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Resumen 

La seguridad y estabilidad de los sistemas de soporte y revestimiento constituyen un aspecto crítico en los proyectos de 
ingeniería minera, debido a las altas exigencias estructurales impuestas por las condiciones operativas, especialmente en 

minería subterránea. El objetivo principal de este estudio fue evaluar la capacidad de modelos de regresión lineal múltiple 
(OLS) para predecir la resistencia a la compresión del hormigón, analizando el efecto de diferentes técnicas de 
preprocesamiento de datos sobre su desempeño predictivo. La metodología adoptó un enfoque cuantitativo y se basó en 
el análisis de un conjunto de datos experimentales compuesto por más de 1000 mezclas de hormigón, considerando 
variables asociadas a la dosificación de los materiales y a la edad de curado. Se desarrollaron y compararon tres 
configuraciones de modelado: predictores sin transformación, predictores estandarizados y predictores transformados 

mediante la función log(x+1). El desempeño de los modelos se evaluó utilizando el Error Cuadrático Medio (MSE) y el 
coeficiente de determinación R². Los resultados obtenidos muestran que los modelos construidos con datos originales y 
estandarizados presentaron un comportamiento similar, con valores de R² cercanos a 0.351 en el conjunto de prueba. En 
contraste, la transformación logarítmica permitió reducir el MSE de prueba a aproximadamente 55 MPa² e incrementar 
el R² hasta valores próximos a 0.750, evidenciando una mejora sustancial en la precisión y capacidad de generalización 
del modelo. El alcance de estos resultados se orienta al uso del modelo como una herramienta predictiva de apoyo de 

control de calidad del hormigón en aplicaciones mineras. En conclusión, la regresión lineal múltiple combinada con un 
preprocesamiento adecuado mediante transformación logarítmica constituye una alternativa eficiente y confiable para la 
estimación de la resistencia a la compresión del hormigón, manteniendo una interpretación clara de los resultados y 
aportando soporte practico para la toma de decisiones técnicas en minería. 
 

Palabras clave: Resistencia; Hormigón; Regresión lineal; Preprocesamiento de datos; Aprendizaje automático. 

 
Abstract 

 
The safety and stability of ground support and lining systems are critical aspects of mining engineering projects, due to 
the high structural demands imposed by operational conditions, particularly in underground mining. The main objective 
of this study was to evaluate the capability of multiple linear regression models (OLS) to predict concrete compressive 
strength, analyzing the effect of different data preprocessing techniques on their predictive performance. A quantitative 

approach was adopted, based on the analysis of an experimental dataset comprising more than 1,000 concrete mix designs, 
considering variables related to material proportions and curing age. Three modeling configurations were developed and 
compared: untransformed predictors, standardized predictors, and predictors transformed using the log(x+1) function. 
Model performance was assessed using Mean Squared Error (MSE) and the coefficient of determination (R²). The results 
indicate that models built with original and standardized data exhibited similar behavior, with R² values close to 0.351 on 
the test dataset. In contrast, logarithmic transformation significantly improved model performance, reducing the test MSE 

to approximately 55 MPa² and increasing R² to values close to 0.750, demonstrating a substantial enhancement in accuracy 
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and generalization capability. These results support the use of the proposed model as a predictive tool for concrete quality 
control in mining applications. In conclusion, multiple linear regression combined with appropriate logarithmic 

preprocessing represents an efficient and reliable alternative for estimating concrete compressive strength, preserving 
model interpretability and providing practical support for technical decision -making in mining engineering. 

 
Keywords: Compressive strength; Concrete; Linear regression; Data preprocessing; Machine learning.  
 

1. Introducción 

El hormigón es un material indispensable en la industria minera, valorado por su accesibilidad, costo razonable 

y adecuado desempeño estructural, especialmente para cimentaciones de plantas concentradoras, plataformas 

de lixiviación, rampas, taludes reforzados, entre otras áreas dentro de la minería. De acuerdo con los estudios 

técnicos, la resistencia a la compresión del hormigón es uno de los parámetros más relevantes en la ingeniería 

de minas, en estos contextos el hormigón y especialmente el hormigón proyectado, cumple una función en la 

seguridad operacional, ya que su desempeño mecánico influye directamente en la estabilidad del macizo rocoso 

y en la mitigación de riesgos geomecánicos [1].  En la minería subterránea, la variabilidad en la calidad del 

hormigón puede generar ciertas consecuencias significativas, puede abarcar desde fallas prematuras del 

sostenimiento hasta incrementos de costos operativos por sobreconsumos de materiales o reprocesos 

constructivos. Por ello, predecir la resistencia del hormigón de manera confiable, en función de la dosificación 

y las condiciones de curado, constituye un problema técnico de alto interés para ingenieros de minas y 

geotécnicos [2]. Tradicionalmente, este parámetro ha sido evaluado mediante ciertos ensayos experimentales, 

en los cuales, si bien son precisos, demandan tiempo, recursos y una planificación que no es siempre 

compatible con la dinámica operativa de una mina productiva [3]. Diversos estudios han demostrado que la 

resistencia en cuanto al hormigón depende de muchas variables interrelacionadas, tales como la presencia del 

cemento, así como la relación de agua & aglomerante, por otra parte, se incluye el uso de aditivos minerales 

como los aditivos químicos y la edad de curado. En aplicaciones mineras, estas variables suelen presentarse 

una mayor dispersión debido a restricciones logísticas, condiciones ambientales subterráneas y variaciones en 

los métodos de colocación del material, lo que incrementa la incertidumbre asociada al desempeño mecánico 

del hormigón [4]. A partir de estas consideraciones, el empleo de modelos estadísticos y técnicas de 

aprendizaje automático se ha consolidado como una alternativa viable      para estimar la resistencia a la 

compresión a partir de registros históricos de mezclas. Diversos trabajos previos han demostrado que los 

modelos de regresión son capaces de identificar relaciones relevantes entre los componentes del hormigón y 

su resistencia final, siempre que el conjunto de datos sea adecuadamente preparado y analizado [5]. Dentro de 

este grupo, la regresión lineal, destaca por su simplicidad conceptual, así como por su facilidad de 

implementación en aplicaciones de ingeniería, especialmente en entornos industriales donde se requiere 

transparencia en los resultados obtenidos [6]. En el contexto minero, la interpretabilidad   de los modelos 

predictivos adquiere una importancia particular, ya que permite a los ingenieros comprender de manera directa 

la influencia de cada variable sobre el comportamiento del material y respaldar decisiones técnicas 

relacionadas sobre la dosificación y el control de calidad. A diferencia de los modelos complejos considerados 

como “caja negra” los enfoques lineales lo hacen más fácil la validación técnica y en su incorporación en 

procedimientos operativos estándar propios de proyectos mineros [7]. Sin embargo, el empleo directo de 

modelos lineales sin tratamiento previo suele presentarse limitaciones que están asociadas a problemas 

estadísticos, en los cuales pueden afectar la capacidad de generalización del modelo y conducir a condiciones 

poco confiables de la resistencia del hormigón. Estos problemas pueden afectar de manera negativa la 

capacidad de generalización del modelo y conducir a estimaciones poco confiables de la resistencia [8]. Frente 

a esta situación, se ha propuesto el uso de técnicas de preprocesamiento de datos, como la estandarización y 

las transformaciones logarítmicas, con el fin de mejorar el desempeño que se han propuesto para mejorar los 

modelos lineales [9]. Investigaciones enfocadas en el diseño de mezclas de hormigón, han evidenciado que la 

transformación logarítmica contribuye a reducido la dispersión de datos, estabilizar la varianza y poner en 

evidencia las relaciones que no resultan claras en la escala original de los datos [10]. Este enfoque es 

especialmente en minería, donde las condiciones reales de operación difícilmente cumplen supuestos ideales 

y donde la robustez del modelo frente a conjuntos de datos no balanceados son resultados claves para su 

aplicación práctica [11]. En la minería subterránea, el hormigón proyectado cumple un rol fundamental como 

elemento de sostenimiento inmediato, por lo que su desempeño no solo se evalúa en función de resistencias 

finales, sino también mediante criterios de resistencia temprana establecidos en los estándares operáticos de 
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mina. En la práctica, se consideran valores mínimos del orden 2 MPa a las 2 horas y resistencias finales 

superiores a 28 MPa a los 28 días, como requisitos habituales para garantizar la estabilidad inicial y a largo 

plazo de las excavaciones. En este sentido, el desarrollo de herramientas predictivas basadas en datos históricos 

de dosificación permite anticipar el cumplimiento de dichos criterios, optimizar el control de calidad y reducir 

la dependencia exclusiva de ensayos destructivos, aportando una ventaja operativa directa en ambientes 

subterráneos donde el tiempo y la seguridad son viables críticas. Este trabajo, tiene como objetivo evaluar el 

desempeño y la capacidad de los modelos clásicos de regresión lineal para la predicción de la resistencia a la 

compresión del hormigón empleando en aplicaciones vinculadas a la ingeniería de minas, comparando de 

manera sistemática el efecto de distintos métodos de preprocesamiento de datos. A partir de un conjunto de 

datos ampliamente utilizado y validado en la literatura, se busca identificar qué transformaciones permiten 

mejorar la precisión, la capacidad de generalización y la interpretabilidad del modelo, con el propósito de 

ofrecer una herramienta analítica practica para el diseño, y el control de mezclas de hormigón en operaciones 

mineras contemporáneas [12].  

2. Materiales y métodos 

El desarrollo del presente estudio, se sustenta en un conjunto de datos experimentales reales compuesto por 

más de 1000 mezclas de hormigón cómo diseñado para analizar y predecir la resistencia a la compresión de 

material en contextos técnicos afines a la ingeniería de minas, tales como sostenimiento subterráneo o 

superficial, revestimiento de túneles y estructuras auxiliares mineras cada registro del conjunto de datos 

representa una mezcla de hormigón caracterizada por su dosificación y edad de curado, junto con el valor 

medido de resistencia a la compresión en megapascales (MPa), propiedad mecánica fundamental para evaluar 

la estabilidad y seguridad estructural en excavaciones mineras [13]. Las variables incluidas reflejan 

componentes comúnmente utilizados en mezclas de hormigón empleando en operaciones mineras, donde las 

condiciones de colocación, curado y el control de calidad presentan una mayor variabilidad respecto a entornos 

convencionales [14]. 
 

2.1 Datos y variables 

2.1.1 Variables del conjunto de datos experimental 

En la Tabla 1, se muestran una descripción de las variables predatorias y la variable objetivo consideradas en 

el estudio. 

Tabla 1. Variables del conjunto de datos experimental 

Variable Descripción Unidad 

Cement Contenido de cemento en la mezcla Kg/m³ 

Slag Escoria de alto horno Kg/m³ 

FlyAsh Ceniza volante Kg/m³ 

Water Contenido de agua Kg/m³ 

Superplasticizer Aditivo superplastificante Kg/m³ 

CoarseAgg Agregado grueso Kg/m³ 

FineAgg Agregado fino Kg/m³ 

Age Edad de curado Días 

Strength Resistencia a la compresión del hormigón MPa 

2.2. Preparación y partición de datos 

Previamente al modelo, los datos fueron sometidos a un proceso de verificación numérica con la finalidad de 

asegurar la coherencia de las magnitudes y la consistencia de variables. Posteriormente, el conjunto de 

agrupación de datos fue dividido en partes o subconjuntos, siendo el de entrenamiento, así como la prueba, 

siguiendo un esquema fijo que permite evaluar el desempeño del modelo sobre observaciones no utilizadas 

durante el ajuste [15]. 
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En este procedimiento reproduce un escenario realista, donde los modelos predictivos deben mantener su 

capacidad de generalización frente a nuevas condiciones de mezcla y variaciones operativas propias del 

entorno minero [16]. 

 
Figura 1. Esquema del proceso de partición de datos 

 

2.3 Preprocesamiento de datos 

Se tomó como referencia que el objetivo de identificar ciertos impactos de preprocesamiento en la capacidad 

predictiva del modelo, se evaluaron 3 configuraciones distintas de los datos de entrada, como predictores sin 

transformación, predictores estandarizados y predictores transformados mediante log(x+1).  

La estandarización se realizó mediante siguiente la expresión: 

 

𝑍𝑖 =
𝑋𝑖 − µ

𝜎
 (1) 

 

Donde: 

Zi – estandarización 

Xi – valor original de la variable, 

µ – media de dicha variable, 

σ – desviación estándar. 

2.3.1 Transformación logarítmica aplicada a los predictores 

Esta transformación se emplea para reducir la asimetría de los datos y estabilizar la varianza, mejorando el 

desempeño de modelos lineales en conjuntos de datos experimentales reales [18].  

 

𝑋´𝑖 = log⁡(𝑋𝑖1) (2) 

 

Donde: 

X´i – transformación logarítmica, 

log – logaritmo. 
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2.4 Modelado de la regresión lineal múltiple (OLS) 

La estimación de acuerdo a la resistencia a la compresión del hormigón se ejecutó a través de un modelo de 

regresión lineal multivariado, ajustado utilizando un algoritmo de MCO (mínimos cuadrados ordinarios) [19]. 

El modelo general adoptado se expresa como: 

 

𝑦 = 𝛽0 +∑𝛽𝑖𝑋𝑖 + 𝜀

𝑛

𝑖=1

 (3) 

 

Donde: 

y – resistencia la compresión del hormigón (MPa), 

βo – término independiente, 

βi – coeficientes de regresión, 

Xi – variables predictoras, 

ε – término del error. 

En este enfoque fue seleccionada por su elevada interpretabilidad, característica esencial en ingeniería de 

minas, ya que permite identificar de forma directa la influencia de cada componente del hormigón sobre su 

desempeño mecánico y apoyar la toma de decisiones en control de calidad y diseño de mezclas [20]. 

2.5 Métricas de evaluación 

Estas métricas permiten cuantificar la precisión del modelo y su capacidad de generalización, aspectos críticos 

para aplicaciones mineras donde errores de estimación pueden comprometer la seguridad estructural y la 

eficiencia operativa [21]. El desempeño de los modelos fue evaluado utilizando el MSE y R2 en donde se 

mencionan posteriormente. 

2.5.1 Error Cuadrático Medio (MSE) 

Este modelo hace referencia a unos errores que se utiliza para cuantificar cierta precisión global en cada modelo 

predictivo. Por otros términos, el MSE permite evaluar que tan lejos se encuentra las reducciones del modelo 

respecto a los valores reales de resistencia del hormigón, lo cual es muy crucial considerando que una 

subestimación puede comprometer la seguridad del sostenimiento y una sobreestimación puede generar costos 

innecesarios en operaciones mientras. 

 

𝑀𝑆𝐸 =
1

𝑛
⁡∑(𝑦𝑖 − 𝑦´𝑖)

2

𝑛

𝑖=1

 (4) 

 

Donde: 

MSE – error cuadrático medio, 

n – número total de observaciones evaluadas, 

yi – resistencia real medida del hormigón, 

y´i – resistencia predicha por el modelo, 

(yi – y´i)
2

 – error cuadrático individual 

2.5.2 Coeficiente de determinación R2 

Este R2 es una métrica clave que cuantifica cierto poder explicativo del modelo en proporción de la variabilidad 

de la resistencia que puede ser explicada por el conjunto de variables predictoras. Estudios realizados, muestran 

que valor cercano a 1 significa que el modelo logra explicar gran parte del comportamiento mecánica del 

hormigón, algo fundamental cuando se evalúa la confiabilidad estructural del material en labores mineras 

donde el soporte debe responder adecuadamente a esfuerzo geomecánicos. 
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𝑅2 = 1 −⁡
∑ (𝑦𝑖 − 𝑦´𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦´´𝑖 )
2𝑛

𝑖=1

 (5) 

 

Donde: 

R2 – coeficiente de determinación, 

yi – resistencia real medida del hormigón, 

y´i – resistencia predicha por el modelo, 

y´´i – valor promedio de la resistencia real, 

(yi _ y´i)
2
 – suma de errores al cuadrado, 

(yi _ y´´i)
2
 – variabilidad total presente en los datos. 

3. Resultados 

3.1. Desempeño predictivo de los modelos 

El rendimiento de los tres modelos evaluados, los predictores sin transformación, los predictores 

estandarizados y los predictores transformados mediante log(x+1), se presenta en la Tabla 2, que muestra los 

valores del Error Cuadrático Medio (MSE) y (R²) para los datos de entrenamiento y test para todos los 

predictores. 

Tabla 2. Desempeño de los modelos en términos de MSE y R2 
Configuración del modelo Train MSE Test MSE Train R² Test R² 

Predictores sin transformar 105.20 142.67 0.624 0.351 

Predictores estandarizados 105.20 142.67 0.624 0.351 

Predictores Log(x+1) 56.39 55.06 0.799 0.750 

 

Los resultados muestran que los modelos basados en predictores sin transformación y predictores 

estandarizados presentan un desempeño prácticamente idéntico. En ambos casos, el error de predicción en el 

conjunto de prueba es elevado y el valor de R² indica una capacidad limitada para explicar la variabilidad de 

la resistencia a la compresión. 

En contraste, el modelo que emplea predictores transformados mediante log(x+1) muestra una reducción 

sustancial del error, con valores de MSE cercanos a la mitad de los obtenidos por los otros enfoques. Asimismo, 

el incremento del R² en el conjunto de prueba evidencia una mejora significativa en la capacidad de 

generalización del modelo. 

3.2. Comparación grafica del error cuadrático medio 

La Figura 2 presenta la comparación visual del MSE para los tres modelos, tanto en entrenamiento como en 

prueba. En esta figura se observa claramente que los modelos con predictores sin transformar y estandarizados 

presentan errores elevados y una diferencia marcada entre entrenamiento y prueba, lo que sugiere un ajuste 

poco robusto. 

Por el contrario, el modelo con transformación logarítmica muestra valores de MSE similares en ambos 

conjuntos, lo que indica un comportamiento más estable y consistente frente a datos no utilizados durante el 

ajuste. 
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Figura 2. Comparación del Error Cuadrático Medio (MSE) para los tres modelos evaluados  

3.3. Análisis del coeficiente de determinación (R²) 

La Figura 3 presenta una comparación del coeficiente de determinación R² para los tres métodos de modelado. 

Los modelos sin transformación y estandarizados explican solo una parte limitada de la variabilidad en la 

resistencia a la compresión en el conjunto de prueba, con valores alrededor de 0.351. Por otro lado, el modelo 

que utiliza predictores transformados mediante log(x+1) consigue explicar aproximadamente el 75% de la 

variabilidad observada en los datos de prueba, lo que refleja un ajuste notablemente superior y una mejor 

representación de las relaciones entre las variables de entrada y la resistencia a la compresión.  

 
Figura 3. Comparación del coeficiente de determinación (R²) en entrenamiento y prueba 

3.4. Significancia estadística 

La significancia estadística de las variables predictoras fue evaluada a partir de los modelos ajustados mediante 

mínimos cuadrados ordinarios. Para cada configuración de preprocesamiento se generaron tablas de valores p, 

correspondientes a los modelos con predictores sin transformar, estandarizados y transformados mediante 

log(x+1). 

La Figura 4 muestra el gráfico de −log₁₀(p-value) correspondiente al modelo con predictores estandarizados, 

donde se observa una clara diferencia en la relevancia estadística de las variables. De manera análoga, los 

resultados gráficos correspondientes a los modelos sin transformación y con transformación logarítmica se 

muestran en las Figuras 5 y 6, respectivamente. 
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Figura 4. Significancia estadística de las variables predictoras en el modelo que utiliza predictores sin transformar, 

expresado como −log₁₀(p-value) 

 
Figura 5. Significancia estadística de las variables predictoras en el modelo que utiliza predictores estandarizados, 

expresado como −log₁₀(p-value) 

 
Figura 6. Significancia estadística de las variables predictoras en el modelo con transformación log(x+1), expresada 

como −log₁₀(p-value) 
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Los valores p obtenidos para cada modelo se presentan de forma detallada en las Tablas 3, 4 y 5. 
 

Tabla 3. Valores p del modelo con predictores sin transformar 
Predictor p-value 

Const 7.082e-02 

Cement 6.971e-41 

Slag 4.145e-26 

FlyAsh 1.895e-13 

Water 1.918e-03 

Superplasticizer 2.461e-01 

CoarseAgg 5.443e-03 

FineAgg 2.738e-03 

Age 9.516e-74 

 

Tabla 4. Valores p del modelo con predictores estandarizados 
Predictor p-value 

Const 0.000e+00 

Cement 6.971e-41 

Slag 4.145e-26 

FlyAsh 1.895e-13 

Water 1.918e-03 

Superplasticizer 2.461e-01 

CoarseAgg 5.443e-03 

FineAgg 2.738e-03 

Age 9.516e-74 

 

Tabla 5. Valores p del modelo con predictores transformados mediante log(x+1)  
Predictor p-value 

Const 2.930e-01 

Cement 1.289e-86 

Slag 4.634e-36 

FlyAsh 2.632e-01 

Water 1.837e-20 

Superplasticizer 1.021e-05 

CoarseAgg 4.085e-01 

FineAgg 9.428e-02 

Age 1.710e-192 

 

El análisis de estas Tablas indica que, en el modelo que utiliza la transformación log(x+1), el contenido de 

cemento y la edad de curado tienen los valores p más bajos. Esto sugiere que son muy significativos en la 

predicción de la compresión. También se encuentra que el contenido de agua es estadísticamente importante, 

aunque tiene un efecto negativo constante sobre la resistencia. Después de la transformación logarítmica, el 

superplastificante se vuelve más relevante desde el punto de vista estadístico, mientras que la ceniza volante y 

los agregados muestran valores p altos, lo que sugiere que su impacto es limitado en el modelo lineal evaluado. 

3.5. Validación y aplicación predictiva del modelo 

Se validaron tres modelos de regresión, tales como, OLS sin transformar, estandarizado y con transformación 

logarítmica, utilizando un conjunto de datos independiente. Los modelos sin transformar y estandarizado 

mostraron un rendimiento limitado R²=0.351 y patrones de residuos no aleatorios, indicando 

heterocedasticidad. En contraste, el modelo con transformación logarítmica log(x+1) demostró una capacidad 

predictiva superior R²=0.750 y residuos bien comportados, validándolo como la herramienta más robusta,  

observándose en la Figura 7. 
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Figura 7. Validación de modelos OLS 

 

No obstante, para evaluar su utilidad operativa, el modelo seleccionado se aplicó a tres escenarios de 

dosificación simulados: mezcla estándar, alto contenido de cemento y mezcla optimizada con aditivos. La 

Figura 8 compara las curvas de resistencia predichas con los estándares críticos de la mina: resistencia 

temprana (ej. 2 MPa a 2 horas) y resistencia final de diseño (ej. >28 MPa a 28 días). La herramienta permite 

predecir visual y cuantitativamente el cumplimiento de estos criterios antes de la aplicación en campo. 

 
Figura 8. Curvas de desarrollo con transformación logarítmica log(x+1)  

 

Estos resultados confirman que el modelo logarítmico no solo es estadísticamente sólido, sino también una 

herramienta predictiva práctica para optimizar dosificaciones, garantizar el cumplimiento de especificaciones 

técnicas y reducir la incertidumbre en la fortificación subterránea. 

4. Discusión 

Los resultados obtenidos muestran que el tratamiento previo de los datos juega un papel crucial en la eficacia 

de los modelos de regresión lineal que se utilizan para la predicción de la resistencia a la compresión del 

hormigón. En concreto, el modelo que emplea predictores transformados mediante log(x+1) logró un R² de 0. 

80 en el conjunto de entrenamiento y de 0. 75 en el conjunto de prueba, logrando un desempeño muy superior 
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al de los modelos que utilizan predictores sin transformar y estandarizados, los cuales presentaron un R² en 

pruebas de solo alrededor de 0. 35. Está marcada mejora coincide con lo indicado por Yeh [22], quien evidencia 

que la no linealidad natural de las propiedades mecánicas del hormigón limita el rendimiento de los modelos 

lineales cuando se utilizan datos en su escala original. 

Desde la perspectiva del error en las predicciones, el modelo que utilizó una transformación logarítmica, logró 

reducir el Error Cuadrático Medio (MSE) en el conjunto de prueba, pasando de cifras superiores a 140 MPa² 

(modelos raw y estandarizados) aproximadamente de 55 MPa², lo que significa una reducción cercana al 60 

%. Este descenso es especialmente importante en el campo de la ingeniería, dado que una estimación incorrecta 

de la resistencia del hormigón puede resultar en decisiones innecesariamente cautelosas o, en el peor escenario, 

generar riesgos estructurales [23]. 

El hecho de que los modelos con predictores sin transformar y estandarizados presenten métricas prácticamente 

idénticas (Train MSE ≈ 105 MPa² y Test MSE ≈ 143 MPa²) indica que la estandarización no corrige los 

problemas de asimetría y heterocedasticidad presentes en el conjunto de datos experimental. Este 

comportamiento ha sido observado previamente por Chou et al. [24], quienes señalan que, en propiedades 

mecánicas del hormigón, las transformaciones de tipo logarítmico resultan más efectivas que la normalización 

clásica cuando se emplean modelos de regresión lineal. 

Dentro del esquema que usa la transformación log(x+1), la cantidad de cemento y cuánto tiempo se dejó curar 

tuvieron los valores p más pequeños, señalando que influyen mucho y de manera notable en la resistencia a la 

compresión. Este descubrimiento encaja con estudios anteriores que señalan estos dos elementos como los que 

más dirigen cómo el hormigón gana resistencia, ya sea en construcciones comunes o en el hormigón lanzado 

que se usa para asegurar túneles mineros [25]. Desde un punto de vista práctico, esto confirma que es vital 

manejar con mucho cuidado la cantidad de cemento y los tiempos de fraguado. 

El nivel de agua tuvo un efecto importante, pero contrario, un resultado que coincide con la idea tradicional de 

la proporción agua a aglomerante. En la minería subterránea, donde la humedad del ambiente y cómo se aplica 

el hormigón pueden causar cambios en el agua real usada, este descubrimiento es particularmente importante. 

Neville [26], subraya que hasta aumentos chicos en el agua pueden causar bajadas notables en la resistencia, 

algo que se ve bien en los números que el modelo calculó. 

Un dato importante es que el superplastificante alcanzó significancia estadística después de aplicar la 

transformación logarítmica, lo que da a entender que existe una conexión curva entre este aditivo y la 

resistencia a la compresión. Este patrón se ha visto en investigaciones sobre hormigón proyectado, donde el 

superplastificante ayuda a que el material sea más fácil de trabajar y se compacte mejor, sin bajar la resistencia 

si se usa en las cantidades correctas [27]. Por otro lado, la ceniza volante y los agregados mostraron valores p 

altos, señalando que su aporte fue pequeño dentro del modelo lineal, lo que podría significar que su impacto 

se ve en interacciones que este método no logra captar. 

El hecho de que los valores de MSE sean parecidos en el entrenamiento y la prueba para el modelo log(x+1) 

(casi 56 MPa² y cerca de 55 MPa², en ese orden) demuestra que se puede generalizar bien, algo fundamental 

para usarse en labores mineras. Tal como mencionan Asteris et al. [28], un modelo que se mantenga firme con 

datos nuevos es más de fiar que uno que se ajuste mucho al entrenar, pero rinda mal en situaciones inéditas, 

sobre todo donde los materiales cambian mucho. 

Visto de modo práctico, un modelo de regresión lineal funciona bien. Este modelo puede emplearse como una 

herramienta de apoyo para el control de calidad del hormigón. Esto pasa en trabajos de minería, el costo de 

usarlo es bajo. Además, es fácil de entender, el cual ayuda a ponerlo en sistemas de control y se puede estimar 

pronto si una alcanzará la resistencia requerida. Pero, los resultados también sugieren algo, donde para ver 

efectos complejos entre componentes como agregados y adiciones minerales, se deben evaluara otros modelos 

no lineales en estudios futuros. Los resultados obtenidos adquieren relevancia al contrastarse con los criterios 

reales empleados en minas subterráneas para el control del hormigón. La capacidad del modelo con 

transformación log(x+1) para estimar la resistencia a la compresión con errores reducidos permite evaluar, de 

manera anticipada, si una mezcla determinada tiene alta probabilidad de alcanzar resistencias tempranas del 

orden de 2 MPa en las primeras horas de curado, así como resistencias finales superiores a 28 MPa a los 28 

días. Esta comparación con estándares de comparación real evidencia el potencial del modelo como una 

herramienta predictiva de apoyo al control de calidad, orienta a la toma de decisiones en campo, más que como 

un reemplazo directo de los ensayos normativos.  

Finalmente, nos obstante, los resultados logrados se mantienen estables y firmes dentro de la información 

examinada, usar este modelo en diferentes entornos geológicos necesitará cambios y ajustes de vez en cuando. 
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Ahmad et al. [30] indican que las variaciones en el origen de los materiales y en cómo se fraguan pueden influir 

en la certeza de los modelos que predicen, así que ajustar constantemente es fundamental para conservar la 

fiabilidad. De manera global, lo que encontramos demuestra que juntar datos de pruebas reales, 

preprocesamiento adecuado y usar modelos estadísticos sencillos de entender, es un método bueno para 

optimizar el manejo del hormigón en el sector de la minería  

5. Conclusiones 

En conclusión, los hallazgos muestran la importancia de la preparación de datos para los modelos de regresión 

lineal utilizados para pronosticar la resistencia a la compresión del desempeño del hormigón. Específicamente, 

la transformación log(x+1) aumentó considerablemente la capacidad explicativa del modelo, elevando el 

coeficiente de determinación en el conjunto de prueba de aproximadamente 0.351 a prácticamente 0.750.  

Usando los predictores log(x+1), el modelo disminuyó el Error Cuadrático Medio en el conjunto de prueba en 

alrededor del 60% en comparación con los modelos estandarizados sin modificar, reduciéndolo así de más de 

140 MPa² a aproximadamente 55 MPa². Esta mejora es particularmente crucial ya que la estabilidad y la 

seguridad dependen de una medición exacta de la resistencia del hormigón. 

El análisis de significancia estadística reveló que las variables que más influyen en la resistencia a la 

compresión del hormigón son la cantidad de cemento y el tiempo de curado. Por el contrario, la cantidad de 

agua tuvo un impacto negativo constante. Estos resultados respaldan las técnicas establecidas de diseño de 

mezclas y llaman la atención sobre la necesidad de un control estricto de estos elementos en el hormigón 

empleado como revestimiento y soporte en operaciones mineras.  

La significancia estadística del superplastificante aumenta tras la transformación logarítmica, lo que sugiere 

que su influencia en la resistencia a la compresión no es lineal. Este hallazgo subraya la importancia de utilizar 

métodos de preprocesamiento adecuados. 

Al investigar aditivos químicos en hormigón destinado a la minería, donde es fundamental mantener un 

equilibrio entre trabajabilidad y rendimiento mecánico, la similitud entre los errores de entrenamiento y de 

prueba obtenidos por el modelo log(x+1) muestra una buena generalización, lo que sugiere que el modelo 

puede utilizarse de forma fiable en mezclas reales frescas de hormigón dentro de rangos operativos 

comparables. Para su posible incorporación como herramienta de apoyo al control de calidad en operaciones 

mineras subterráneas, esta característica es esencial. 

No obstante, aunque el desempeño del modelo de regresión lineal con transformación log(x+1) fue claramente 

superior, con valores de R² cercanos a 0.750 y errores de predicción considerablemente reducidos, su precisión 

continúa estando fuertemente condicionada por la calidad y representatividad de los datos experimentales 

disponibles. Este modelo puede emplearse como una herramienta predictiva complementaria para verificar en 

etapas la probabilidad de cumplimiento de los criterios operativos de resistencia del hormigón, tales como 

resistencias iniciales cercanas a 2 MPa en las primeras horas y resistencias finales mayores a 28 MPa a los 28 

días. Su aplicación práctica permitirá optimizar los programas de control de calidad, reducir reprocesos y 

fortalecer la gestión preventiva de la seguridad geomecánica. 

Es determinante identificar que la presencia de variabilidad en los materiales, valores atípicos asociados a 

ensayos de laboratorio y posibles cambios en las condiciones de mezclado y curado del hormigón pueden 

afectar la estabilidad del modelo. En este sentido, resulta pertinente ampliar la base de datos mediante nuevas 

campañas experimentales, incorporar variables adicionales relacionadas con las condiciones ambientales y 

operativas propias de la minería subterránea, así como evaluar enfoques híbridos que integren modelos 

estadísticos con principios físico mecánicos del comportamiento del hormigón.  A pesar de estas limitaciones, 

los resultados obtenidos constituyen un aporte relevante y validan el potencial de los métodos de análisis de 

datos y aprendizaje automático como herramientas de apoyo para mejorar la eficiencia, confiabilidad y 

predictibilidad del uso del hormigón en aplicaciones en minería u otra industria.  

Futuros trabajos podrían además evaluar modelos híbridos que combinen enfoques estadísticos con principios 

físico-mecánicos del comportamiento del hormigón, con el objetivo de aumentar la robustez del modelo y su 

aplicabilidad en diferentes áreas. 
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