estimacion de la resistencia a la compresion del hormigén, manteniendo una interpretacion clara de los resultados y
aportando soporte practico para la toma de decisiones técnicas en mineria.

Palabras clave: Resistencia; Hormigon; Regresion lineal; Preprocesamiento de datos; Aprendizaje automatico.

Abstract

The safety and stability of ground support and lining systems are critical aspects of mining engineering projects, due to
the high structural demands imposed by operational conditions, particularly in underground mining. The main objective
of this study was to evaluate the capability of multiple linear regression models (OLS) to predict concrete compressive
strength, analyzing the effect of different data preprocessing techniques on their predictive performance. A quantitative
approachwas adopted, based on theanalysisofan experimental dataset comprisingmore than 1,000 concrete mix designs,
considering variables related to material proportions and curing age. Three modeling configurations were developed and
compared: untransformed predictors, standardized predictors, and predictors transformed using the log(x+1) function.
Model performance was assessed using Mean Squared Error (MSE) and the coefficient of determination (R?). The results
indicate that models built with original and standardized data exhibited similar behavior, with R? values close to 0.351 on
the test dataset. In contrast, logarithmic transformation significantly improved model performance, reducingthe test MSE
to approximately 55 MPa?and increasing R?to values closeto 0.750, demonstratinga substantial enhancement in accuracy
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and generalization capability. These results support the use of the proposed model as a predictive tool for concrete quality
control in mining applications. In conclusion, multiple linear regression combined with appropriate logarithmic
preprocessing represents an efficient and reliable alternative for estimating concrete compressive strength, preserving
model interpretability and providing practical support for technical decision-making in mining engineering.

Keywords: Compressive strength; Concrete; Linear regression; Data preprocessing; Machine learning.

1. Introduccion

El hormigdn es un material indispensable en la industria minera, valorado por su accesibilidad, costo razonable
y adecuado desempefio estructural, especialmente para cimentaciones de plantas concentradoras, plataformas
de lixiviaciéon, rampas, taludes reforzados, entre otras areas dentro de la mineria. De acuerdo con los estudios
técnicos, la resistencia a la compresion del hormigdn es uno de los parametros mas relevantes en la ingenieria
de minas, en estos contextos el hormigoén y especialmente el hormigdn proyectado, cumple una funcion en la
seguridad operacional, ya que su desempefio mecanico influye directamente en la estabilidad del macizo rocoso
y en la mitigacion de riesgos geomecanicos [1]. En la mineria subterranea, la variabilidad en la calidad del
hormigén puede generar ciertas consecuencias significativas, puede abarcar desde fallas prematuras del
sostenimiento hasta incrementos de costos operativos por sobreconsumos de materiales o reprocesos
constructivos. Por ello, predecir la resistencia del hormigén de manera confiable, en funcion de la dosificacion
y las condiciones de curado, constituye un problema técnico de alto interés para ingenieros de minas y
geotécnicos [2]. Tradicionalmente, este parametro ha sido evaluado mediante ciertos ensayos experimentales,
en los cuales, si bien son precisos, demandan tiempo, recursos y una planificacion que no es siempre
compatible con la dindmica operativa de una mina productiva [3]. Diversos estudios han demostrado que la
resistencia en cuanto al hormigén depende de muchas variables interrelacionadas, tales como la presencia del
cemento, asi como la relacion de agua & aglomerante, por otra parte, se incluye el uso de aditivos minerales
como los aditivos quimicos y la edad de curado. En aplicaciones mineras, estas variables suelen presentarse
unamayor dispersion debido a restricciones logisticas, condiciones ambientales subterraneas y variaciones en
los métodos de colocacion del material, lo que incrementa la incertidumbre asociada al desempefio mecanico
del hormigdn [4]. A partir de estas consideraciones, el empleo de modelos estadisticos y técnicas de
aprendizaje automatico se ha consolidado como una alternativa viable para estimar la resistencia a la
compresion a partir de registros histoéricos de mezclas. Diversos trabajos previos han demostrado que los
modelos de regresion son capaces de identificar relaciones relevantes entre los componentes del hormigén y
su resistencia final, siempre que el conjunto de datos sea adecuadamente preparado y analizado [5]. Dentro de
este grupo, la regresion lineal, destaca por su simplicidad conceptual, asi como por su facilidad de
implementacion en aplicaciones de ingenieria, especialmente en entornos industriales donde se requiere
transparencia en los resultados obtenidos [6]. En el contexto minero, la interpretabilidad de los modelos
predictivos adquiere una importancia particular, ya que permite a los ingenieros comprender de manera directa
la influencia de cada variable sobre el comportamiento del material y respaldar decisiones técnicas
relacionadas sobre la dosificacion y el control de calidad. A diferencia de los modelos complejos considerados
como “caja negra” los enfoques lineales lo hacen mas facil la validacion técnica y en su incorporacion en
procedimientos operativos estandar propios de proyectos mineros [7]. Sin embargo, el empleo directo de
modelos lineales sin tratamiento previo suele presentarse limitaciones que estan asociadas a problemas
estadisticos, en los cuales pueden afectar la capacidad de generalizacion del modelo y conducir a condiciones
poco confiables de la resistencia del hormigdén. Estos problemas pueden afectar de manera negativa la
capacidad de generalizacion del modelo y conducir a estimaciones poco confiables de la resistencia [8]. Frente
a esta situacion, se ha propuesto el uso de técnicas de preprocesamiento de datos, como la estandarizacion y
las transformaciones logaritmicas, con el fin de mejorar el desempefio que se han propuesto para mejorar los
modelos lineales [9]. Investigaciones enfocadas en el disefio de mezclas de hormigoén, han evidenciado que la
transformacion logaritmica contribuye a reducido la dispersion de datos, estabilizar la varianza y poner en
evidencia las relaciones que no resultan claras en la escala original de los datos [10]. Este enfoque es
especialmente en mineria, donde las condiciones reales de operacion dificilmente cumplen supuestos ideales
y donde la robustez del modelo frente a conjuntos de datos no balanceados son resultados claves para su
aplicacion practica [11]. En la mineria subterranea, el hormigoén proyectado cumple un rol fundamental como
elemento de sostenimiento inmediato, por lo que su desempefio no solo se evaltia en funcion de resistencias
finales, sino también mediante criterios de resistencia temprana establecidos en los estandares operaticos de
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mina. En la practica, se consideran valores minimos del orden 2 MPa a las 2 horas y resistencias finales
superiores a 28 MPa a los 28 dias, como requisitos habituales para garantizar la estabilidad inicial y a largo
plazo de las excavaciones. En este sentido, el desarrollo de herramientas predictivas basadas en datos historicos
de dosificacion permite anticipar el cumplimiento de dichos criterios, optimizar el control de calidad y reducir
la dependencia exclusiva de ensayos destructivos, aportando una ventaja operativa directa en ambientes
subterraneos donde el tiempo y la seguridad son viables criticas. Este trabajo, tiene como objetivo evaluar el
desempeiio y la capacidad de los modelos clasicos de regresion lineal para la prediccion de la resistencia a la
compresion del hormigén empleando en aplicaciones vinculadas a la ingenieria de minas, comparando de
manera sistematica el efecto de distintos métodos de preprocesamiento de datos. A partir de un conjunto de
datos ampliamente utilizado y validado en la literatura, se busca identificar qué transformaciones permiten
mejorar la precision, la capacidad de generalizacion y la interpretabilidad del modelo, con el propdsito de
ofrecer una herramienta analitica practica para el disefio, y el control de mezclas de hormigoén en operaciones
mineras contemporaneas [12].

2. Materiales y métodos

El desarrollo del presente estudio, se sustenta en un conjunto de datos experimentales reales compuesto por
mas de 1000 mezclas de hormigén como disefiado para analizar y predecir la resistencia a la compresion de
material en contextos técnicos afines a la ingenieria de minas, tales como sostenimiento subterraneo o
superficial, revestimiento de tuneles y estructuras auxiliares mineras cada registro del conjunto de datos
representa una mezcla de hormigén caracterizada por su dosificacion y edad de curado, junto con el valor
medido de resistencia a la compresion en megapascales (MPa), propiedad mecanica fundamental para evaluar
la estabilidad y seguridad estructural en excavaciones mineras [13]. Las variables incluidas reflejan
componentes comunmente utilizados en mezclas de hormigén empleando en operaciones mineras, donde las
condiciones de colocacion, curado y el control de calidad presentan una mayor variabilidad respecto a entornos
convencionales [14].

2.1 Datos y variables

2.1.1 Variables del conjunto de datos experimental

En la Tabla 1, se muestran una descripcion de las variables predatorias y la variable objetivo consideradas en
el estudio.

Tabla 1. Variables del conjunto de datos experimental

Variable Descripcion Unidad
Cement Contenido de cemento en la mezcla Kg/m*
Slag Escoria de alto horno Kg/m?
FlyAsh Ceniza volante Kg/m?
Water Contenido de agua Kg/m?
Superplasticizer Aditivo superplastificante Kg/m?3
CoarseAgg Agregado grueso Kg/m?
FineAgg Agregado fino Kg/m?
Age Edad de curado Dias
Strength Resistencia a la compresion del hormigon MPa

2.2. Preparacién y particion de datos

Previamente al modelo, los datos fueron sometidos a un proceso de verificacion numérica con la finalidad de
asegurar la coherencia de las magnitudes y la consistencia de variables. Posteriormente, el conjunto de
agrupacion de datos fue dividido en partes o subconjuntos, siendo el de entrenamiento, asi como la prueba,
siguiendo un esquema fijo que permite evaluar el desempefio del modelo sobre observaciones no utilizadas
durante el ajuste [15].
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En este procedimiento reproduce un escenario realista, donde los modelos predictivos deben mantener su
capacidad de generalizacion frente a nuevas condiciones de mezcla y variaciones operativas propias del
entorno minero [16].

Conjunto de Datos
>1000 mezclas

Particidn Fija

S

Entrenamiento Prueba
900 registros 87.4% 130 registros 12.6%
Ajuste del Modelo Evaluacion
Regresion Lineal MSE y R2

S _

Modelo Predictivo Final

Figura 1. Esquema del proceso de particion de datos

2.3 Preprocesamiento de datos

Se tomo como referencia que el objetivo de identificar ciertos impactos de preprocesamiento en la capacidad
predictiva del modelo, se evaluaron 3 configuraciones distintas de los datos de entrada, como predictores sin
transformacion, predictores estandarizados y predictores transformados mediante log(x+1).

La estandarizacion se realizd mediante siguiente la expresion:

7, ="M (1)

Donde:

Zi— estandarizacion

Xi— valor original de la variable,
u — media de dicha variable,

o — desviacion estandar.

2.3.1 Transformacion logaritmica aplicada a los predictores

Esta transformacion se emplea para reducir la asimetria de los datos y estabilizar la varianza, mejorando el
desempeiio de modelos lineales en conjuntos de datos experimentales reales [18].

X’y = log (X;1) 2)

Donde:
X'i — transformacion logaritmica,
log — logaritmo.



Ruiz V. et al Journal of Advanced Mining Modeling, Publicado en linea

2.4 Modelado de la regresion lineal multiple (OLS)

La estimacion de acuerdo a la resistencia a la compresion del hormigén se ejecutd a través de un modelo de
regresion lineal multivariado, ajustado utilizando un algoritmo de MCO (minimos cuadrados ordinarios) [19].
El modelo general adoptado se expresa como:

y:ﬁ0+z.8ixi+g &)
i=1

Donde:

y — resistencia la compresion del hormigén (MPa),

Bo— término independiente,

Bi— coeficientes de regresion,

Xi— variables predictoras,

€ — término del error.

En este enfoque fue seleccionada por su elevada interpretabilidad, caracteristica esencial en ingenieria de
minas, ya que permite identificar de forma directa la influencia de cada componente del hormigén sobre su
desempeiio mecanico y apoyar la toma de decisiones en control de calidad y disefio de mezclas [20].

2.5 Métricas de evaluacion

Estas métricas permiten cuantificar la precision del modelo y su capacidad de generalizacion, aspectos criticos
para aplicaciones mineras donde errores de estimacion pueden comprometer la seguridad estructural y la
eficiencia operativa [21]. El desempeiio de los modelos fue evaluado utilizando el MSE y R? en donde se
mencionan posteriormente.

2.5.1 Error Cuadratico Medio (MSE)

Este modelo hace referencia a unos errores que se utiliza para cuantificar cierta precision global en cada modelo
predictivo. Por otros términos, el MSE permite evaluar que tan lejos se encuentralas reducciones del modelo
respecto a los valores reales de resistencia del hormigoén, lo cual es muy crucial considerando que una
subestimacion puede comprometer la seguridad del sostenimiento y una sobreestimacion puede generar costos
innecesarios en operaciones mientras.

HED R
MSE—n;(yi v @

Donde:

MSE - error cuadratico medio,

n — numero total de observaciones evaluadas,
yi — resistencia real medida del hormigon,

y'i — resistencia predicha por el modelo,

(yi— y'i?— error cuadratico individual

2.5.2 Coeficiente de determinaciéon R2

Este R? es una métrica clave que cuantifica cierto poder explicativo del modelo en proporcion de la variabilidad
de la resistencia que puede ser explicada por el conjunto de variables predictoras. Estudios realizados, muestran
que valor cercano a 1 significa que el modelo logra explicar gran parte del comportamiento mecanica del
hormigoén, algo fundamental cuando se evalua la confiabilidad estructural del material en labores mineras
donde el soporte debe responder adecuadamente a esfuerzo geomecanicos.
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?:10’1’ - y,i)z
Z?:1(Yi - y”i)z

R*=1- )

Donde:

R? — coeficiente de determinacion,

yi — resistencia real medida del hormigon,

y'i — resistencia predicha por el modelo,

y’’i — valor promedio de la resistencia real,
(vi_y’i>— suma de errores al cuadrado,

(yi_y’’i*— variabilidad total presente en los datos.

3. Resultados

3.1. Desempeiio predictivo de los modelos

El rendimiento de los tres modelos evaluados, los predictores sin transformacion, los predictores
estandarizados y los predictores transformados mediante log(x+1), se presenta en la Tabla 2, que muestra los
valores del Error Cuadratico Medio (MSE) y (R?) para los datos de entrenamiento y test para todos los
predictores.

Tabla 2. Desempeiio de los modelos en términos de MSE y R?

Configuracion del modelo Train MSE Test MSE Train R? Test R?
Predictores sin transformar 105.20 142.67 0.624 0.351
Predictores estandarizados 105.20 142.67 0.624 0.351
Predictores Log(x+1) 56.39 55.06 0.799 0.750

Los resultados muestran que los modelos basados en predictores sin transformacion y predictores
estandarizados presentan un desempefio practicamente idéntico. En ambos casos, el error de prediccion en el
conjunto de prueba es elevado y el valor de R? indica una capacidad limitada para explicar la variabilidad de
la resistencia a la compresion.

En contraste, el modelo que emplea predictores transformados mediante log(x+1) muestra una reduccion
sustancial del error, con valores de MSE cercanos a la mitad de los obtenidos por los otros enfoques. Asimismo,
el incremento del R? en el conjunto de prueba evidencia una mejora significativa en la capacidad de
generalizacion del modelo.

3.2. Comparacion grafica del error cuadratico medio

La Figura 2 presenta la comparacion visual del MSE para los tres modelos, tanto en entrenamiento como en
prueba. En esta figura se observa claramente que los modelos con predictores sin transformary estandarizados
presentan errores elevados y una diferencia marcada entre entrenamiento y prueba, lo que sugiere un ajuste
poco robusto.

Por el contrario, el modelo con transformaciéon logaritmica muestra valores de MSE similares en ambos
conjuntos, lo que indica un comportamiento mas estable y consistente frente a datos no utilizados durante el
ajuste.



Ruiz V. et al Journal of Advanced Mining Modeling, Publicado en linea

Model Performance: MSE (Train vs Test)
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Figura 2. Comparacion del Error Cuadratico Medio (MSE) para los tres modelos evaluados

3.3. Analisis del coeficiente de determinacion (R?)

La Figura 3 presentauna comparacion del coeficiente de determinacion R? para los tres métodos de modelado.
Los modelos sin transformacion y estandarizados explican solo una parte limitada de la variabilidad en la
resistencia a la compresion en el conjunto de prueba, con valores alrededor de 0.351. Por otro lado, el modelo
que utiliza predictores transformados mediante log(x+1) consigue explicar aproximadamente el 75% de la
variabilidad observada en los datos de prueba, lo que refleja un ajuste notablemente superior y una mejor
representacion de las relaciones entre las variables de entrada y la resistencia a la compresion.

Model Performance: R? (Train vs Test)
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Figura 3. Comparacion del coeficiente de determinacioén (R?) en entrenamiento y prueba

3.4. Significancia estadistica

La significancia estadistica de las variables predictoras fue evaluada a partir de los modelos ajustados mediante
minimos cuadrados ordinarios. Para cada configuracion de preprocesamiento se generaron tablas de valores p,
correspondientes a los modelos con predictores sin transformar, estandarizados y transformados mediante
log(x+1).

La Figura 4 muestra el grafico de —logio(p-value) correspondiente al modelo con predictores estandarizados,
donde se observa una clara diferencia en la relevancia estadistica de las variables. De manera analoga, los
resultados graficos correspondientes a los modelos sin transformacion y con transformacion logaritmica se
muestran en las Figuras 5 y 6, respectivamente.



Ruiz V. et al Journal of Advanced Mining Modeling, Publicado en linea

Feature Significance (OLS) — raw

-log10(p-value)

come™ 589 ayhet gt Bt ﬁem aneh®

oo™

Figura 4. Significancia estadistica delas variables predictoras en el modelo que utiliza predictores sin transformar,
expresado como —logio(p-value)
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Figura 5. Significancia estadistica de las variables predictoras en el modelo que utiliza predictores estandarizados,
expresado como —logi(p-value)
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Figura 6. Significancia estadistica de las variables predictoras en el modelo con transformacion log(x+1), expresada
como —logio(p-value)
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Los valores p obtenidos para cada modelo se presentan de forma detallada en las Tablas 3, 4 y 5.

Tabla 3. Valores p del modelo con predictores sin transformar

Predictor p-value
Const 7.082e-02
Cement 6.971e-41
Slag 4.145e-26
FlyAsh 1.895¢e-13
Water 1.918e-03
Superplasticizer 2.461e-01
CoarseAgg 5.443e-03
FineAgg 2.738e-03
Age 9.516e-74

Tabla 4. Valores p del modelo con predictores estandarizados

Predictor p-value
Const 0.000e+00
Cement 6.971e-41
Slag 4.145¢-26
FlyAsh 1.895¢-13
Water 1.918e-03
Superplasticizer 2.461e-01
CoarseAgg 5.443e-03
FineAgg 2.738e-03
Age 9.516e-74

Tabla 5. Valores p del modelo con predictores transformados mediante log(x+1)

Predictor p-value
Const 2.930e-01
Cement 1.289¢-86
Slag 4.634e-36
FlyAsh 2.632e-01
Water 1.837e-20
Superplasticizer 1.021e-05
CoarseAgg 4.085e-01
FineAgg 9.428e-02
Age 1.710e-192

El analisis de estas Tablas indica que, en el modelo que utiliza la transformacion log(x+1), el contenido de
cemento y la edad de curado tienen los valores p més bajos. Esto sugiere que son muy significativos en la
prediccion de la compresion. También se encuentra que el contenido de agua es estadisticamente importante,
aunque tiene un efecto negativo constante sobre la resistencia. Después de la transformacion logaritmica, el
superplastificante se vuelve mas relevante desde el punto de vista estadistico, mientras que la ceniza volante y
los agregados muestran valores p altos, lo que sugiere que su impacto es limitado en el modelo lineal evaluado.

3.5. Validacion y aplicacion predictiva del modelo

Se validaron tres modelos de regresion, tales como, OLS sin transformar, estandarizado y con transformacion
logaritmica, utilizando un conjunto de datos independiente. Los modelos sin transformar y estandarizado
mostraron un rendimiento limitado R?>=0.351 y patrones de residuos no aleatorios, indicando
heterocedasticidad. En contraste, el modelo con transformacion logaritmica log(x+1) demostré una capacidad
predictiva superior R>=0.750 y residuos bien comportados, validaindolo como la herramienta mas robusta,
observandose en la Figura 7.
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Figura 7. Validacion de modelos OLS

No obstante, para evaluar su utilidad operativa, el modelo seleccionado se aplico a tres escenarios de
dosificacion simulados: mezcla estandar, alto contenido de cemento y mezcla optimizada con aditivos. La
Figura 8 compara las curvas de resistencia predichas con los estdndares criticos de la mina: resistencia
temprana (ej. 2 MPa a 2 horas) y resistencia final de disefio (ej. >28 MPa a 28 dias). La herramienta permite

predecir visual y cuantitativamente el cumplimiento de estos criterios antes de la aplicacién en campo.
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Figura 8. Curvas de desarrollo con transformacion logaritmica log(x+1)

Estos resultados confirman que el modelo logaritmico no solo es estadisticamente s6lido, sino también una

herramienta predictiva practica para optimizar dosificaciones, garantizar el cumplimiento de especificaciones
técnicas y reducir la incertidumbre en la fortificacion subterranea.

4. Discusion

Los resultados obtenidos muestran que el tratamiento previo de los datos juega un papel crucial en la eficacia
de los modelos de regresion lineal que se utilizan para la prediccion de la resistencia a la compresion del
hormigoén. En concreto, el modelo que emplea predictores transformados mediante log(x+1) logré un R de 0.
80 en el conjunto de entrenamiento y de 0. 75 en el conjunto de prueba, logrando un desempefio muy superior
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al de los modelos que utilizan predictores sin transformar y estandarizados, los cuales presentaron un R* en
pruebas de solo alrededor de 0. 35. Esta marcada mejora coincide con lo indicado por Yeh [22], quien evidencia
que la no linealidad natural de las propiedades mecanicas del hormigén limita el rendimiento de los modelos
lineales cuando se utilizan datos en su escala original.

Desde la perspectiva del error en las predicciones, el modelo que utilizé una transformacion logaritmica, logrd
reducir el Error Cuadratico Medio (MSE) en el conjunto de prueba, pasando de cifras superiores a 140 MPa?
(modelos raw y estandarizados) aproximadamente de 55 MPa?, lo que significa una reduccion cercana al 60
%. Este descenso es especialmente importante en el campo de la ingenieria, dado que una estimacion incorrecta
de la resistencia del hormigoén puede resultar en decisiones innecesariamente cautelosas o, en el peor escenario,
generar riesgos estructurales [23].

El hecho de que los modelos con predictores sin transformar y estandarizados presenten métricas practicamente
idénticas (Train MSE = 105 MPa? y Test MSE = 143 MPa?) indica que la estandarizacién no corrige los
problemas de asimetria y heterocedasticidad presentes en el conjunto de datos experimental. Este
comportamiento ha sido observado previamente por Chou et al. [24], quienes sefialan que, en propiedades
mecanicas del hormigén, las transformaciones de tipo logaritmico resultan mas efectivas que la normalizacion
clasica cuando se emplean modelos de regresion lineal.

Dentro del esquema que usa la transformacion log(x+1), la cantidad de cementoy cudnto tiempo se dejo curar
tuvieron los valores p mas pequeilos, sefialando que influyen mucho y de maneranotable en la resistencia a la
compresion. Este descubrimiento encaja con estudios anteriores que sefialan estos dos elementos como los que
mas dirigen como el hormigdn gana resistencia, ya sea en construcciones comunes o en el hormigén lanzado
que se usa para asegurar tuneles mineros [25]. Desde un punto de vista practico, esto confirma que es vital
manejar con mucho cuidado la cantidad de cemento y los tiempos de fraguado.

El nivel de agua tuvo un efecto importante, pero contrario, un resultado que coincide con la idea tradicional de
la proporcion aguaa aglomerante. En la mineria subterranea, donde la humedad del ambiente y como se aplica
el hormigoén pueden causar cambios en el agua real usada, este descubrimiento es particularmente importante.
Neville [26], subraya que hasta aumentos chicos en el agua pueden causar bajadas notables en la resistencia,
algo que se ve bien en los niimeros que el modelo calcul6.

Un dato importante es que el superplastificante alcanz6 significancia estadistica después de aplicar la
transformacion logaritmica, lo que da a entender que existe una conexion curva entre este aditivo y la
resistencia a la compresion. Este patrén se ha visto en investigaciones sobre hormigon proyectado, donde el
superplastificante ayuda a que el material sea mas facil de trabajar y se compacte mejor, sin bajar la resistencia
si se usa en las cantidades correctas [27]. Por otro lado, la ceniza volantey los agregados mostraron valores p
altos, seflalando que su aporte fue pequefio dentro del modelo lineal, lo que podria significar que su impacto
se ve en interacciones que este método no logra captar.

El hecho de que los valores de MSE sean parecidos en el entrenamientoy la prueba para el modelo log(x+1)
(casi 56 MPa? y cerca de 55 MPa? en ese orden) demuestra que se puede generalizar bien, algo fundamental
para usarse en labores mineras. Tal como mencionan Asteris et al. [28], un modelo que se mantenga firme con
datos nuevos es mas de fiar que uno que se ajuste mucho al entrenar, pero rinda mal en situaciones inéditas,
sobre todo donde los materiales cambian mucho.

Visto de modo practico, un modelo de regresion lineal funcionabien. Este modelo puede emplearse como una
herramienta de apoyo para el control de calidad del hormigon. Esto pasa en trabajos de mineria, el costo de
usarlo es bajo. Ademas, es facil de entender, el cual ayuda a ponerlo en sistemas de control y se puede estimar
pronto si una alcanzara la resistencia requerida. Pero, los resultados también sugieren algo, donde para ver
efectos complejos entre componentes como agregados y adiciones minerales, se deben evaluara otros modelos
no lineales en estudios futuros. Los resultados obtenidos adquieren relevancia al contrastarse con los criterios
reales empleados en minas subterraneas para el control del hormigén. La capacidad del modelo con
transformacion log(x+1) para estimar la resistencia a la compresion con errores reducidos permite evaluar, de
manera anticipada, si una mezcla determinada tiene alta probabilidad de alcanzar resistencias tempranas del
orden de 2 MPa en las primeras horas de curado, asi como resistencias finales superiores a 28 MPa a los 28
dias. Esta comparacion con estandares de comparaciéon real evidencia el potencial del modelo como una
herramienta predictiva de apoyo al control de calidad, orienta a la toma de decisiones en campo, mas que como
un reemplazo directo de los ensayos normativos.

Finalmente, nos obstante, los resultados logrados se mantienen estables y firmes dentro de la informacién
examinada, usar este modelo en diferentes entornos geoldgicos necesitard cambios y ajustes de vez en cuando.
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Ahmad et al. [30] indican que las variaciones en el origen de los materiales y en como se fraguan pueden influir
en la certeza de los modelos que predicen, asi que ajustar constantemente es fundamental para conservar la
fiabilidad. De manera global, lo que encontramos demuestra que juntar datos de pruebas reales,
preprocesamiento adecuado y usar modelos estadisticos sencillos de entender, es un método bueno para
optimizar el manejo del hormigoén en el sector de la mineria

5. Conclusiones

En conclusion, los hallazgos muestran la importancia de la preparacion de datos para los modelos de regresion
lineal utilizados para pronosticar la resistencia a la compresion del desempefio del hormigén. Especificamente,
la transformacion log(x+1) aumenté considerablemente la capacidad explicativa del modelo, elevando el
coeficiente de determinacion en el conjunto de prueba de aproximadamente 0.351 a practicamente 0.750.
Usando los predictores log(x+1), el modelo disminuy6 el Error Cuadratico Medio en el conjunto de prueba en
alrededor del 60% en comparacion con los modelos estandarizados sin modificar, reduciéndolo asi de méas de
140 MPa?> a aproximadamente 55 MPa% Esta mejora es particularmente crucial ya que la estabilidad y la
seguridad dependen de una medicion exacta de la resistencia del hormigon.

El analisis de significancia estadistica reveld que las variables que mas influyen en la resistencia a la
compresion del hormigédn son la cantidad de cemento y el tiempo de curado. Por el contrario, la cantidad de
agua tuvo un impacto negativo constante. Estos resultados respaldan las técnicas establecidas de disefio de
mezclas y llaman la atencion sobre la necesidad de un control estricto de estos elementos en el hormigén
empleado como revestimiento y soporte en operaciones mineras.

La significancia estadistica del superplastificante aumenta tras la transformacion logaritmica, lo que sugiere
que su influencia en la resistenciaa la compresion no es lineal. Este hallazgo subraya la importancia de utilizar
métodos de preprocesamiento adecuados.

Al investigar aditivos quimicos en hormigén destinado a la mineria, donde es fundamental mantener un
equilibrio entre trabajabilidad y rendimiento mecanico, la similitud entre los errores de entrenamiento y de
prueba obtenidos por el modelo log(x+1) muestra una buena generalizacion, lo que sugiere que el modelo
puede utilizarse de forma fiable en mezclas reales frescas de hormigén dentro de rangos operativos
comparables. Para su posible incorporaciéon como herramienta de apoyo al control de calidad en operaciones
mineras subterraneas, esta caracteristica es esencial.

No obstante, aunque el desempeiio del modelo de regresion lineal con transformacion log(x+1) fue claramente
superior, con valores de R? cercanos a 0.750 y errores de prediccion considerablemente reducidos, su precision
continua estando fuertemente condicionada por la calidad y representatividad de los datos experimentales
disponibles. Este modelo puede emplearse como una herramienta predictiva complementaria para verificar en
etapas la probabilidad de cumplimiento de los criterios operativos de resistencia del hormigon, tales como
resistencias iniciales cercanas a 2 MPa en las primeras horas y resistencias finales mayores a 28 MPa a los 28
dias. Su aplicacion practica permitira optimizar los programas de control de calidad, reducir reprocesos y
fortalecer la gestion preventiva de la seguridad geomecanica.

Es determinante identificar que la presencia de variabilidad en los materiales, valores atipicos asociados a
ensayos de laboratorio y posibles cambios en las condiciones de mezclado y curado del hormigén pueden
afectar la estabilidad del modelo. En este sentido, resulta pertinente ampliar la base de datos mediante nuevas
campafias experimentales, incorporar variables adicionales relacionadas con las condiciones ambientales y
operativas propias de la mineria subterranea, asi como evaluar enfoques hibridos que integren modelos
estadisticos con principios fisico mecanicos del comportamiento del hormigdén. A pesar de estas limitaciones,
los resultados obtenidos constituyen un aporte relevante y validan el potencial de los métodos de analisis de
datos y aprendizaje automatico como herramientas de apoyo para mejorar la eficiencia, confiabilidad y
predictibilidad del uso del hormigén en aplicaciones en mineria u otra industria.

Futuros trabajos podrian ademas evaluar modelos hibridos que combinen enfoques estadisticos con principios
fisico-mecanicos del comportamiento del hormigoén, con el objetivo de aumentar la robustez del modelo y su
aplicabilidad en diferentes areas.
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