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Resumen 

La predicción de la eficiencia metalúrgica en la recuperación de oro constituye una herramienta clave para la optimización 

de los procesos de beneficio en la industria minera. El cual, el objetivo de este trabajo fue predecir con mayor precisión 
la eficiencia metalúrgica en la recuperación de oro en las etapas rougher y final, empleando técnicas de aprendizaje 
automático y la métrica sMAPE como indicador principal de desempeño. Se aplicó un enfoque cuantitativo, e valuando 
modelos supervisados, como Regresión Lineal, Árbol de Decisión y Bosque Aleatorio; mediante validación cruzada de 
cinco pliegues. Los resultados obtenidos evidenciaron diferencias significativas entre los algoritmos; la Regresión Lineal 
alcanzó un sMAPE de 10.26 % en rougher y 9.09 % en final, mientras que el Árbol de Decisión redujo el error en la etapa 

rougher hasta 6.76 %. El mejor desempeño general se consiguió con el Random Forest, el cual alcanzó un error porcentual 
medio absoluto escalar de 6.47% en la etapa operativa y un sMAPE total ponderado de 6.73%, lo que significa que es un 
40% mejor que el modelo de referencia Dummy, que tuvo un error ponderado del 11.29%. Estas predicciones fueron 
coherentes con el comportamiento real del proceso y reflejaron las variaciones típicas asociadas con la recuperación en 
planta. Además, se analizaron las concentraciones de plata (Ag) y plomo (Pb) como variables metalúrgicas relacionadas 
con el oro (Au), con el fin de validar la consistencia física y metalúrgica del conjunto de datos, sin constituir o bjetivos 

principales del modelado. En conclusión, la integración de modelos avanzados como el Random Forest es una opción 
práctica para reforzar la supervisión del proceso de flotación, prever cambios en la eficiencia y ayudar a sacar el mayor 
provecho a la recuperación del oro. 
 
Palabras clave: Flotación; sMAPE; Validación cruzada; Random Forest; Árbol de decisión; Modelos supervisados.  
 

Abstract 
 

Predicting metallurgical efficiency in gold recovery is a key tool for optimizing mineral processing operations in the 

mining industry. Accordingly, the objective of this study was to more accurately predict metallurgical efficiency in gold 
recovery during the rougher and final stages by applying machine learning techniques and using the sMAPE metric as 
the main performance indicator. A quantitative approach was adopted, evaluating supervised models such as Linear 
Regression, Decision Tree, and Random Forest through five-fold cross-validation. The results revealed significant 
differences among the algorithms: Linear Regression achieved an sMAPE of 10.26% in the rougher stage and 9.09% in 
the final stage, while the Decision Tree reduced the error in the rougher stage to 6.76%. The best overall performance 
was obtained with the Random Forest model, which achieved a scaled mean absolute percentage error of 6.47% at the 

operational stage and a weighted total sMAPE of 6.73%, representing a 40% improvement over the  Dummy reference 
model, which recorded a weighted error of 11.29%. These predictions were consistent with the actual process behavior 
and reflected the typical variations associated with plant recovery. In addition, silver (Ag) and lead (Pb) concentrations  
were analyzed as metallurgical variables related to gold (Au) in order to validate the physical and metallurgical 
consistency of the dataset, without constituting primary modeling objectives. In conclusion, the integration of advanced 
models such as Random Forest represents a practical option to strengthen flotation process monitoring, anticipate changes 

in efficiency, and maximize gold recovery. 
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1. Introducción 

La minería moderna tiene como desafío recurrente la necesidad de optimizar la eficiencia metalúrgica en los 

circuitos de concentración, siendo más crítico en los procesos de flotación utilizados para la recuperación de 

oro. Por ende, este tipo de operaciones requiere de modelos capaces de anticipar las oscilaciones y suministrar 

información relevante para la toma de decisiones estratégicas. Dentro del contexto industrial incluido en este 

trabajo, el oro se asocia mayoritariamente a minerales sulfurados, sobre todo pirita y, secundariamente, 

arsenopirita, razón por la que puede ser recuperado a través de esquemas de flotación bulk. Bajo estás 

condiciones, los niveles de recuperación metalúrgica alcanzados son consistentes a los obtenidos y reportados 

en plantas industriales con flotación de minerales auríferos sulfurados. Al respecto, varios estudios demuestran 

que la inclusión de análisis avanzados mejora en alto grado la estabilidad y predictibilidad de los procesos 

metalúrgicos, en particular, en ambientes caracterizados por la elevada variabilidad operacional [1]. Asimismo, 

la complejidad en continuo aumento de los sistemas de flotación exige herramientas analíticas para que los 

operadores caractericen el comportamiento del mineral y del proceso de manera más precisa [2]. En los últimos 

años, los programas de aprendizaje automático se han aplicado con mayor frecuencia en el sector minero para 

revelar conexiones complejas entre las muchas variables de sus procesos. Esto resulta especialmente relevante 

para la flotación, ya que los factores de interacción incluyen múltiples impulsos de reactivos, aireación, 

granulometría, mineralogía del mineral y condiciones hidrodinámicas. En este contexto, los modelos basados 

en aprendizaje automático ofrecen la oportunidad de capturar interdependencias que los enfoques tradicionales 

no pueden describir adecuadamente [3]. Además, permiten realizar predicciones más robustas incluso cuando 

el proceso en cuestión sufre perturbaciones significativas [4]. Como resultado, la digitalización de las 

instalaciones ha impulsado el uso de métodos de procesamiento de datos en tiempo real que respaldan la toma 

de decisiones operativas críticas [5]. 

La selección adecuada de métricas de evaluación es vital para evaluar el rendimiento de los modelos 

predictivos. En cuanto a la métrica usada para este estudio, el diferencial fue el uso de sMAPE, una medida 

simétrica que aplicaba a los valores en la que se evitarían los sesgos cuando los datos reales tuvieran mucha 

dispersión. Si bien el sMAPE se utiliza más habitualmente en industrias similares, la ventaja del cálculo 

relativamente justo es evidente [6]. Además, su estructura en porcentaje también se apropiaba para la medición 

de muchos de los indicadores por eficiencia de desempeño metalúrgico [7]. Y también, tras múltiples 

experimentos, dejaba ver que esta métrica era clave y realmente útil cuando pequeñas variaciones pueden traer 

grandes diferencias finales de recuperación. [8]. 

El presente trabajo presenta un sistema de predicción diseñado para calcular qué tan bien se recupera el oro en 

las fases inicial y final de un proceso de flotación, utilizando datos reales. Se entrenaron distintos algoritmos 

de regresión: Regresión Lineal, Árbol de Decisión y Random Forest, validados mediante K-Fold y evaluados 

con sMAPE. El uso de múltiples algoritmos permite comparar la estabilidad de las predicciones y seleccionar 

el modelo con mayor capacidad de generalización [9]. El propósito es identificar la alternativa más robusta y 

analizar su potencial para apoyar la optimización de procesos metalúrgicos. En esta línea, la minería de datos 

aplicada al procesamiento de minerales ha demostrado ser una herramienta esencial para mejorar la eficiencia 

y reducir la variabilidad operativa [10]. 

2. Materiales y métodos 

Para el desarrollo del modelo predictivo se empleó un conjunto de datos proveniente de un proceso industrial 

de flotación de oro, compuesto por tres archivos: train, test y full. Cada uno contiene registros con índice 

temporal y variables operativas asociadas a la alimentación, reactivos, aireación, niveles de celdas y 

concentraciones de metales. En total, el dataset de entrenamiento incluye 86 variables, mientras que el de 

prueba contiene 52 variables; esta diferencia obligó a trabajar únicamente con las columnas comunes entre 

ambos. Las 86 variables iniciales corresponden a parámetros operativos registrados a lo largo del circuito de 

flotación, incluyendo condiciones de alimentación, dosificación de reactivos, aireación, niveles de pulpa, 

tamaños de partícula y variables metalúrgicas intermedias. No obstante, debido a que el conjunto de prueba 

dispone únicamente de 52 variables, el análisis y entrenamiento de los modelos se realizó exclusivamente 

utilizando las variables comunes a ambos conjuntos, garantizando la consistencia estructural y la 

reproducibilidad de las predicciones. 
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El análisis preliminar permitió identificar valores ausentes, mediciones negativas físicamente imposibles en 

parámetros como niveles o concentraciones y valores atípicos con desviaciones muy superiores al promedio. 

Estas condiciones exigieron una depuración rigurosa antes del modelado. 

Tabla 1. Resumen general del conjunto de datos utilizados  
Archivo Registros Columnas totales Particularidades 

Train 16860 86 
Contiene las variables objetivo 

(rougher y final) 

Test 5856 52 
Empleado exclusivamente para 

predicciones finales 

Full 22716 86 
Utilizado para análisis estadístico 

global 

 

El conjunto de datos utilizado corresponde a un circuito industrial de flotación de tipo bulk, orientado a la 

recuperación de oro (Au) asociado a minerales sulfurados, principalmente pirita y, en menor proporción, 

arsenopirita. En este esquema, la flotación no busca la separación selectiva de metales individuales, sino la 

concentración conjunta de especies valiosas presentes en el mineral. 

El circuito considerado incluye las etapas rougher, cleaner primario y cleaner secundario, siendo la 

recuperación final de oro el resultado acumulado de dichas etapas. Las concentraciones de plata (Ag) y plomo 

(Pb) presentes en el análisis responden a su asociación mineralógica con el oro (Au) y se utilizan únicamente 

como variables de apoyo para caracterizar el comportamiento metalúrgico del proceso, mas no como objetivos 

principales del modelo predictivo. 

2.1. Caracterización química de la alimentación 

La base de datos industrial utilizada registra de manera directa las leyes iniciales de oro (Au), plata (Ag) y 

plomo (Pb), las cuales permiten evidenciar la presencia de sulfuros portadores de estos elementos y, por 

consiguiente, la pertinencia del enfoque metalúrgico empleado. 

Los valores promedio fueron calculados a partir de la totalidad de registros disponibles en el dataset industrial, 

obteniéndose las leyes que se presentan en la Tabla 2. Estos resultados corroboran que el material alimentado 

es un mineral sulfurado con una cantidad importante de Au que se asocia a especies de Pb y Ag, una condición 

que generalmente se aborda por medio de la flotación bulk en las plantas de procesamiento.  

Tabla 2. Caracterización química promedio de la alimentación del circuito rougher  

Parámetro Valor promedio 

Concentración de Au en alimentación (g/t) 7.09 

Concentración de Ag en alimentación (g/t) 99.89 

Concentración de Pb en alimentación (%) 4.12 

 

Adicionalmente, el rango operativo evidenciado en los registros corrobora la variabilidad habitual de minerales 

sulfurados industriales, con valores de Au que oscilan entre 0.65 y 44.09 g/t, Ag entre 0.03 y 674.39 g/t, y Pb 

entre 0.09% y 21.56%. En términos generales, estos datos confirman que el material procesado es 

efectivamente un sistema bulk sulfurado y apoyan la consistencia metalúrgica del estudió. 

2.2. Preparación y limpieza de datos 

Durante el reprocesamiento de los datos se aplicaron diversas etapas orientadas a garantizar la coherencia 

estadística y metalúrgica del conjunto utilizado para el modelado. La primera fase consistió en eliminar valores 

y registros físicamente imposibles, como niveles o cantidades negativas. Dado que los datos e información 

invalida, alteran la estabilidad de los modelos predictivos en aplicaciones mineras y afectan directamente el 

rendimiento de los algoritmos [11]. 

Posteriormente, los valores faltantes fueron imputados utilizando métodos basados en la distribución de las 

variables y en la coherencia del proceso. Así de logra conservar la estructura operativa real del sistema y evitar 

alteraciones causadas por estimaciones arbitrarias, siguiendo lineamientos puestas para el análisis industrial 

de datos de procesos [12]. 
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Además, se verificó la coherencia temporal del dataset, asegurando que el índice cronológico no presentara 

duplicados ni saltos irregulares Tener un tiempo consistente es clave en procesos continuos como los de 

flotación, donde el orden de los eventos influye mucho en los resultados metalúrgicos [3]. 

Para los modelos sensibles a la escala, se aplicaron técnicas de normalización y estandarización con el fin de 

mantener relaciones proporcionales entre variables. Estos procedimientos reducen efectos numéricos no 

deseados y permiten que el aprendizaje sea más parejo en modelos que usan regresión o mediciones de 

distancia [6]. 

Finalmente, se filtraron las columnas para conservar únicamente aquellas presentes simultáneamente en los 

conjuntos train y test, garantizando compatibilidad estructural. Hacer esto se ve como algo indispensable al 

armar modelos supervisados, sobre todo al aplicar minería de datos a procesos industriales [9]. 

2.3. Cálculo para la recuperación metalúrgica 

Para validar la consistencia de los datos, se recalculó la recuperación rougher empleando la ecuación 

metalúrgica clásica, comparando el resultado con la columna oficial del dataset. La fórmula usada fue: 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑐(𝑓 − t)

𝑓(𝑐 − t)
× 100 (1) 

 

Donde: 

Recovery – recuperación metalúrgica (%), 

c – concentración del metal en el concentrado (ppm g/ton), 

f – concentración del metal en la alimentación (ppm g/ton), 

t – concentración del metal en las colas (ppm g/ton). 

El error absoluto medio entre el cálculo y los valores proporcionados fue del orden de 4.12×10^-9, confirmando 

la validez de los datos para el modelado. 

2.4. División de variables y selección de objetivos 

El estudio se centró en predecir dos variables objetivo, Rougher Output Recovery, correspondiente a la etapa 

primaria de flotación. Y Final Output Recovery, que representa la recuperación metalúrgica final de oro. 

Las variables independientes consideradas en el estudio corresponden a parámetros operativos del circuito de 

flotación rougher, scavenger y cleaner, incluyendo tamaño de partícula de alimentación, caudales, niveles de 

pulpa, aireación y dosificación de reactivos. Estas variables representan condiciones reales de operación 

industrial y fueron seleccionadas por su influencia directa sobre la eficiencia de recuperación metalúrgica.  

2.5. Validación cruzada (K-Fold) 

Para evaluar la capacidad de generalización de los modelos se utilizó la técnica de validación cruzada K-Fold 

con k=5, ampliamente recomendada en aplicaciones industriales donde no es posible reservar datos adicionales 

para validación externa. Este método consiste en dividir el conjunto de entrenamiento en cinco particiones del 

mismo tamaño; en cada iteración cuatro particiones se usan para entrenar y una para evaluar el modelo.  

 
Figura 1. Esquema del proceso de validación cruzada K-Fold. 
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2.6. Métrica de evaluación: sMAPE 

La evaluación del desempeño de los modelos se realizó mediante el Symmetric Mean Absolute Percentage 

Error (sMAPE), ya que esta métrica penaliza de manera equilibrada las desviaciones entre valores reales y 

predichos, sin sesgo hacia valores altos o bajos. 

La ecuación que define el sMAPE es la siguiente: 

 

𝑠𝑀𝐴𝑃𝐸 =
1

N
  ∑

|𝒴𝒾 − 𝒴𝒾|

(|𝒴𝒾| + |𝒴𝒾|) ∕ 2

𝑁

𝑖 =1

× 100 (2) 

 

Donde: 

sMAPE – error porcentual simétrico (%), 

N – número total de observaciones, 

𝒴𝒾 – valor real del dato 𝒾 (%), 

𝒴𝒾 – valor predicho para el dato 𝒾 (%), 

|𝒴𝒾 − 𝒴𝒾| – diferencia absoluta entre valor real y predicho (%), 

(|𝒴𝒾| + |𝒴𝒾|) ∕ 2 – promedio simétrico para normalización (%). 

Debido a la importancia metalúrgica de la recuperación final, se empleó una métrica combinada ponderada: 

  
𝑠𝑀𝐴𝑃𝐸𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑑𝑜 = 0.25 × 𝑠𝑀𝐴𝑃𝐸𝑅𝑜𝑢𝑔ℎ𝑒𝑟

+ 0.75 × 𝑠𝑀𝐴𝑃𝐸𝐹𝑖𝑛𝑎𝑙 
(3) 

 

Donde: 

𝑠𝑀𝐴𝑃𝐸𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑑𝑜 – métrica final poderada (%), 
𝑠𝑀𝐴𝑃𝐸𝑅𝑜𝑢𝑔ℎ𝑒𝑟 – error porcentual en la etapa rougher (%), 

𝑠𝑀𝐴𝑃𝐸𝐹𝑖𝑛𝑎𝑙 – error porcentual en la etapa final (%), 

Los coeficientes 0.25 y 0.75 representan los pesos asignados a cada etapa según su relevancia operativa.  

2.7. Modelo de regresión utilizados 

Se entrenaron tres modelos predictivos, cada uno con características y alcances específicos: 

(a) Regresión Lineal 

Útil como línea base; sensible a escalamiento y relaciones lineales entre variables. “No obstante, la linealidad 

entre variables, su rendimiento puede limitarse cuando los procesos presentan interacciones más complejas 

[13].” 

(b) Árbol de Decisión 

“Modelo no paramétrico; captura relaciones no lineales y es robusto frente a datos con ruido [14].” 

(c) Bosque Aleatorio (Random Forest) 

“Conjunto de árboles que reduce la varianza y mejora la estabilidad predictiva; especialmente útil en procesos 

con alta interacción entre variables [15].” 

Tabla 3. Modelos aplicados y métodos de evaluación 
Modelo Reprocesamiento Técnicas de evaluación 

Regresión Lineal Estandarización K-Fold 

Arbol de Decisión No requiere Grid Search + K-Fold 

Random Forest No requiere Grid Search + K-Fold 

Dummy Regressor – K-Fold 

 

El proceso metalúrgico analizado corresponde a un circuito de flotación bulk de sulfuros, cuyo objetivo 

principal es la recuperación del oro asociado a minerales sulfurados. En este esquema, minerales como galena 

y fases portadoras de plata flotan conjuntamente con la pirita y arsenopirita, actuando como vehículos 

metalúrgicos para la recuperación del oro, sin que se realice una separación selectiva individual de estos 

metales en las etapas consideradas. 
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El uso de un conjunto amplio de variables operativas permite capturar la naturaleza multivariable del proceso 

de flotación, donde la recuperación metalúrgica no depende de un único parámetro, sino de la interacción 

simultánea entre condiciones físicas, químicas y metalúrgicas del sistema. 

3. Resultados 

3.1. Calidad de los datos y depuración final 

La fase de depuración permitió transformar un conjunto inicial heterogéneo en un dataset completamente 

limpio, consistente y físicamente plausible. La detección de valores centinela; particularmente evidentes en 

columnas de sensores como *level, confirmó la existencia de errores sistemáticos de adquisición, 

representados por rangos imposibles entre 800 y 200. Al reemplazar estos registros y eliminar columnas sin 

información útil, se obtuvo una base confiable para el análisis posterior. 

En la Figura 2 se aprecia que las distribuciones del “feed_size” entre los conjuntos de entrenamiento y prueba 

presentan una coincidencia notable. Esta similitud es fundamental, ya que confirma que ambos conjuntos 

provienen de condiciones reales comparables y que no existe riesgo de sesgo por desalineación estadística 

entre ellos. 

 
Figura 2. Distribución comparativa del “feed_size” en train y test  

Del mismo modo, la Figura 3 muestra los boxplots de la concentración total de metales, donde se observa la 

desaparición de valores extremos presentes originalmente en el dataset completo. Esta comparación evidencia 

que el filtrado aplicado fue efectivo para eliminar registros atípicos y conservar únicamente aquellos que 

reflejan el comportamiento físico real del proceso metalúrgico. 

 
Figura 3. Boxplot de total_metal en train y test 
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3.2. Comportamiento metalúrgico de Au, Ag y Pb 

El análisis de las concentraciones de Au, Ag y Pb se realizó con el propósito de evaluar la coherencia 

metalúrgica del proceso de flotación bulk considerado en este trabajo. Si bien el objetivo principal del 

modelado predictivo es la recuperación de oro, la inclusión de plata y plomo permite verificar el 

comportamiento conjunto de los minerales sulfurados asociados y validar que el conjunto de datos refleja 

condiciones reales de operación industrial. 

Un aspecto central del análisis fue observar cómo se comportan las concentraciones de oro (Au), plata (Ag) y 

plomo (Pb) a lo largo de las distintas etapas del proceso de flotación. La presencia de plomo y plata en los 

concentrados no implica un esquema de flotación selectiva, sino que responde al carácter bulk del proceso, 

donde estos minerales sulfurados flotan conjuntamente y contribuyen indirectamente a la recuperación del oro 

asociado. La data procesada refleja patrones metalúrgicos esperados, coherentes con la literatura del 

procesamiento de minerales. 

En la Figura 4, referente al oro, se aprecia un incremento sostenido desde la alimentación hasta el concentrado 

final. Esto indica que cada etapa del proceso rougher, cleaner y final, logra una recuperación progresiva del 

metal, lo que valida el correcto funcionamiento del circuito de flotación. 

 
Figura 4. Concentración de Au a través del proceso 

La Figura 5 muestra que, a diferencia del oro, la plata presenta una ligera mejora en la etapa rougher, pero 

posteriormente disminuye. Este comportamiento se asocia a la baja afinidad de la plata en etapas más finas del 

proceso, lo cual es un fenómeno ampliamente reconocido en plantas reales. 

 
Figura 5. Concentración de Ag a través del proceso 

Respecto al plomo, la Figura 6 revela un comportamiento creciente a lo largo del proceso. Esto es coherente 

con la coflotación del plomo en minerales sulfurados asociados al oro, lo que explica su acumulación 

progresiva en el concentrado final. 



 

Ruiz V. Journal of Advanced Mining Modeling, Publicado en línea  

 

 
Figura 6. Concentración de Pb a través del proceso 

Estos resultados permiten confiar en la calidad del dataset, ya que reflejan patrones metalúrgicos reales y 

esperables. 

No obstante, el incremento progresivo de las concentraciones de plomo y plata a lo largo del proceso respalda 

la hipótesis de una flotación bulk de minerales sulfurados, en la cual el oro se recupera principalmente por su 

asociación con estas fases minerales. Este comportamiento explica los niveles de recuperación final obtenidos 

y confirma la coherencia metalúrgica del conjunto de datos utilizado. 

3.3. Análisis exploratorio de las variables objetivo 

Las distribuciones de las variables objetivo se muestran en la Figura 7, donde se aprecia que: 

Figura 7 (a) Rougher Output Recovery se concentra principalmente entre 80% y 90%, lo cual coincide con la 

eficiencia típica de plantas de flotación en etapa inicial. 

Figura 7 (b) muestra que la etapa rougher presenta mediana estable y dispersión reducida, lo que refleja un 

proceso primario relativamente controlado. 

Figura 7 (c) Final Output Recovery presenta una media más baja, entre 60% y 70%, reflejando el 

endurecimiento de las condiciones operativas en las etapas de limpieza. 

Figura 7 (d) evidencia que la recuperación final es más sensible a variaciones operativas, mostrando una caja 

más estrecha pero una mayor cantidad de valores extremos hacia abajo. 

 

  

(a) (b) 
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(c) (d) 

Figura 7. Distribución estadística de las recuperaciones reales en las etapas rougher y final  

La presencia de algunos valores atípicos cercanos a 0% es consistente con paradas de planta o eventos de falla 

en los equipos de flotación. 

La correlación entre ambas variables objetivo (r ≈ 0.3), representada en la Figura 8, muestra que, aunque existe 

relación entre las etapas rougher y final, la etapa final incorpora otros factores operativos que modifican 

significativamente la recuperación. 

 
Figura 8. Scatterplot correlación rougher vs final 

3.4. Análisis temporal de variables de alimentación 

Las series temporales mostradas en la Figura 9 revelan la manera en que cambian variables críticas del proceso, 

como las concentraciones de Au, Ag y Pb en la alimentación, el tamaño de partícula alimentado o la tasa de 

flujo. Si bien el análisis gráfico presentado se centra en variables representativas como el tamaño de partícula 

de alimentación, el modelado predictivo considera simultáneamente múltiples variables operativas del proceso, 

incluyendo dosificación de reactivos, aireación y niveles de pulpa, las cuales influyen de manera conjunta en 

la recuperación metalúrgica en cuanto al metal que se requiere recuperar. 

La data evidencia oscilaciones regulares propias de la variabilidad natural del mineral extraído de mina, pero 

no se observan rupturas bruscas que indiquen fallas severas o cambios radicales de operación. Este 

comportamiento continuo ofrece una base confiable para el modelado predictivo. 
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Figura 9. Tendencias temporales de variables de alimentación 

No obstante, la figura 10 muestra la matriz de correlaciones entre las principales variables operativas 

involucradas en la recuperación de oro. En este mapa de calor se puede observar qué parámetros presentan 

relaciones directas o inversas significativas, lo cual permite identificar qué factores del proceso tienen mayor 

influencia sobre la etapa rougher y la etapa final. Esta información es clave para la selección de características 

y para entender la estructura interna del dataset antes del modelado predictivo. 

 
Figura 10. Distribución de las variables de alimentación 

3.5. Desempeño de los modelos predictivos 
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El desempeño de los modelos se resume en la Tabla 4, donde se evidencia que los modelos no lineales; Árbol 

de Decisión y Bosque Aleatorio, superan ampliamente a la regresión lineal y al modelo Dummy. Este patrón 

sugiere que la relación entre las variables operativas y la recuperación es inherentemente compleja y no lineal. 

Tabla 4. Desempeño de los modelos en términos de sMAPE (%) 
Modelo Rougher sMAPE Final sMAPE sMAPE Ponderado 

Dummy 11.82 11.11 11.29 

Regresión lineal 10.26 9.09 9.39 

Árbol de Decisión 6.76 8.39 7.99 

Bosque aleatorio 7.50 6.47 6.73 

La reducción significativa del error, especialmente con el Random Forest, demuestra que este modelo captura 

patrones complejos y logra generalizar adecuadamente sobre nuevos datos. 

La métrica ponderada sMAPE_final determinó que la combinación óptima es: 

a) Árbol de Decisión → etapa rougher 

b) Random Forest → etapa final 

Esta combinación arrojó un error final de 6.54%, una mejora del 42% respecto al modelo Dummy.  

Este desempeño indica que la estructura del proceso metalúrgico, con múltiples interacciones entre aireación, 

reactivos y composición mineralógica, se modela mejor mediante algoritmos que capturan relaciones no 

lineales. 

3.7. Predicciones sobre el conjunto de prueba 

Las predicciones obtenidas se muestran en las Figuras 10. Dichas distribuciones mantienen coherencia con los 

rangos observados en la data real, lo que indica que el modelo no genera valores físicamente imposibles ni 

predicciones sueltas. 

  

(a) (b) 

Figura 11. Distribución de las predicciones modeladas para las recuperaciones rougher y final  

Además, la Tabla 5 ejemplifica algunos valores representativos obtenidos en el conjunto de prueba. 

Tabla 5. Ejemplo de predicciones sobre el conjunto de prueba  
Fecha Rougher_prediction (%) Final_prediction (%) 

2024-02-13 77.63 59.46 

2024-12-14 94.11 72.25 

2024-02-03 74.94 66.15 

2024-03-28 92.17 70.85 

2024-02-11 83.57 66.74 

 

Estos valores muestran coherencia física y consistencia con las tendencias históricas de operación.  

4. Discusión 

Este estudio demuestra que los modelos de aprendizaje automático aplicados a la predicción de la recuperación 

de oro pueden reproducir de manera precisa el comportamiento real del proceso de flotación, mostrando 



 

Ruiz V. Journal of Advanced Mining Modeling, Publicado en línea  

 

tendencias consistentes con lo reportado por Bu et al. [12], quienes destacan la elevada variabilidad operacional 

del proceso. En este contexto, el modelo Random Forest alcanzó el mejor desempeño global con un sMAPE 

final de 6.47%, resultado que coincide con lo señalado por Liu et al. [13], quienes evidenciaron que los métodos 

de ensamble capturan de forma más efectiva las interacciones complejas típicas de la etapa final de flotación.  

Por su parte, la regresión lineal obtuvo su mejor desempeño en la etapa rougher, con un sMAPE de 10.26%, 

lo cual confirma lo observado por Maldonado et al. [14], quienes describen que la etapa primaria presenta 

comportamientos más lineales debido a factores directos como la ley de alimentación y la granulometría. Este 

patrón también es coherente con lo propuesto por Taran et al. [15], quienes demuestran que los modelos 

simples pueden ser altamente competitivos cuando predominan efectos metalúrgicos de baja interacción. Los 

resultados del Árbol de Decisión (sMAPE = 8.39% en la etapa final) refuerzan esta diferencia entre etapas, 

mostrando un mejor desempeño que la regresión lineal, pero inferior al Random Forest.  

El rendimiento superior del Random Forest en la etapa final coincide con lo descrito por Safari et al. [16], 

quienes reportan reducciones de varianza superiores al 30% respecto a modelos individuales. Además, la 

robustez del modelo frente al ruido operacional, característico de sensores industriales, coincide con lo 

documentado por Hosseini et al. [17], lo cual se reflejó en este estudio en la reducción clara del error final 

respecto al Árbol de Decisión. El sMAPE ponderado del modelo (6.73%) evidencia un equilibrio adecuado 

entre ambas etapas, siendo suficientemente bajo para aplicaciones en línea con fines operativos.  

La validación cruzada K-Fold confirmó la estabilidad de los resultados, con variaciones inferiores al 1% en la 

mayoría de los pliegues. Este comportamiento concuerda con lo sugerido por Chakraborty et al. [18], quienes 

destacan que la validación cruzada evita sobreestimar el rendimiento en datasets con autocorrelación temporal. 

Asimismo, la comparación con el Dummy Regressor (sMAPE 11.29%) confirmó que los modelos aprendieron 

patrones reales del proceso, siguiendo las recomendaciones metodológicas de Jang et al. [19] sobre el uso 

obligatorio de modelos base como referencia en minería de datos industrial. 

Desde una perspectiva operativa, los resultados coinciden con lo propuesto por Maldonado et al. [20], quienes 

demostraron que las predicciones tempranas permiten optimizar la dosificación de reactivos, el flujo de 

aireación y la priorización de lotes. En este trabajo, la exactitud lograda permite disparar notificaciones 

tempranas si la estimación de retorno se sale de los límites previstos. Además, la capacidad de juntar estos 

esquemas con plataformas SCADA o DCS, tal como menciona Dutta et al. [21], brinda la opción de aplicar 

métodos de gestión apoyados en pronósticos en tiempo real. Sin embargo, lo hallado reveló que los modelos 

basados en árboles reaccionan a valores atípicos, en línea con lo establecido por Khosravi et al. [22], por lo 

cual es crucial fortalecer la fase de depuración y selección de la información. 

Finalmente, lograr que el modelo mantenga su coherencia al enfrentar variaciones en los minerales es una tarea 

bastante ardua. Tal como indican Ghorbani et al. [24 las herramientas de predicción suelen empeorar si la 

mezcla mineral cambia mucho, lo que obliga a ajustar la calibración de vez en cuando. Aun así, la aplicabilidad 

práctica encontrada coincide con lo reportado por Lin et al. [25], quienes mostraron que se lograban beneficios 

constantes en la eficacia de las celdas de flotación al usar pronósticos en tiempo real. En conjunto, estos 

hallazgos demuestran no solo que Random Forest ofrece una capacidad de predicción sólida, sino que juntar 

información de la planta con modelos preferidos es un método muy útil que puede subir la eficiencia del trabajo 

y sacar más oro en las flotaciones actuales. No obstante, los datos muestran que mezclan la información de la 

industria con pronósticos avanzados no solo afina los cálculos, sino que también anticipan el rendimiento 

operativo y maximiza la extracción de oro, posicionándose como un recurso clave para manejar la metalurgia 

en las unidades de flotación. 

Por lo tanto, los resultados deben interpretarse dentro de un esquema de flotación bulk de sulfuros, donde la 

eficiencia y eficacia del proceso está determinada por la capacidad del circuito para recuperar fases portadoras 

de oro. Bajo este enfoque, la predicción de la recuperación final refleja adecuadamente el comportamiento real 

de una planta industrial, validando la aplicabilidad del modelo propuesto. 

4. Conflicto de interés 

El autor afirma no tener conflicto de interés. 

5. Conclusiones 

El trabajo prueba que se puede pronosticar con confiabilidad qué tan bien se recuperará el oro utilizando 

métodos de aprendizaje automático aplicados a información de trabajo real. El unir un tratamiento inicial 

exhaustivo, que abarca depurar datos anómalos, verificación de coherencia temporal y estandarización de 
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variables, con una validación cruzada K-Fold, facilitó la creación de modelos firmes, con métricas de error 

consistentes y niveles de sMAPE inferiores al 10%. Reflejando que, los modelos logran de forma correcta 

cómo funciona el proceso metalúrgico en la etapa de flotación. 

Los resultados mostraron distinciones notables al comparar las fases del procedimiento y los distintos tipos de 

modelos. Durante la fase inicial, la regresión lineal demostró ser la más efectiva, logrando un sMAPE de 

alrededor del 10.26 %, lo cual sugiere que la conexión entre las magnitudes en ese momento es en gran medida 

recta. Por otro lado, para el tramo concluyente, el enfoque Random Forest marcó un sMAPE cercano al 6.47%, 

evidenciando su aptitud para entender relaciones más complejas y no lineales. Al juntar todo, el Random Forest 

obtuvo un sMAPE promedio ponderado de cerca del 6.73%, dejando atrás considerablemente al modelo 

Dummy (≈11.29%), lo que comprueba una asimilación importante y un avance grande frente a la base métrica. 

Está mejora cuantitativa confirma que los modelos entrenados lograron aprender patrones relevantes del 

proceso y no solo reproducir valores promedio, cual validan la utilidad del enfoque propuesto. No obstante, 

los resultados evidencian un alto potencial de aplicación directa en planta. La capacidad de anticipar la 

recuperación de oro permite realizar ajustes oportunos en la dosificación de reactivos, mejorar el control de 

las condiciones de pulpa y detectar con anticipación posibles desviaciones en el desempeño metalúrgico. 

Asimismo, el comportamiento coherente de las curvas de predicción y su correspondencia con las 

recuperaciones reales, refuerzan la factibilidad de incorporar estos modelos como herramientas de apoyo para 

la toma de decisiones operativas y la optimización cotidiana del proceso. 

Sin embargo, aunque el desempeño de los modelos fue satisfactorio, su precisión está estrechamente ligada a 

la calidad de los datos disponibles y a la estabilidad de las condiciones operativas del proceso. 

Factores como variabilidad mineralógica, presencia de outliers o cambios abruptos en condiciones operativas 

pueden afectar la predicción. Por ello, seria relevante ampliar la base de datos con nuevas campañas, incorporar 

variables adicionales de operación y evaluar modelos híbridos que integren principios físico metalúrgicos. Aun 

así, los resultados obtenidos representan un aporte significativo y validan el potencial del machine learning 

para mejorar la eficiencia y predictibilidad del circuito de flotación en operaciones mineras reales. 

Futuros trabajos podrían incorporar más variables operativas, integrar temporalidad o aplicar modelos híbridos 

físico datos para aumentar la robustez y aplicabilidad en planta. 
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