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Resumen

La prediccion de la eficiencia metalurgica en la recuperacion de oro constituye una herramienta clave parala optimizacion
de los procesos de beneficio en la industria minera. El cual, el objetivo de este trabajo fue predecir con mayor precision
la eficiencia metalirgica en la recuperacion de oro en las etapas roughery final, empleando técnicas de aprendizaje
automaticoy la métrica sSMAPE como indicador principal de desempefio. Se aplico un enfoque cuantitativo, e valuando
modelos supervisados, como Regresion Lineal, Arbol de Decision y Bosque Aleatorio; mediante validacion cruzada de
cinco pliegues. Los resultados obtenidos evidenciaron diferencias significativas entre los algoritmos; la Regresion Lineal
alcanzo un sSMAPE de 10.26 % en rougher y 9.09 % en final, mientras que el Arbol de Decision redujo el error en la etapa
rougherhasta 6.76 %. El mejor desempefio general se consiguio con el Random Forest, el cual alcanz6 un error porcentual
medio absoluto escalar de 6.47% en la etapa operativa y un SMAPE total ponderado de 6.73%, lo que significa que es un
40% mejor que el modelo de referencia Dummy, que tuvo un error ponderado del 11.29%. Estas predicciones fueron
coherentes con el comportamiento real del proceso y reflejaron las variaciones tipicas asociadas con la recuperacion en
planta. Ademas, se analizaron las concentraciones de plata (Ag) y plomo (Pb) como variables metalurgicas relacionadas
con el oro (Au), con el fin de validar la consistencia fisicay metalurgica del conjunto de datos, sin constituir o bjetivos
principales del modelado. En conclusion, la integracion de modelos avanzados como el Random Forest es una opcion
practica para reforzar la supervision del proceso de flotacion, prever cambios en la eficiencia y ayudar a sacar el mayor
provecho a la recuperacion del oro.

Palabras clave: Flotacion; SMAPE; Validacion cruzada; Random Forest; Arbol de decision; Modelos supervisados.
Abstract

Predicting metallurgical efficiency in gold recovery is a key tool for optimizing mineral processing operations in the
mining industry. Accordingly, the objective of this study was to more accurately predict metallurgical efficiency in gold
recovery during the rougher and final stages by applying machine learning techniques and using the sSMAPE metric as
the main performance indicator. A quantitative approach was adopted, evaluating supervised models such as Linear
Regression, Decision Tree, and Random Forest through five-fold cross-validation. The results revealed significant
differences among the algorithms: Linear Regression achieved an sSMAPE of 10.26% in the rougher stage and 9.09% in
the final stage, while the Decision Tree reduced the error in the rougher stage to 6.76%. The best overall performance
was obtained with the Random Forest model, which achieved a scaled mean absolute percentage error of 6.47% at the
operational stage and a weighted total SMAPE of 6.73%, representing a 40% improvement over the Dummy reference
model, which recorded a weighted error of 11.29%. These predictions were consistent with the actual process behavior
and reflected the typical variations associated with plant recovery. In addition, silver (Ag) and lead (Pb) concentrations
were analyzed as metallurgical variables related to gold (Au) in order to validate the physical and metallurgical
consistency of the dataset, without constituting primary modeling objectives. In conclusion, the integration of advanced
models such as Random Forest represents a practical option to strengthen flotation process monitoring, anticipate changes
in efficiency, and maximize gold recovery.
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1. Introduccion

La mineria moderna tiene como desafio recurrente la necesidad de optimizar la eficiencia metalargica en los
circuitos de concentracion, siendo mas critico en los procesos de flotacion utilizados para la recuperacion de
oro. Por ende, este tipo de operaciones requiere de modelos capaces de anticipar las oscilaciones y suministrar
informacion relevante para la toma de decisiones estratégicas. Dentro del contexto industrial incluido en este
trabajo, el oro se asocia mayoritariamente a minerales sulfurados, sobre todo pirita y, secundariamente,
arsenopirita, razéon por la que puede ser recuperado a través de esquemas de flotacion bulk. Bajo estas
condiciones, los niveles de recuperacion metalirgica alcanzados son consistentes a los obtenidos y reportados
en plantas industriales con flotacién de minerales auriferos sulfurados. Al respecto, varios estudios demuestran
que la inclusion de analisis avanzados mejora en alto grado la estabilidad y predictibilidad de los procesos
metaltrgicos, en particular, en ambientes caracterizados por la elevada variabilidad operacional [1]. Asimismo,
la complejidad en continuo aumento de los sistemas de flotacion exige herramientas analiticas para que los
operadores caractericen el comportamiento del mineral y del proceso de manera mas precisa [2]. En los Gltimos
afios, los programas de aprendizaje automatico se han aplicado con mayor frecuencia en el sector minero para
revelar conexiones complejas entre las muchas variables de sus procesos. Esto resulta especialmente relevante
para la flotacion, ya que los factores de interaccidon incluyen multiples impulsos de reactivos, aireacion,
granulometria, mineralogia del mineral y condiciones hidrodindmicas. En este contexto, los modelos basados
en aprendizaje automatico ofrecen la oportunidad de capturar interdependencias que los enfoques tradicionales
no pueden describir adecuadamente [3]. Ademas, permiten realizar predicciones mas robustas incluso cuando
el proceso en cuestion sufre perturbaciones significativas [4]. Como resultado, la digitalizacion de las
instalaciones ha impulsado el uso de métodos de procesamiento de datos en tiempo real que respaldan la toma
de decisiones operativas criticas [5].

La seleccion adecuada de métricas de evaluacion es vital para evaluar el rendimiento de los modelos
predictivos. En cuanto a la métrica usada para este estudio, el diferencial fue el uso de SMAPE, una medida
simétrica que aplicaba a los valores en la que se evitarian los sesgos cuando los datos reales tuvieran mucha
dispersion. Si bien el SMAPE se utiliza mas habitualmente en industrias similares, la ventaja del calculo
relativamente justo es evidente [6]. Ademas, su estructura en porcentaje también se apropiaba para la medicion
de muchos de los indicadores por eficiencia de desempefio metalirgico [7]. Y también, tras multiples
experimentos, dejaba ver que esta métrica era clave y realmente util cuando pequeiias variaciones pueden traer
grandes diferencias finales de recuperacion. [8].

El presente trabajo presentaun sistema de prediccion disefiado para calcular qué tan bien se recupera el oro en
las fases inicial y final de un proceso de flotacion, utilizando datos reales. Se entrenaron distintos algoritmos
de regresion: Regresion Lineal, Arbol de Decisién y Random Forest, validados mediante K-Fold y evaluados
con SMAPE. El uso de multiples algoritmos permite comparar la estabilidad de las predicciones y seleccionar
el modelo con mayor capacidad de generalizacion [9]. El propdsito es identificar la alternativa més robustay
analizar su potencial para apoyar la optimizacion de procesos metalargicos. En esta linea, la mineria de datos
aplicada al procesamiento de minerales ha demostrado ser una herramienta esencial para mejorar la eficiencia
y reducir la variabilidad operativa [10].

2. Materiales y métodos

Para el desarrollo del modelo predictivo se empled un conjunto de datos proveniente de un proceso industrial
de flotacion de oro, compuesto por tres archivos: train, test y full. Cada uno contiene registros con indice
temporal y variables operativas asociadas a la alimentacion, reactivos, aireacion, niveles de celdas y
concentraciones de metales. En total, el dataset de entrenamiento incluye 86 variables, mientras que el de
prueba contiene 52 variables; esta diferencia obligd a trabajar inicamente con las columnas comunes entre
ambos. Las 86 variables iniciales corresponden a parametros operativos registrados a lo largo del circuito de
flotacion, incluyendo condiciones de alimentacion, dosificacion de reactivos, aireacion, niveles de pulpa,
tamafios de particula y variables metalurgicas intermedias. No obstante, debido a que el conjunto de prueba
dispone unicamente de 52 variables, el andlisis y entrenamiento de los modelos se realizd exclusivamente
utilizando las variables comunes a ambos conjuntos, garantizando la consistencia estructural y Ia
reproducibilidad de las predicciones.
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El analisis preliminar permiti6 identificar valores ausentes, mediciones negativas fisicamente imposibles en
parametros como niveles o concentraciones y valores atipicos con desviaciones muy superiores al promedio.
Estas condiciones exigieron una depuracion rigurosa antes del modelado.

Tabla 1. Resumen general del conjunto de datos utilizados

Archivo Registros  Columnas totales Particularidades
Train 16860 36 Contiene las Variab!es objetivo

(rougher y final)
Empleado exclusivamente para

predicciones finales
Utilizado para analisis estadistico
global

Test 5856 52

Full 22716 86

El conjunto de datos utilizado corresponde a un circuito industrial de flotacion de tipo bulk, orientado a la
recuperacion de oro (Au) asociado a minerales sulfurados, principalmente pirita y, en menor proporcion,
arsenopirita. En este esquema, la flotacién no busca la separacion selectiva de metales individuales, sino la
concentracion conjunta de especies valiosas presentes en el mineral.

El circuito considerado incluye las etapas rougher, cleaner primario y cleaner secundario, siendo la
recuperacion final de oro el resultado acumulado de dichas etapas. Las concentraciones de plata (Ag) y plomo
(Pb) presentes en el analisis responden a su asociacion mineraldgica con el oro (Au) y se utilizan inicamente
como variables de apoyo para caracterizar el comportamiento metalirgico del proceso, mas no como objetivos
principales del modelo predictivo.

2.1. Caracterizacion quimica de la alimentacion

La base de datos industrial utilizada registra de manera directa las leyes iniciales de oro (Au), plata (Ag) y
plomo (Pb), las cuales permiten evidenciar la presencia de sulfuros portadores de estos elementos y, por
consiguiente, la pertinencia del enfoque metalirgico empleado.

Los valores promedio fueron calculados a partir de la totalidad de registros disponibles en el dataset industrial,
obteniéndose las leyes que se presentan en la Tabla 2. Estos resultados corroboran que el material alimentado
es un mineral sulfurado con una cantidad importante de Au que se asocia a especies de Pb y Ag, una condicion
que generalmente se aborda por medio de la flotacion bulk en las plantas de procesamiento.

Tabla 2. Caracterizacion quimica promedio de la alimentacion del circuito rougher

Parametro Valor promedio
Concentracion de Au en alimentacion (g/t) 7.09
Concentracion de Ag en alimentacion (g/t) 99.89
Concentracion de Pb en alimentacion (%) 4.12

Adicionalmente, el rango operativo evidenciado en los registros corrobora la variabilidad habitual de minerales
sulfurados industriales, con valores de Au que oscilan entre 0.65 y 44.09 g/t, Ag entre 0.03 y 674.39 g/t, y Pb
entre 0.09% y 21.56%. En términos generales, estos datos confirman que el material procesado es
efectivamente un sistema bulk sulfurado y apoyan la consistencia metalurgica del estudio.

2.2. Preparacion y limpieza de datos

Durante el reprocesamiento de los datos se aplicaron diversas etapas orientadas a garantizar la coherencia
estadisticay metalurgica del conjunto utilizado para el modelado. La primera fase consisti6 en eliminar valores
y registros fisicamente imposibles, como niveles o cantidades negativas. Dado que los datos e informacion
invalida, alteran la estabilidad de los modelos predictivos en aplicaciones mineras y afectan directamente el
rendimiento de los algoritmos [11].

Posteriormente, los valores faltantes fueron imputados utilizando métodos basados en la distribucion de las
variables y en la coherencia del proceso. Asi de logra conservar la estructura operativareal del sistemay evitar
alteraciones causadas por estimaciones arbitrarias, siguiendo lineamientos puestas para el analisis industrial
de datos de procesos [12].
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Ademas, se verificd la coherencia temporal del dataset, asegurando que el indice cronologico no presentara
duplicados ni saltos irregulares Tener un tiempo consistente es clave en procesos continuos como los de
flotacion, donde el orden de los eventos influye mucho en los resultados metaltirgicos [3].

Para los modelos sensibles a la escala, se aplicaron técnicas de normalizacion y estandarizacion con el fin de
mantener relaciones proporcionales entre variables. Estos procedimientos reducen efectos numeéricos no
deseados y permiten que el aprendizaje sea mdas parejo en modelos que usan regresion o mediciones de
distancia [6].

Finalmente, se filtraron las columnas para conservar unicamente aquellas presentes simultaneamente en los
conjuntos train y test, garantizando compatibilidad estructural. Hacer esto se ve como algo indispensable al
armar modelos supervisados, sobre todo al aplicar mineria de datos a procesos industriales [9].

2.3. Calculo para la recuperacion metalirgica

Para wvalidar la consistencia de los datos, se recalculd la recuperacion rougher empleando la ecuacién
metalurgica clasica, comparando el resultado con la columna oficial del dataset. La formula usada fue:

Recovery = % x 100 (1)

Donde:

Recovery — recuperacion metalurgica (%),

¢ — concentracion del metal en el concentrado (ppm g/ton),

f — concentracion del metal en la alimentacién (ppm g/ton),

t — concentracion del metal en las colas (ppm g/ton).

El error absoluto medio entre el calculo y los valores proporcionados fue del orden de 4.12x10”-9, confirmando
la validez de los datos para el modelado.

2.4. Division de variables y seleccion de objetivos

El estudio se centré en predecir dos variables objetivo, Rougher Output Recovery, correspondiente a la etapa
primaria de flotacion. Y Final Output Recovery, que representa la recuperacion metaltrgica final de oro.
Las variables independientes consideradas en el estudio corresponden a parametros operativos del circuito de
flotacion rougher, scavenger y cleaner, incluyendo tamafio de particula de alimentacion, caudales, niveles de
pulpa, aireacion y dosificacion de reactivos. Estas variables representan condiciones reales de operacion
industrial y fueron seleccionadas por su influencia directa sobre la eficiencia de recuperacion metalurgica.

2.5. Validacion cruzada (K-Fold)

Para evaluar la capacidad de generalizacion de los modelos se utilizé la técnica de validacion cruzada K-Fold
con k=5, ampliamente recomendada en aplicaciones industriales donde no es posible reservar datos adicionales
para validacion externa. Este método consiste en dividir el conjunto de entrenamiento en cinco particiones del
mismo tamafo; en cada iteracion cuatro particiones se usan para entrenar y una para evaluar el modelo.

e S DOOD
e G-I
e P>
e EEE QP
e GG

Figura 1. Esquema del proceso de validacién cruzada K-Fold.
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2.6. Métrica de evaluacion: SsSMAPE

La evaluacion del desempeiio de los modelos se realiz6 mediante el Symmetric Mean Absolute Percentage
Error (sSMAPE), ya que esta métrica penaliza de manera equilibrada las desviaciones entre valores reales y
predichos, sin sesgo hacia valores altos o bajos.

La ecuacion que define el SMAPE es la siguiente:

N

1 |Yi — il

MAPE = — — 100 2
s N Z(|y¢| + g /2~ @

i=1

Donde:

SMAPE — error porcentual simétrico (%),

N — numero total de observaciones,

Y4 — valor real del dato 4 (%),

U4 — valor predicho para el dato 4 (%),

|y¢ - 1]¢| — diferencia absoluta entre valor real y predicho (%),

(IYil +|Yi|) / 2 — promedio simétrico para normalizacion (%).

Debido a la importancia metalirgica de la recuperacion final, se empled una métrica combinada ponderada:

SMAPECombinado =0.25 X SMAPERougher (3)
+ 0.75 X SMAPE i,

Donde:

SMAPE ;) mpinado — Métrica final poderada (%),

SMAPER gy gner — €tror porcentual en la etapa rougher (%),

SMAPEyg,,, — error porcentual en la etapa final (%),

Los coeficientes 0.25 y 0.75 representan los pesos asignados a cada etapa segin su relevancia operativa.

2.7. Modelo de regresion utilizados

Se entrenaron tres modelos predictivos, cada uno con caracteristicas y alcances especificos:

(a) Regresion Lineal

Util como linea base; sensible a escalamiento y relaciones lineales entre variables. “No obstante, la linealidad
entre variables, su rendimiento puede limitarse cuando los procesos presentan interacciones mas complejas
[13].”

(b) Arbol de Decision

“Modelo no paramétrico; captura relaciones no lineales y es robusto frente a datos con ruido [14].”

(c) Bosque Aleatorio (Random Forest)

“Conjunto de arboles que reduce la varianza y mejora la estabilidad predictiva; especialmente titil en procesos
con alta interaccion entre variables [15].”

Tabla 3. Modelos aplicados y métodos de evaluacion

Modelo Reprocesamiento Técnicas de evaluacion
Regresion Lineal Estandarizacion K-Fold
Arbol de Decision No requiere Grid Search + K-Fold
Random Forest No requiere Grid Search + K-Fold
Dummy Regressor - K-Fold

El proceso metalurgico analizado corresponde a un circuito de flotacion bulk de sulfuros, cuyo objetivo
principal es la recuperacion del oro asociado a minerales sulfurados. En este esquema, minerales como galena
y fases portadoras de plata flotan conjuntamente con la pirita y arsenopirita, actuando como vehiculos
metaltrgicos para la recuperacion del oro, sin que se realice una separacion selectiva individual de estos
metales en las etapas consideradas.
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El uso de un conjunto amplio de variables operativas permite capturar la naturaleza multivariable del proceso
de flotacion, donde la recuperacion metalargica no depende de un Unico parametro, sino de la interaccion
simultanea entre condiciones fisicas, quimicas y metalurgicas del sistema.

3. Resultados

3.1. Calidad de los datos y depuracion final

La fase de depuracion permitio transformar un conjunto inicial heterogéneo en un dataset completamente
limpio, consistente y fisicamente plausible. La deteccion de valores centinela; particularmente evidentes en
columnas de sensores como *level, confirmé la existencia de errores sistematicos de adquisicion,
representados por rangos imposibles entre 800 y 200. Al reemplazar estos registros y eliminar columnas sin
informacion 1til, se obtuvo una base confiable para el analisis posterior.

En la Figura 2 se aprecia que las distribuciones del “feed size” entre los conjuntos de entrenamiento y prueba
presentan una coincidencia notable. Esta similitud es fundamental, ya que confirma que ambos conjuntos
provienen de condiciones reales comparables y que no existe riesgo de sesgo por desalineacion estadistica
entre ellos.

Distribucion del tamario de particulas en Train vs Test

Train
Test

0.040 4

0.035 4

0.030 4

0.025 4

0.020 4

Density

0.015 A

0.010 4

0.005 4

0.000 T T T T T T
0 100 200 300 400 500
Tamafio de particula (pm)

Figura 2. Distribucién comparativa del “feed_size” en trainy test

Del mismo modo, la Figura 3 muestra los boxplots de la concentracion total de metales, donde se observa la
desaparicion de valores extremos presentes originalmente en el dataset completo. Esta comparacion evidencia
que el filtrado aplicado fue efectivo para eliminar registros atipicos y conservar Unicamente aquellos que
reflejan el comportamiento fisico real del proceso metalurgico.

Concentracion total de metales por etapa del proceso
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Figura 3. Boxplot de total _metal en trainy test
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3.2. Comportamiento metalirgico de Au, Ag y Pb

El analisis de las concentraciones de Au, Ag y Pb se realiz6 con el propdsito de evaluar la coherencia
metalirgica del proceso de flotacion bulk considerado en este trabajo. Si bien el objetivo principal del
modelado predictivo es la recuperacion de oro, la inclusion de plata y plomo permite verificar el
comportamiento conjunto de los minerales sulfurados asociados y validar que el conjunto de datos refleja
condiciones reales de operacion industrial.

Un aspecto central del analisis fue observar como se comportan las concentraciones de oro (Au), plata (Ag) y
plomo (Pb) a lo largo de las distintas etapas del proceso de flotacion. La presencia de plomo y plata en los
concentrados no implica un esquema de flotacion selectiva, sino que responde al caracter bulk del proceso,
donde estos minerales sulfurados flotan conjuntamente y contribuyen indirectamente a la recuperacion del oro
asociado. La data procesada refleja patrones metalliirgicos esperados, coherentes con la literatura del
procesamiento de minerales.

En la Figura 4, referente al oro, se aprecia un incremento sostenido desde la alimentacion hasta el concentrado
final. Esto indica que cada etapa del proceso rougher, cleaner y final, logra una recuperacion progresiva del
metal, lo que valida el correcto funcionamiento del circuito de flotacion.

Concentracién de Oro a través del Proceso

Concentracion de Oro (ppm)

rougher.input.feed_au rougher.output.concentrate_gurimary_cleaner.output.concentrate_aufinal.output.concentrate_au
Etapa del Proceso

Figura 4. Concentracion de Au a través del proceso

La Figura 5 muestra que, a diferencia del oro, la plata presenta una ligera mejora en la etapa rougher, pero
posteriormente disminuye. Este comportamiento se asocia a la baja afinidad de la plata en etapas mas finas del
proceso, lo cual es un fendémeno ampliamente reconocido en plantas reales.

Concentracion de Plata a través del Proceso

Concentracién de Plata (ppm)

rougher.input.feed_ag rougher.output.concentrate_ggimary_cleaner.output.concentrate_agfinal.output.concentrate_ag
Etapa del Proceso

Figura 5. Concentracion de Ag a través del proceso

Respecto al plomo, la Figura 6 revela un comportamiento creciente a lo largo del proceso. Esto es coherente
con la coflotacion del plomo en minerales sulfurados asociados al oro, lo que explica su acumulacion
progresiva en el concentrado final.
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Concentracién de Plomo a través del Proceso

Concentracién de Plomo (ppm)

rougher.input.feed_pb rougher.output.concentrate_pirimary_cleaner.output.concentrate_pbfinal.output.concentrate_pb
Etapa del Proceso

Figura 6. Concentracion de Pb a través del proceso

Estos resultados permiten confiar en la calidad del dataset, ya que reflejan patrones metaltrgicos reales y
esperables.

No obstante, el incremento progresivo de las concentraciones de plomo y plata a lo largo del proceso respalda
la hipotesis de una flotacion bulk de minerales sulfurados, en la cual el oro se recupera principalmente por su
asociacion con estas fases minerales. Este comportamiento explica los niveles de recuperacion final obtenidos
y confirma la coherencia metalurgica del conjunto de datos utilizado.

3.3. Analisis exploratorio de las variables objetivo

Las distribuciones de las variables objetivo se muestran en la Figura 7, donde se aprecia que:

Figura 7 (a) Rougher Output Recovery se concentra principalmente entre 80% y 90%, lo cual coincide con la
eficiencia tipica de plantas de flotacion en etapa inicial.

Figura 7 (b) muestra que la etapa rougher presenta mediana estable y dispersion reducida, lo que refleja un
proceso primario relativamente controlado.

Figura 7 (c¢) Final Output Recovery presenta una media mas baja, entre 60% y 70%, reflejando el
endurecimiento de las condiciones operativas en las etapas de limpieza.

Figura 7 (d) evidencia que la recuperacion final es mas sensible a variaciones operativas, mostrando una caja
mas estrecha pero una mayor cantidad de valores extremos hacia abajo.
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Distribucidn de final.cutput.recovery
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Figura 7. Distribucion estadistica de las recuperaciones reales en las etapas rougher y final

final.cutput.recovery

La presencia de algunos valores atipicos cercanos a 0% es consistente con paradas de plantao eventos de falla
en los equipos de flotacion.

La correlacion entre ambas variables objetivo (r = 0.3), representada en la Figura 8, muestra que, aunque existe
relacion entre las etapas rougher y final, la etapa final incorpora otros factores operativos que modifican
significativamente la recuperacion.
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Figura 8. Scatterplot correlacion rougher vs final

3.4. Analisis temporal de variables de alimentacion

Las series temporales mostradas en la Figura 9 revelan la manera en que cambian variables criticas del proceso,
como las concentraciones de Au, Ag y Pb en la alimentacion, el tamafio de particula alimentado o la tasa de
flujo. Si bien el analisis grafico presentado se centra en variables representativas como el tamafio de particula
de alimentacion, el modelado predictivo considera simultaneamente multiples variables operativas del proceso,
incluyendo dosificacion de reactivos, aireacion y niveles de pulpa, las cuales influyen de manera conjunta en
la recuperacion metalirgica en cuanto al metal que se requiere recuperar.

La data evidencia oscilaciones regulares propias de la variabilidad natural del mineral extraido de mina, pero
no se observan rupturas bruscas que indiquen fallas severas o cambios radicales de operacion. Este
comportamiento continuo ofrece una base confiable para el modelado predictivo.
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Figura 9. Tendencias temporales de variables de alimentacién

No obstante, la figura 10 muestra la matriz de correlaciones entre las principales variables operativas
involucradas en la recuperacion de oro. En este mapa de calor se puede observar qué parametros presentan
relaciones directas o inversas significativas, lo cual permite identificar qué factores del proceso tienen mayor
influencia sobre la etapa roughery la etapa final. Esta informacion es clave para la seleccion de caracteristicas
y para entender la estructura interna del dataset antes del modelado predictivo.
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Figura 10. Distribucion de las variables de alimentacion

3.5. Desempeiio de los modelos predictivos
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El desempeiio de los modelos se resume en la Tabla 4, donde se evidencia que los modelos no lineales; Arbol
de Decision y Bosque Aleatorio, superan ampliamente a la regresion lineal y al modelo Dummy. Este patron
sugiere que la relacion entre las variables operativas y la recuperacion es inherentemente complejay no lineal.

Tabla 4. Desempeiio de los modelos en términos de sSMAPE (%)

Modelo Rougher sMAPE Final sMAPE SMAPE Ponderado
Dummy 11.82 11.11 11.29
Regresion lineal 10.26 9.09 9.39
Arbol de Decision 6.76 8.39 7.99
Bosque aleatorio 7.50 6.47 6.73

La reduccion significativa del error, especialmente con el Random Forest, demuestra que este modelo captura
patrones complejos y logra generalizar adecuadamente sobre nuevos datos.
La métrica ponderada sMAPE _final determiné que la combinacioén dptima es:

a) Arbol de Decisién — etapa rougher

b) Random Forest — etapa final
Esta combinacion arrojo un error final de 6.54%, una mejora del 42% respecto al modelo Dummy.
Este desempefio indica que la estructura del proceso metalirgico, con multiples interacciones entre aireacion,
reactivos y composicion mineraldgica, se modela mejor mediante algoritmos que capturan relaciones no
lineales.

3.7. Predicciones sobre el conjunto de prueba

Las predicciones obtenidas se muestran en las Figuras 10. Dichas distribuciones mantienen coherencia con los
rangos observados en la data real, lo que indica que el modelo no genera valores fisicamente imposibles ni
predicciones sueltas.
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Figura 11. Distribucion de las predicciones modeladas para las recuperaciones rougher y final

Ademas, la Tabla 5 ejemplifica algunos valores representativos obtenidos en el conjunto de prueba.

Tabla 5. Ejemplo de predicciones sobre el conjunto de prueba

Fecha Rougher prediction (%) Final prediction (%)
2024-02-13 77.63 59.46
2024-12-14 94.11 72.25
2024-02-03 74.94 66.15
2024-03-28 92.17 70.85
2024-02-11 83.57 66.74

Estos valores muestran coherencia fisica y consistencia con las tendencias historicas de operacion.

4. Discusion

Este estudio demuestra que los modelos de aprendizaje automatico aplicados a la prediccion de la recuperacion
de oro pueden reproducir de manera precisa el comportamiento real del proceso de flotacion, mostrando
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tendencias consistentes con lo reportado por Bu et al. [12], quienes destacan la elevada variabilidad operacional
del proceso. En este contexto, el modelo Random Forest alcanzé el mejor desempefio global con un sMAPE
final de 6.47%, resultado que coincide con lo sefialado por Liu et al. [13], quienes evidenciaron que los métodos
de ensamble capturan de forma maés efectiva las interacciones complejas tipicas de la etapa final de flotacion.
Por su parte, la regresion lineal obtuvo su mejor desempefio en la etapa rougher, con un SMAPE de 10.26%,
lo cual confirma lo observado por Maldonado et al. [14], quienes describen que la etapa primaria presenta
comportamientos mas lineales debido a factores directos como la ley de alimentacion y la granulometria. Este
patrén también es coherente con lo propuesto por Taran et al. [15], quienes demuestran que los modelos
simples pueden ser altamente competitivos cuando predominan efectos metalurgicos de baja interaccion. Los
resultados del Arbol de Decision (SMAPE = 8.39% en la etapa final) refuerzan esta diferencia entre etapas,
mostrando un mejor desempefio que la regresion lineal, pero inferior al Random Forest.

El rendimiento superior del Random Forest en la etapa final coincide con lo descrito por Safari et al. [16],
quienes reportan reducciones de varianza superiores al 30% respecto a modelos individuales. Ademas, la
robustez del modelo frente al ruido operacional, caracteristico de sensores industriales, coincide con lo
documentado por Hosseini et al. [17], lo cual se reflejo en este estudio en la reduccion clara del error final
respecto al Arbol de Decision. E1 sSMAPE ponderado del modelo (6.73%) evidencia un equilibrio adecuado
entre ambas etapas, siendo suficientemente bajo para aplicaciones en linea con fines operativos.

La validacion cruzada K-Fold confirm¢ la estabilidad de los resultados, con variaciones inferiores al 1% en la
mayoria de los pliegues. Este comportamiento concuerda con lo sugerido por Chakraborty et al. [18], quienes
destacan que la validacion cruzada evita sobreestimar el rendimiento en datasets con autocorrelacion temporal.
Asimismo, la comparacion con el Dummy Regressor (sSMAPE 11.29%) confirmo que los modelos aprendieron
patrones reales del proceso, siguiendo las recomendaciones metodoldgicas de Jang et al. [19] sobre el uso
obligatorio de modelos base como referencia en mineria de datos industrial.

Desde una perspectiva operativa, los resultados coinciden con lo propuesto por Maldonado et al. [20], quienes
demostraron que las predicciones tempranas permiten optimizar la dosificacion de reactivos, el flujo de
aireacion y la priorizacion de lotes. En este trabajo, la exactitud lograda permite disparar notificaciones
tempranas si la estimacion de retorno se sale de los limites previstos. Ademas, la capacidad de juntar estos
esquemas con plataformas SCADA o DCS, tal como menciona Dutta et al. [21], brinda la opcidén de aplicar
métodos de gestion apoyados en pronosticos en tiempo real. Sin embargo, lo hallado reveld que los modelos
basados en arboles reaccionan a valores atipicos, en linea con lo establecido por Khosravi et al. [22], por lo
cual es crucial fortalecer la fase de depuracion y seleccion de la informacion.

Finalmente, lograr que el modelo mantenga su coherencia al enfrentar variaciones en los minerales es una tarea
bastante ardua. Tal como indican Ghorbani et al. [24 las herramientas de prediccion suelen empeorar si la
mezcla mineral cambia mucho, lo que obliga a ajustar la calibracion de vez en cuando. Aun asf, la aplicabilidad
practica encontrada coincide con lo reportado por Lin et al. [25], quienes mostraron que se lograban beneficios
constantes en la eficacia de las celdas de flotacion al usar pronosticos en tiempo real. En conjunto, estos
hallazgos demuestran no solo que Random Forest ofrece una capacidad de prediccion sélida, sino que juntar
informacion de la planta con modelos preferidos es un método muy util que puede subir la eficiencia del trabajo
y sacar mas oro en las flotaciones actuales. No obstante, los datos muestran que mezclan la informacion de la
industria con pronosticos avanzados no solo afina los célculos, sino que también anticipan el rendimiento
operativo y maximiza la extraccion de oro, posicionandose como un recurso clave para manejar la metalurgia
en las unidades de flotacion.

Por lo tanto, los resultados deben interpretarse dentro de un esquema de flotacion bulk de sulfuros, donde la
eficiencia y eficacia del proceso est4d determinada por la capacidad del circuito para recuperar fases portadoras
de oro. Bajo este enfoque, la prediccion de la recuperacion final refleja adecuadamente el comportamiento real
de una planta industrial, validando la aplicabilidad del modelo propuesto.

4. Conflicto de interés

El autor afirma no tener conflicto de interés.

5. Conclusiones

El trabajo prueba que se puede pronosticar con confiabilidad qué tan bien se recuperara el oro utilizando
métodos de aprendizaje automatico aplicados a informacion de trabajo real. El unir un tratamiento inicial
exhaustivo, que abarca depurar datos andomalos, verificacion de coherencia temporal y estandarizacion de
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variables, con una validacién cruzada K-Fold, facilit6 la creacion de modelos firmes, con métricas de error
consistentes y niveles de SMAPE inferiores al 10%. Reflejando que, los modelos logran de forma correcta
cémo funciona el proceso metalurgico en la etapa de flotacion.

Los resultados mostraron distinciones notables al comparar las fases del procedimientoy los distintos tipos de
modelos. Durante la fase inicial, la regresion lineal demostr6 ser la mas efectiva, logrando un sMAPE de
alrededor del 10.26 %, lo cual sugiere que la conexion entre las magnitudes en ese momento es en gran medida
recta. Por otro lado, para el tramo concluyente, el enfoque Random Forest marcé un sMAPE cercano al 6.47%,
evidenciando su aptitud para entender relaciones mas complejas y no lineales. Al juntar todo, el Random Forest
obtuvo un sSMAPE promedio ponderado de cerca del 6.73%, dejando atrds considerablemente al modelo
Dummy (=11.29%), lo que comprueba una asimilacion importante y un avance grande frente a la base métrica.
Esta mejora cuantitativa confirma que los modelos entrenados lograron aprender patrones relevantes del
proceso y no solo reproducir valores promedio, cual validan la utilidad del enfoque propuesto. No obstante,
los resultados evidencian un alto potencial de aplicacion directa en planta. La capacidad de anticipar la
recuperacion de oro permite realizar ajustes oportunos en la dosificacion de reactivos, mejorar el control de
las condiciones de pulpa y detectar con anticipacion posibles desviaciones en el desempefio metalurgico.
Asimismo, el comportamiento coherente de las curvas de prediccion y su correspondencia con las
recuperaciones reales, refuerzan la factibilidad de incorporar estos modelos como herramientas de apoyo para
la toma de decisiones operativas y la optimizacion cotidiana del proceso.

Sin embargo, aunque el desempefio de los modelos fue satisfactorio, su precision esta estrechamente ligada a
la calidad de los datos disponibles y a la estabilidad de las condiciones operativas del proceso.

Factores como variabilidad mineraldgica, presencia de outliers o cambios abruptos en condiciones operativas
pueden afectar la prediccion. Por ello, seria relevante ampliar la base de datos con nuevas campaiias, incorporar
variables adicionales de operacion y evaluar modelos hibridos que integren principios fisico metaltirgicos. Aun
asi, los resultados obtenidos representan un aporte significativo y validan el potencial del machine learning
para mejorar la eficiencia y predictibilidad del circuito de flotacion en operaciones mineras reales.

Futuros trabajos podrian incorporar mas variables operativas, integrar temporalidad o aplicar modelos hibridos
fisico datos para aumentar la robustez y aplicabilidad en planta.
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