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Abstract

The safety and stability of ground support and lining systems are critical aspects of mining engineering projects, due to
the high structural demands imposed by operational conditions, particularly in underground mining. The main objective
of this study was to evaluate the capability of multiple linear regression models (OLS) to predict concrete compressive
strength, analyzing the effect of different data preprocessing techniques on their predictive performance. A quantitative
approach was adopted, based on the analysis of an experimental dataset comprising more than 1,000 concrete mix designs,
considering variables related to material proportions and curing age. Three modeling configurations were developed and
compared: untransformed predictors, standardized predictors, and predictors transformed using the log(x+1) function.
Model performance was assessed using Mean Squared Error (MSE) and the coefficient of determination (R?). The results
indicate that models built with original and standardized data exhibited similar behavior, with R? values close to 0.351 on
the test dataset. In contrast, logarithmic transformation significantly improved model performance, reducing the test MSE
to approximately 55 MPa? and increasing R? to values close to 0.750, demonstrating a substantial enhancement in accuracy
and generalization capability. These results support the use of the proposed model as a predictive tool for concrete quality
control in mining applications. In conclusion, multiple linear regression combined with appropriate logarithmic
preprocessing represents an efficient and reliable alternative for estimating concrete compressive strength, preserving
model interpretability and providing practical support for technical decision-making in mining engineering.
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1. Introduction

Concrete is an essential material in the mining industry, valued for its accessibility, reasonable cost, and
adequate structural performance, particularly for the foundations of concentrator plants, leaching platforms,
ramps, reinforced slopes, and other mining-related applications. According to technical studies, the
compressive strength of concrete is one of the most critical parameters in mining engineering. In this context,
concrete, especially shotcrete, plays a vital role in operational safety, as its mechanical performance directly
affects the stability of the rock mass and the mitigation of geomechanical risks [1]. In underground mining,
variability in concrete quality can lead to significant consequences, ranging from premature support failures
to increased operational costs due to material overuse or the need for rework. Therefore, reliably predicting
concrete strength based on mix proportions and curing conditions is a highly relevant technical challenge for
mining and geotechnical engineers [2]. Traditionally, this parameter has been assessed through experimental
testing methods which, although accurate, require time, resources, and planning constraints that are not always
compatible with the operational dynamics of a productive mine [3]. Numerous studies have demonstrated that
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concrete strength depends on many interrelated variables, such as cement content, water-to-binder ratio, the
use of mineral additives, chemical admixtures, and curing age. In mining applications, these variables tend to
exhibit greater variability due to logistical constraints, underground environmental conditions, and differences
in placement methods. This increases the uncertainty associated with the mechanical performance of concrete
[4]. Given these considerations, the use of statistical models and machine learning techniques has emerged as
a viable alternative for estimating compressive strength based on historical mix records.

Numerous previous studies have demonstrated that regression models can identify meaningful relationships
between the components of concrete and its final strength, provided that the dataset is properly prepared and
analyzed [5]. Among these models, linear regression stands out for its conceptual simplicity and ease of
implementation in engineering applications, particularly in industrial environments where transparency in
results is essential [6]. In the mining context, the interpretability of predictive models takes on particular
importance, as it allows engineers to directly understand the influence of each variable on material behavior
and to support technical decisions related to mix design and quality control. Unlike complex “black-box”
models, linear approaches facilitate technical validation and integration into standard operating procedures
typical of mining projects [7]. However, the direct use of linear models without prior treatment often presents
limitations associated with statistical issues, which can undermine the model’s generalization capability and
result in unreliable strength estimates [8]. To address this, data preprocessing techniques such as
standardization and logarithmic transformations have been proposed to enhance the performance of linear
models [9]. Research focused on concrete mix design has shown that logarithmic transformation helps reduce
data dispersion, stabilize variance, and reveal relationships that may not be evident in the original data scale
[10]. This approach is particularly relevant in mining, where real operating conditions rarely meet ideal
assumptions, and where model robustness under unbalanced datasets is a key factor for practical application
[11]. In underground mining, shotcrete plays a fundamental role as an immediate support element. Therefore,
its performance is evaluated not only in terms of final strength but also by early strength criteria established in
mine operational standards. In practice, minimum values of approximately 2 MPa at 2 hours and final strengths
exceeding 28 MPa at 28 days are commonly required to ensure both initial and long-term excavation stability.
In this context, the development of predictive tools based on historical mix data enables anticipation of such
performance criteria, optimization of quality control, and reduction of exclusive reliance on destructive testing
providing a direct operational advantage in underground environments where time and safety are critical
factors. This study aims to evaluate the performance and predictive capacity of classical linear regression
models for estimating the compressive strength of concrete used in mining engineering applications, by
systematically comparing the effects of different data preprocessing methods. Using a widely adopted and
validated dataset from the literature, the goal is to identify which transformations enhance model accuracy,
generalization, and interpretability, ultimately offering a practical analytical tool for concrete mix design and
quality control in contemporary mining operations [12].

2. Materials and methods

This study is based on a real experimental dataset comprising more than 1,000 concrete mixes, designed to
analyze and predict the compressive strength of the material in technical contexts related to mining
engineering, such as underground or surface support, tunnel lining, and auxiliary mining structures. Each entry
in the dataset represents a concrete mix characterized by its composition and curing age, along with the
measured value of compressive strength in megapascals (MPa), a fundamental mechanical property for
assessing structural stability and safety in mining excavations [13]. The included variables reflect components
commonly used in concrete mixes for mining operations, where placement conditions, curing, and quality
control often exhibit greater variability compared to conventional environments [14].

2.1 Data and variables

2.1.1 Variables in the experimental dataset

Table 1 provides a description of the predictor variables and the target variable considered in this study.

Table 1. Variables in the experimental dataset
Variable Description Unit




Ruiz V. et al Journal of Advanced Mining Modeling, Publicado en linea

Cement Cement content in the mix Kg/m?
Slag Ground granulated blast furnace slag Kg/m?
FlyAsh Fly ash Kg/m?
Water Water content Kg/m?
Superplasticizer Superplasticizer admixture Kg/m?
CoarseAgg Coarse aggregate Kg/m?
FineAgg Fine aggregate Kg/m?
Age Curing age Dias
Strength Concrete compressive strength MPa

2.2. Data preparation and partitioning

Prior to model development, the dataset underwent a numerical verification process to ensure consistency of
magnitudes and variable coherence. Subsequently, the dataset was split into two subsets: training and testing,
following a fixed partitioning scheme that enables evaluation of the model’s performance on observations not
used during fitting [15].

This procedure replicates a realistic scenario, in which predictive models must maintain their generalization
capacity when exposed to new mix conditions and operational variations inherent to the mining environment
[16].

Dataset (1000
mixes)
Fixed split
Training 900 Testing 130
records (87.4%) records (12.6%)
Model fitting Evaluation
Linear Regression MSE and R2

A

Final predictive model

Figure 1. Schematic of the data partitioning process

2.3 Data preprocessing

To assess the impact of preprocessing techniques on the predictive performance of the model, three distinct
input data configurations were evaluated: (i) untransformed predictors, (ii) standardized predictors, and (iii)
predictors transformed using the log(x+1) function. Standardization was performed using the following
expression:

Z; = )

Where:



Ruiz V. et al Journal of Advanced Mining Modeling, Publicado en linea

Z;— standardized value,

X;— original value of the variable,

u — mean of the variable,

o — standard deviation of the variable.

2.3.1 Logarithmic transformation applied to predictors

This transformation is used to reduce data skewness and stabilize variance, thereby improving the performance
of linear models on real-world experimental datasets [18].

X'y = log (X;1) )

Where:
X'i — logarithmic transformation,
log — logarithm.

2.4 Multiple linear regression modeling (OLS)

The estimation of concrete compressive strength was carried out using a multivariate linear regression model,
fitted using an Ordinary Least Squares (OLS) algorithm [19]. The general form of the model is expressed as:

y=ﬁo+ZﬁiXi+5 )
i=1

Where:

y — concrete compressive strength (MPa),

Bo— intercept term,

Bi— regression coefficients,

Xi— predictor variables,

€ — error term.

This approach was chosen for its high interpretability an essential feature in mining engineering since it allows
for the direct identification of how each concrete component influences mechanical performance, thus
supporting decision-making in mix design and quality control [20].

2.5 Evaluation metrics

These metrics allow for the quantification of model accuracy and generalization capability critical aspects for
mining applications, where prediction errors can compromise both structural safety and operational efficiency
[21]. The performance of the models was evaluated using Mean Squared Error (MSE) and the coefficient of
determination (R?), both of which are discussed below.

2.5.1 Mean squared error (MSE)

MSE measures the overall prediction error of the model. It quantifies how far the model's predicted values
deviate from the actual compressive strength values of the concrete. This is especially important in mining, as
underestimations may compromise support safety, while overestimations may lead to unnecessary material
costs.

n
1 ,
MSE == 0= y)? )
i=1

Where:
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MSE — mean squared error,

n — total number of evaluated observations,
yi — actual measured compressive strength,
y’i — predicted compressive strength,
(yi—y’i*— individual squared error.

2.5.2 Coefficient of determination (R?)

R? is a key metric that quantifies the explanatory power of the model i.e., the proportion of variability in
compressive strength that can be explained by the set of predictor variables. Studies have shown that a value
close to 1 indicates the model successfully explains most of the mechanical behavior of the concrete, which is
fundamental when evaluating the structural reliability of support systems in mining operations subject to
geomechanical stresses.

Yie (i — y'i)?

RZ=1- =
2 i =y D2

)

Where:

R? — coefficient of determination,

yi — actual measured compressive strength,

y'i — predicted compressive strength,

y"’i — mean of the actual compressive strength,
(yi_y'i>— sum of squared prediction errors,
(yi_y’'i*— total variance in the dataset.

3. Results

3.1. Predictive performance of the models

The performance of the three evaluated models untransformed predictors, standardized predictors, and
predictors transformed using log(x+1) is presented in Table 2, which reports the Mean Squared Error (MSE)
and R? values for both training and test sets.

Table 2. Model performance in terms of MSE and R?

Model configuration Train MSE Test MSE Train R? Test R*
Untransformed predictors 105.20 142.67 0.624 0.351
Standardized predictors 105.20 142.67 0.624 0.351
Log(x+1) predictors 56.39 55.06 0.799 0.750

The results indicate that the models using untransformed and standardized predictors perform almost
identically. In both cases, the test set prediction error is high, and the R? values suggest a limited ability to
explain the variability in compressive strength.

In contrast, the model using log(x+1) transformed predictors demonstrates a substantial reduction in error, with
MSE values nearly half those obtained from the other approaches. Additionally, the increase in R? on the test
set highlights a significant improvement in the model’s generalization capability.

3.2. Graphical comparison of mean squared error

Figure 2 presents a visual comparison of the MSE values for the three models, in both the training and test
sets. It is clearly observed that the models with untransformed and standardized predictors exhibit high error
values and a pronounced gap between training and test performance, suggesting limited robustness.

In contrast, the model using the logarithmic transformation shows similar MSE values across both datasets,
indicating more stable and consistent behavior when applied to unseen data.
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Model Performance: MSE (Train vs Test)
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Figure 2. Comparison of mean squared error (MSE) for the three evaluated models

3.3. Analysis of the coefficient of determination

Figure 3 presents a comparison of the R? coefficient for the three modeling approaches. The models using
untransformed and standardized predictors explain only a limited portion of the variability in compressive
strength within the test set, with values around 0.351. In contrast, the model employing log(x+1) transformed
predictors explains approximately 75% of the variability observed in the test data, indicating a significantly
better fit and a more accurate representation of the relationships between input variables and compressive
strength.
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Figure 3. Comparison of the coefficient of determination (R?) for training and test sets

3.4. Statistical significance

The statistical significance of the predictor variables was evaluated based on the models fitted using Ordinary
Least Squares (OLS). For each preprocessing configuration, p-value tables were generated corresponding to
the models with untransformed, standardized, and log(x+1) transformed predictors.

Figure 4 displays the —logio(p-value) plot for the model with standardized predictors, where a clear distinction
in the statistical relevance of the variables can be observed. Similarly, graphical results for the models using
untransformed and logarithmically transformed predictors are presented in Figures 5 and 6, respectively.
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Figure 4. Statistical significance of predictor variables in the model using untransformed predictors, expressed as
—logio(p-value)
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Figure 5. Statistical significance of predictor variables in the model using standardized predictors, expressed as
—logio(p-value)
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Figure 6. Statistical significance of predictor variables in the model using log(x+1) transformation, expressed as
—logio(p-value)
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The p-values obtained for each model are detailed in Tables 3, 4, and 5.

Table 3. p-values for the model with untransformed predictors

Predictor p-value
Const 7.082e-02
Cement 6.971e-41
Slag 4.145¢e-26
FlyAsh 1.895¢-13
Water 1.918e-03
Superplasticizer 2.461e-01
CoarseAgg 5.443e-03
FineAgg 2.738e-03
Age 9.516e-74

Table 4. p-values for the model with standardized predictors

Predictor p-value
Const 0.000e+00
Cement 6.971e-41
Slag 4.145e-26
FlyAsh 1.895e-13
Water 1.918e-03
Superplasticizer 2.461e-01
CoarseAgg 5.443e-03
FineAgg 2.738e-03
Age 9.516e-74

Table 5. p-values for the model with log(x+1) transformed predictors

Predictor p-value
Const 2.930e-01
Cement 1.289¢-86
Slag 4.634e-36
FlyAsh 2.632¢-01
Water 1.837e-20
Superplasticizer 1.021e-05
CoarseAgg 4.085¢-01
FineAgg 9.428e-02
Age 1.710e-192

The analysis of these tables shows that in the model using the log(x+1) transformation, cement content and
curing age have the lowest p-values, indicating they are highly significant for predicting compressive strength.
Water content is also statistically significant, though it has a consistently negative effect on strength. After the
logarithmic transformation, superplasticizer becomes more statistically relevant, while fly ash and the
aggregates display higher p-values, suggesting their impact is limited in the linear model evaluated.

3.5. Model validation and predictive application

Three regression models untransformed OLS, standardized OLS, and logarithmically transformed OLS were
validated using an independent dataset. The untransformed and standardized models showed limited
performance (R? = 0.351) and non-random residual patterns, indicating heteroscedasticity. In contrast, the
log(x+1) transformed model demonstrated superior predictive capability (R? = 0.750) and well-behaved
residuals, validating it as the most robust tool, as shown in Figure 7.
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To assess its practical utility, the selected model was applied to three simulated dosage scenarios: a standard
mix, a high-cement-content mix, and an optimized mix with admixtures. Figure 8 compares the predicted
strength development curves with critical mine standards: early-age strength (2 MPa at 2 hours) and final

design strength (>28 MPa at 28 days). The tool enables both visual and quantitative prediction of compliance
with these criteria before field application.

—@— Shotcrete_Répido
=@- Shotcrete_Estandar
Harmigén_Estructural
=== Minimo 2 MPa
=== Minima 28 MPa

Resistencia Predicha (MPa)

Tiempo de Curado (horas)

Figure 8. Strength development curves with Log(x+1) transformation

These results confirm that the logarithmic model is not only statistically sound but also a practical predictive

tool for optimizing mix designs, ensuring compliance with technical specifications, and reducing uncertainty
in underground support systems.

4. Discussion

The results obtained demonstrate that data preprocessing plays a crucial role in the effectiveness of linear
regression models used to predict the compressive strength of concrete. Specifically, the model using log(x+1)
transformed predictors achieved an R? of 0.80 on the training set and 0.75 on the test set, clearly outperforming
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the models using untransformed and standardized predictors, which only reached R? = 0.35 on the test set. This
marked improvement aligns with the findings of Yeh [22], who observed that the inherent nonlinearity of
concrete’s mechanical properties limits the performance of linear models when working with data in its original
scale.

From the perspective of prediction error, the logarithmically transformed model significantly reduced the Mean
Squared Error (MSE) on the test set from values exceeding 140 MPa? (raw and standardized models) down to
approximately 55 MPa?, representing a reduction of nearly 60%. This decrease is particularly relevant in
engineering, where incorrect strength estimations can lead to overly conservative decisions or worse, pose
structural safety risks [23].

The fact that the raw and standardized models showed nearly identical metrics (Train MSE = 105 MPa? and
Test MSE = 143 MPa?) indicates that standardization alone does not correct the issues of skewness and
heteroscedasticity present in the experimental dataset. This behavior has also been observed by Chou et al.
[24], who noted that logarithmic transformations are more effective than classical normalization techniques
for mechanical properties of concrete when using linear regression models.

Within the log(x+1) transformation scheme, the cement content and curing age had the lowest p-values,
indicating a strong and statistically significant influence on compressive strength. This finding is consistent
with prior studies highlighting these two factors as the most influential in the strength development of concrete,
both in general applications and in shotcrete used for tunnel reinforcement in mining environments [25]. From
a practical perspective, this confirms the importance of carefully managing both cement dosage and curing
times.

The water content also had a significant but negative effect, a result that aligns with the traditional
understanding of the water-to-binder ratio. In underground mining, where ambient humidity and placement
methods can alter the actual water content used, this finding becomes particularly relevant. Neville [26]
emphasized that even small increases in water can significantly reduce strength something well captured in the
model’s estimates.

Notably, superplasticizer reached statistical significance only after the logarithmic transformation, suggesting
a nonlinear relationship between this admixture and compressive strength. This pattern has been observed in
studies on shotcrete, where superplasticizers improve workability and compaction without reducing strength
when used in proper doses [27]. In contrast, fly ash and aggregates showed high p-values, indicating a limited
contribution in the linear model, possibly due to interaction effects not captured by a purely linear approach.
The similarity in MSE values between training and test sets for the log(x+1) model (approximately 56 MPa?
and 55 MPa?, respectively) reflects strong generalization, which is critical for real-world mining applications.
As Asteris et al. [28] point out, a model that remains stable on unseen data is more reliable than one that
overfits during training but fails in new scenarios, especially in highly variable material conditions.

From a practical standpoint, a linear regression model offers a cost-effective and interpretable solution for
concrete quality control in mining operations. Its simplicity makes it easy to integrate into field control systems
and allows for rapid estimation of whether a given mix will meet required strength levels. However, the results
also suggest that to capture more complex interactions particularly between aggregates and mineral admixtures
nonlinear models should be explored in future research. The results gain further relevance when compared to
real-world strength criteria used in underground mining: the log(x+1) model’s ability to predict compressive
strength with low error enables early assessment of whether a mix is likely to reach critical thresholds such as
2 MPa at 2 hours and >28 MPa at 28 days. This alignment with practical standards highlights the model’s
potential as a predictive tool for decision support in the field, rather than as a direct replacement for
standardized testing.

Finally, while the results obtained are robust within the scope of the dataset used, applying this model in
different geological settings will require adjustments and recalibration. As noted by Ahmad et al. [30],
variations in material source and mixing conditions can affect the accuracy of prediction models, thus
continuous refinement is essential to maintain reliability. Overall, the findings support the idea that combining
real experimental data, appropriate preprocessing, and interpretable statistical modeling provides an effective
strategy to optimize concrete management in the mining sector.

5. Conclusions

In conclusion, the findings underscore the importance of data preprocessing for linear regression models used
to predict the compressive strength of concrete. Specifically, the log(x+1) transformation significantly
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enhanced the explanatory power of the model, increasing the coefficient of determination on the test set from
approximately 0.351 to nearly 0.750. Using log(x+1) transformed predictors, the model reduced the Mean
Squared Error (MSE) on the test set by approximately 60% compared to unmodified standardized models,
decreasing from over 140 MPa? to about 55 MPa?. This improvement is particularly crucial, as structural
stability and safety depend on accurate measurement of concrete strength. The statistical significance analysis
revealed that the most influential variables in determining compressive strength are cement content and curing
time. Conversely, water content had a consistently negative impact. These results support established mix
design practices and emphasize the need for strict control over these factors in concrete used for lining and
support in mining operations.

The statistical significance of the superplasticizer increased after the logarithmic transformation, suggesting a
nonlinear influence on compressive strength. This finding reinforces the importance of employing appropriate
preprocessing techniques.

When evaluating chemical admixtures in concrete intended for mining where balancing workability and
mechanical performance is essential the similarity between training and test errors in the log(x+1) model
indicates good generalization, suggesting that the model can be reliably applied to fresh concrete mixes within
comparable operational ranges. This characteristic is essential for its potential adoption as a quality control
support tool in underground mining operations.

Although the performance of the log(x+1) transformed linear regression model was clearly superior, achieving
R? values near 0.750 and significantly lower prediction errors its accuracy remains strongly dependent on the
quality and representativeness of the available experimental data. The model can serve as a complementary
predictive tool for staged verification of compliance with concrete strength criteria, such as early strengths of
~2 MPa within the first hours and final strengths above 28 MPa at 28 days. Its practical application can help
optimize quality control programs, reduce rework, and enhance proactive geomechanical safety management.
It is crucial to recognize that the presence of material variability, outliers from laboratory testing, and potential
changes in mixing and curing conditions may affect model stability. Therefore, it is advisable to expand the
dataset through new experimental campaigns, include additional variables related to environmental and
operational conditions specific to underground mining, and consider hybrid approaches that integrate statistical
models with physico-mechanical principles governing concrete behavior. Despite these limitations, the results
presented here offer a valuable contribution and validate the potential of data analysis and machine learning
techniques as support tools to enhance the efficiency, reliability, and predictability of concrete use in mining
and other industrial applications.

Future work may also explore hybrid models that combine statistical approaches with physical-mechanical
principles of concrete behavior, aiming to increase model robustness and extend its applicability to diverse
operational contexts.
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